
Visualizing Call Graphs

SWE 795, Spring 2017
Software Engineering Environments

Summary by Prof. Thomas LaToza

Thomas D. LaToza & Brad A. Myers,  
VL/HCC 2011

LaToza GMU SWE 795 Spring 2017

Motivation: Understanding control flow is hard
• Answering reachability questions frequent challenge

in debugging & investigating implications of code

2

...

• Underlying cause: making foraging decisions across
calls

tens of minutes to answer

82% agree

caused 50% of bugserror prone

time consuming
hard

frequent >9 times a day

not easier or less frequent with knowledge or expertise

LaToza GMU SWE 795 Spring 2017

Searching along call graphs

3

Many methods, some of them are task relevant 
 Finding them is hard...  
 Information foraging models whole debugging / investigation task as 
 traversing relationships to find search targets (prey) [Lawrance+2011]

But developers search for statements by attribute (e.g., field writes) and  
partial name.  

...

LaToza GMU SWE 795 Spring 2017

Design requirements for code exploration

4

search for statements by attribute (e.g.,
field writes) and partial name.  

rapidly investigate, never returning to
most methods.  

explore huge call graphs, but task
relevant portion small.  

reason about causality, class membership,
ordering, choice, repetition.  

get lost and disoriented reading through
code in disparate places.

Finding Implication

Configurable search dialog,
incrementally match statements

Expandable details on demand,
browser style history navigation

Only show the (task relevant)
methods developers select.

Overview this information in
visualization of callgraph

Link callgraph to editor to navigate
code.

LaToza GMU SWE 795 Spring 2017

Existing tools don’t solve the problem

5

Graph visualizations UML Sequence Diagrams Maps of code

SHriMP [Storey+95]

Maps of code

Diver [Bennet+07]

Code bubbles [Bragdon+10]

-not task specific 
-no search 
-no ordering, class membership....

-not task specific 
-not compact

-can’t search over paths 
-don’t compactly encode ordering,
repetition, conditionals, ...

LaToza GMU SWE 795 Spring 2017 6

find 
statements

understand  
call graphs

stay 
oriented

entering searches
visualizing results,

encoding properties navigating IDE

Designed a tool for understanding, exploring, and reasoning about call graphs

Implemented as an Eclipse plugin for Java 
 Generates static call graphs with fast feasible path analysis  
 Visualization built on Prefuse visualization toolkit [Heer+05]

Helps to

by

Reacher

LaToza GMU SWE 795 Spring 2017

!"

#"

$"

%"

&'"

&("

&" '" #")" (" $"
!"
#"
$"
%"
&"
'"
("

#" $" %" &" '" ("
task task

tim
e

(m
in

ut
es

)

pa

rti
ci

pa
nt

s
th

at
 s

uc
ce

ed
ed

Results

7

Developers with Reacher 5.6 times more successful than working with
Eclipse only.

Participants with Reacher took an average of 7.2 minutes vs. 11.1 minutes
with Eclipse only (difference limited by ceiling effect).

green Eclipse with Reacher
pink Eclipse only

Success Time

*

* significant differences (p < .05)

* * * * * * * *

LaToza GMU SWE 795 Spring 2017

Control group traversed paths
• Traversed paths through code looking for targets 

 Relied heavily on scent - perceived relevance of method on path 
 E.g., to find EditBus messages, looked for important actions  
 Traversing through event listeners forced new search, often lost
place

• Sometimes did bidirectional search 
 Started at origin and hypothesized destination 
 Tried to find connecting paths 

• Dynamic investigation was difficult 
 Ran the program, but conditionals guarded path of interest 
 Did static investigation to figure out how to dynamically execute  
 But then was hard to determine which of many breakpoints hit it  

8

LaToza GMU SWE 795 Spring 2017

Questions for Discussion
• Would you use this tool?

• In what contexts might Reacher be difficult to
apply?
• How might Reacher be extended?

• What are the pros and cons of static analysis vs.
dynamic for debugging?

• What challenges might there be in commercializing
Reacher?

9

