Visualizing Call Graphs

Thomas D. LaToza & Brad A. Myers,
VL/HCC 2011

Summary by Prof. Thomas LaToza
SWE 795, Spring 2017
Software Engineering Environments

Motivation: Understanding control flow is hard

* Answering reachability questions frequent challenge
in debugging & investigating implications of code

error prone caused 50% of bugs
frequent >9 times a day
hard 82% agree
time consuming tens of minutes to answer

not easier or less frequent with knowledge or expertise

* Underlying cause: making foraging decisions across
calls

© getStartContext(Variable, AliasContext)

@ createEntryValue(MethodDeclaration)
> getEntryValue()
@ performAnalysis()
@ performAnalysis(MethodDeclaration) : void - edu.cmu.cs.crystal.flo
> switchToMethod(MethodDeclaration)
@ performAnalysisOnSurroundingMethodIfNeeded(ASTNode)
© getEndResults(MethodDeclaration)

@ getLabeledEndResult{MethodDeclaration)

LaToza GMU SWE 795 Spring 2017

LaToza

Searching along call graphs

@ getStartContext(Variable, AliasContext) e
@ createEntryValue(MethodDeclaration)
> getEntryValue()
@ performAnalysis()
@ performAnalysis(MethodDeclaration) : void - edu.cmu.cs.crystal.flo
» switchToMethod(MethodDeclaration)
@ performAnalysisOnSurroundingMethodlfNeeded(ASTNode)
@ getEndResults(MethodDeclaration)

@ getLabeledEndResult(MethodDeclaration)

Many methods, some of them are task relevant
Finding them is hard...
Information foraging models whole debugging / investigation task as
traversing relationships to find search targets (prey) [Lawrance+201 |]

But developers search for statements by attribute (e.g., field writes) and
partial name.

GMU SWE 795 Spring 2017

Design requirements for code exploration

Finding Implication
search for statements by attribute (e.g, Configurable search dialog,
field writes) and partial name. incrementally match statements
rapidly investigate, never returning to Expandable details on demand,
most methods. browser style history navigation
explore huge call graphs, but task Only show the (task relevant)
relevant portion small. methods developers select.
reason about causality, class membership, Overview this information in
ordering, choice, repetition. visualization of callgraph
get lost and disoriented reading through Link callgraph to editor to navigate
code in disparate places. code.

LaToza GMU SWE 795 Spring 2017 4

Existing tools don’t solve the problem

¢ write(String)

Graph visualizations UML Sequence Diagrams Maps of code
-) f Inl)€ » LN al » \
® printstream &' writer " this.setimontcoen sorcerimot); @Y | —
«abstracd» thi publ |
H : JButton featureButton=SpeclalFeatureButton,
viry | | cance(tni
« ensureOpen() E JButton randomShapess this.
e T : String[] messages = this. ﬂ
1
,3‘ length()

Code bubbles [Bragdon+10]

* write(String, i

-7‘: getChars(int,

SHriMP [Storey+95]

s write{char[], i

Diver [Bennet+07/]

-not task specific -not task specific -can’t search over paths
-no search -not compact -don’t compactly encode ordering,
-no ordering, class membership.... repetition, conditionals, ...

LaToza GMU SWE 795 Spring 2017 5

LaToza

Reacher

Designed a tool for understanding, exploring, and reasoning about call graphs

Implemented as an Eclipse plugin for Java
Generates static call graphs with fast feasible path analysis
Visualization built on Prefuse visualization toolkit [Heer+05]

Helps to
find understand stay
statements call graphs oriented
by visualizing results,
entering searches encoding properties navigating IDE
>u.' :'v.' d :;-.n:l r"('Jlﬂ from jJEd tnewview() ‘or S;B;:_) i)
‘ ;:ﬂw:l..du dit ad :‘c:':u ; MVI::E“P N Citrane e @<:

0r3.3i1.5p jedir, removeFrome Jst) @ il
org.git.sp.jedit, send(.) ; void

GMU SWE 795 Spring 2017

Results

Developers with Reacher 5.6 times more successful than working with
Eclipse only.

Participants with Reacher took an average of 7.2 minutes vs. | I.| minutes
with Eclipse only (difference limited by ceiling effect).

Success Time

1% 2% 3 4%

task task

[EEY
N

time (minutes)

o w o O

participants
that succeeded
O L N W b U1 O

pink Eclipse only

* significant differences (p < .05)))
green Eclipse with Reacher

LaToza GMU SWE 795 Spring 2017 7/

LaToza

Control group traversed paths

* Traversed paths through code looking for targets
Relied heavily on scent - perceived relevance of method on path
E.g., to find EditBus messages, looked for important actions
Traversing through event listeners forced new search, often lost

place

* Sometimes did bidirectional search
Started at origin and hypothesized destination
Tried to find connecting paths

* Dynamic investigation was difficult

Ran the program, but conditionals guarded path of interest

Did static investigation to figure out how to dynamically execute
But then was hard to determine which of many breakpoints hit it

GMU SWE 795 Spring 2017

LaToza

Questions for Discussion

Would you use this tool”

In what contexts might Reacher be difficult to
apply?
 How might Reacher be extended?

What are the pros and cons of static analysis vs.
dynamic for debugging?

What challenges might there be in commercializing
Reacher?

GMU SWE 795 Spring 2017

