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Finding Causes of Program Output

• Problem 
• Debugging challenging because developers must map 

observable symptom of failure (e.g., a button that is not 
displayed) to underlying cause 

• Developers must map incorrect output to responsible code 
• Requires guessing cause (hypothesizing) and checking 

with tools 
• Most hypotheses are wrong 

• Solution 
• Enable developers to directly ask why and why not 

questions about output, trace back to code responsible for 
output
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WhyLine
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Timeline visualization
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Evaluation
• 20 masters students did two 30 minute tasks 
• Used tutorial to teach the tool to users 
• Tasks: debug 2 real bug reports from ArgoUML  

     Diagnose problem & write change 
recommendation 

• Measured time, success, code exploration, 
perception 
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Results
Task 1

Task 2
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Questions for discussion
• Overall reaction to the paper 
• Are the claims about the benefits of WhyLine convincing? 

• How much evaluation is enough? 
• In what contexts might WhyLine be more difficult to apply? 

• How might WhyLine be extended to support these 
contexts? 

• What are the pros and cons of WhyLine approach to 
debugging vs. alternatives? 

• How much time overhead does demonstrating bug for 
WhyLine add for developer? 

• What challenges would there be in commercializing 
WhyLine?
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