N degrees of Separation:

Multi-Dimensional Separation of Concerns

Peri Tarr, Harold Ossher, William Harrison Stanley M. Sutton Jr.
IBM Watson Research Center EC Cubed, Inc.
ICSE, 1999

Presented by David Gonzalez

Key Insights(1/2)

* A dominant decomposition(features, objects) based on separation of
concerns forces structuring software by one of separation
at a time, resulting in sparse functionalities if viewed by another
concern.

* Provides a model for simultaneous, non-invasive multi-dimensional
decomposition, hyperslicing, and composition of artifacts using
hypermodules, while avoiding the need for new software formalisms.

Key Insights(2/2)

* A hyperslice is a set of conventional modules that encapsulate a non-
dominant concern.

* A hypermodule is a set of hyperslices that obey a given rule.

* Considered instances of the model: subject-oriented and aspect-
oriented programming, contract-base composition, role models,
adaptive programming, etc.

Problem

Color Coding:

e

Style Checker I

m Class (name on top; methods inside)
Cl——C2 C2is a subelass of C1

with the given color codo
method() is & new member of the

dEy-:| givem class, necessitnied by the addition
of the featurewith the given color code

Figure 1: Initial (Partial) Design Artifact for SEE.
Figure 2: The Java Implementation Classes, Post-Evolution.

Concerns:

Features in requirements

Objects in design

Interface and Implementation classes in code

Sparse functionality due to the “tyranny of dominant concern”:
Scattering — single requirement affects multiple artifacts
Tangling — multiple requirements affect an artifact

Approach

Breaking
the
tyranny

Style Checker I

_—

e method() was & ber of the

0diEzy given class whose implementation
'was affected by the new feature

wilh the given color code

method() is & new memher of the

5] given class, necessituled by the addition
of the festurcwith the given color code

Figure 2: The Java Implementation Classes, Post-Evolution.

Goals:

low impact of changes
More Reuse

More Tracebility

..-ll'_ll-ll‘_ll_ll-ll-ll_ll- I R . - N I O .

= = - -
N — -

Figure 4: Composing Hyperslices using Hypermodules.
Steps:
1. Identify concerns (feature, unit of change,
customization, data or object).
2. Define primitive and compound units within artifacts.
Decompose into hyperslices.
4. Compose Hypermodules based on rules.

w

Questions?

* Does hyperslicing reflect what its name mean?

* Besides analytical process, what proof do they present to offer to
evaluate the model?

* Is a hyperslice useful?
* Method overloading, polymorphisms. Where do they fit?

| THIHE WE HEED
SOME BOUNDARIES.

WRMHE
EHOWS Mo
BouDARIES.

