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Syntax-Directed Programming Environments

- Offer a unified programming environment that enables
developers to work with code at higher level of
abstraction

Enable step-wise refinement, where developers start at
high-level and work downwards

+ Spare developers from mundane and frustrating details of
programming syntax



Key Idea: Program Templates
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characters, developers ELSE statement
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Working with program templates
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IF (k>0)
THEN PUT SKIP LIST ([T)ist-of-expressions ),
ELSE PUT SKIP LIST ( ‘not positive’ );

All edits occur through templates

e Cursor only moves through template, phrase, placeholder
Errors can occur only in phrases, not templates

* Error detection can give more precise immediate feedback

Structural modification commands can edit, delete, move,
COpY program units

Can fold (hide) program elements to summarize less relevant
sections
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Questions for discussion

e Qverall reaction to the paper

 Would you use such a system for your everyday
programming’?

 Why or why not?

 What are the pros and cons of structured editors
compared to modern IDES?
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