
Finding Causes of
Program Output with

the Java WhyLine

SWE 795, Spring 2017
Software Engineering Environments

Summary by Prof. Thomas LaToza

Andrew Ko & Brad Myers
CHI 2009

LaToza GMU SWE 795 Spring 2017

Finding Causes of Program Output

• Problem
• Debugging challenging because developers must map

observable symptom of failure (e.g., a button that is not
displayed) to underlying cause

• Developers must map incorrect output to responsible code
• Requires guessing cause (hypothesizing) and checking

with tools
• Most hypotheses are wrong

• Solution
• Enable developers to directly ask why and why not

questions about output, trace back to code responsible for
output

2

LaToza GMU SWE 795 Spring 2017 3

LaToza GMU SWE 795 Spring 2017

WhyLine

4

LaToza GMU SWE 795 Spring 2017

Timeline visualization

5

LaToza GMU SWE 795 Spring 2017

Evaluation
• 20 masters students did two 30 minute tasks
• Used tutorial to teach the tool to users
• Tasks: debug 2 real bug reports from ArgoUML  

 Diagnose problem & write change
recommendation

• Measured time, success, code exploration,
perception

6

Results
Task 1

Task 2

LaToza GMU SWE 795 Spring 2017

Questions for discussion
• Overall reaction to the paper
• Are the claims about the benefits of WhyLine convincing?

• How much evaluation is enough?
• In what contexts might WhyLine be more difficult to apply?

• How might WhyLine be extended to support these
contexts?

• What are the pros and cons of WhyLine approach to
debugging vs. alternatives?

• How much time overhead does demonstrating bug for
WhyLine add for developer?

• What challenges would there be in commercializing
WhyLine?

7

