The Cornell Program
Synthesizer: A Syntax-Directed
Programming Environment

Tim Teitelbaum and Thomas Reps
CACM 1981

Summary by Prof. Thomas LaToza
SWE 795, Spring 2017
Software Engineering Environments

IIIIIIIIII

Syntax-Directed Programming Environments

- Offer a unified programming environment that enables
developers to work with code at higher level of
abstraction

Enable step-wise refinement, where developers start at
high-level and work downwards

+ Spare developers from mundane and frustrating details of
programming syntax

Key Idea: Program Templates

e Rather than work with N sama

characters, developers ELSE statement

use commands to insert

program templates l
e [nserts all necessary Fk>0)

(eywords - THEN gstatement

ELSE PUT SKIP LIST (‘not positive’),

» | eaves placeholders that

can be filled by text of l

the correct type

IF(k>0)
° eg statement THEN PUT SKIP LIST ([7)ist-of-expressions);
b ’ ELSE PUT SKIP LIST (‘not positive’);
condition

LaToza GMU SWE 795 Spring 2017

Working with program templates

LaToza

IF (k>0)
THEN PUT SKIP LIST ([T)ist-of-expressions),
ELSE PUT SKIP LIST (‘not positive’);

All edits occur through templates

e Cursor only moves through template, phrase, placeholder
Errors can occur only in phrases, not templates

* Error detection can give more precise immediate feedback

Structural modification commands can edit, delete, move,
COpY program units

Can fold (hide) program elements to summarize less relevant
sections

GMU SWE 795 Spring 2017

LaToza

Questions for discussion

e Qverall reaction to the paper

 Would you use such a system for your everyday
programming’?

 Why or why not?

 What are the pros and cons of structured editors
compared to modern IDES?

GMU SWE 795 Spring 2017

