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Abstract
In many computer vision problems, several instances of
a particular model need to be recovered from the noisy
data. In such cases one is faced with the problem of si-
multaneous estimation of the number of models and their
parameters. This problem becomes difficult as the mea-
surement noise in the data increases and the data are fur-
ther corrupted by outliers. This is especially the case
in a variety of motion estimation problems, where the
displacement between the views is large and the process
of establishing correspondences is difficult. In this pa-
per we propose a novel nonparametric sampling based
method for solving this problem. The main novelty of the
proposed method lies in the analysis of the distribution of
residuals of individual data points with respect to the set
of hypotheses, generated by a RANSAC-like sampling
process. We will show that the modes of the residual dis-
tributions directly reveal the presence of multiple models
and facilitate the recovery of the individual models, with-
out making any assumptions about the distribution of the
outliers or the noise process. The proposed approach is
capable of handling data with large fraction of outliers.
Experiments with both synthetic and real data are pre-
sented to demonstrate the effectiveness of the proposed
approach.

1 Introduction and Related Work
In many computer vision estimation problems the ex-
tracted or measured data are frequently contaminated
with outliers. Thus a robust estimation procedure is nec-
essary to estimate the true model parameters. In prac-
tice, data can contain multiple structures (models), which
makes the estimation even more difficult. This prob-
lem from the robust estimation perspective is difficult

because for each structure, data which belong to other
structures are also outliers (pseudo outliers) to it in addi-
tion to the true outliers (gross outliers).

The problem of robust estimation received lot of at-
tention in computer vision literature. Most works on
robust estimation focused on the estimation of a sin-
gle model and typically differ in their assumptions, ef-
ficiency and capability of handling different fractions of
outliers. With the exceptions of few, the problem of
robust estimation of multiple models received notably
smaller attention and several previously proposed meth-
ods were either natural extensions of the ’single model’
techniques (estimate individual model iteratively) or fo-
cused more on model selection issues.

In computer vision community the two most com-
monly used techniques for dealing with noisy data and
outliers are Hough transform and RANdom SAmple
Consensus (RANSAC) [1] algorithm. In Hough trans-
form multiple models are revealed as multiple peaks in
the parameter space. The localization of these peaks
in multi-dimensional space becomes more difficult as
the noise and the number of outliers grows. The
RANSAC algorithm, initially introduced for robust esti-
mation problems with a single model, has been extended
to multiple model scenario. The existing RANSAC ap-
proaches differ in the choice of the objective function
used to evaluate each individual hypothesis. The two
most commonly used criteria, which the objective func-
tion typically captures are: 1) the residuals of the in-
liers should be as small as possible and 2) the number
of inliers should be as many as possible. In the standard
RANSAC, the second criterion is applied and hypotheses
are ranked by the number of data points within some er-
ror bound, i.e., inliers. The hypothesis with most inliers
is then chosen as the model and the model parameters
are re-estimated with its inliers . The need for predefined
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inlier threshold is disadvantageous. Recently in [2] tradi-
tional RANSAC has been augmented by automatic scale
(threshold) selection used to disambiguate the inliers and
outliers and the authors have shown that a significant per-
centage of outliers can be tolerated. In [3], the author
pointed out that using RANSAC for simultaneously es-
timation of multiple motions requires dramatically more
samples than that of single motion case. As a result, mo-
tions are usually estimated sequentially to save the com-
putation. However, evaluation of the motions individu-
ally violates the assumption that the outliers to the first
motion form a uniform distribution. In the presence of
multiple models, the remaining models serve as pseudo
outliers, which are clustered rather than uniformly dis-
tributed. In [4] authors pointed out that clustered outliers
are more difficult to handle than scattered outliers. In
the context of structure and motion estimation, in [5] the
author proposed a strategy to deal with multiple models.
The method for determining the number of models was
an iterative one and all the models were considered in-
dependently. Recently a novel algebraic technique was
proposed in [6], which enables simultaneous recovery
of number of models, their dimensions and parameters,
assuming that the models can be characterized as linear
subspaces of possibly different dimensions. The applica-
bility of the approach has not been explored in the pres-
ence of larger number of outliers.

Outline. In this paper we present a novel robust non-
parametric sampling based method for simultaneous esti-
mation of number of models and model parameters. This
goal is achieved by studying the distribution of residu-
als for each data point. The residuals are computed with
respect to a number of hypotheses generated in the sam-
pling stage. We demonstrate that the number of modes
in the distribution reflects the number of models generat-
ing the data and show how to effectively estimate these
modes. The presented approach is demonstrated and jus-
tified on synthetic and real data.

2 The proposed approach
The approach described here shares some features of the
method proposed in [7], but differs in significant ways,
which enable significant extensions to estimation of mul-
tiple models. In [7] the authors propose a novel MDPE
estimator (Maximal Density Power Estimator), which se-
lects a hypothesis, whose corresponding density of resid-
uals is maximal, with the mean close to zero. This entails
the use of nonparametric techniques for studying the dis-
tribution of residuals of all data points with respect to
individual hypotheses. Similarly to them, we propose to
study the distribution of the residuals. However, their

work considers the residuals of all the data points per
hypothesis, aiming at evaluation of each hypothesis as
done in the traditional RANSAC algorithm. Further-
more, the number of models can not be determined in
one complete run of RANSAC, since only the best hy-
pothesis is selected by RANSAC. Schindler and Sutter
[8] recently proposed a scheme that can estimate mul-
tiple models simultaneously. Their later work focuses
more on the model selection issues and criteria, which
best explain the data. The associated optimization prob-
lem which they formulate is an NP-hard combinatorial
problem. Taboo-search is used to find approximate solu-
tion.

Instead, we propose to analyze the distribution with
respect to all the hypotheses for each data point. Subse-
quent analysis of this distribution enables us to estimate
the number of models as well as the parameters of the
correct hypothesis consistent with the data points. First,
for the simplicity and clarity of the notation, we will
demonstrate the technique on a simple line fitting prob-
lem. Later on we will present the applicability of the
method to the problem of estimation of multiple motions
and multiple 3D planar structures from correspondences
between two views.

Let N be the number of data points xi ∈ <n corrupted
by noise. The available measurements then are

xi = x̃i + δx i = 1, . . . N.

Suppose that these data points are generated by multiple
linear (or possibly non-linear) models, with parameters
v, such that each xi belongs to at least one model. In
linear case this constraint can be expressed algebraically
as

(vT
1 xi) . . . (vT

j xi) = 0 j = 1, . . . D

where D is the number of models. Our goal is to estimate
the number of models D as well as their parameters in
case the the data points are noise and further corrupted
by significant portion of outliers.

In the manner similar to the RANSAC algorithm, in
the first stage the initial set of hypotheses (values of pa-
rameters vj) is generated by selecting minimal subsets
of data points from the original data set needed to esti-
mate the model parameters. Let M be the number of hy-
potheses obtained in the sampling stage hj ; j = 1 . . . M .
Instead of studying the distribution of N residuals per
hypothesis as in [7] when trying to determine the thresh-
old for inlier classification, we propose to study the dis-
tribution of M residuals for each data point xi. We will
show that this distribution reveals the presence of multi-
ple models and further demonstrate how to estimate their
number and their parameters.
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The rationale behind this choice is the following:
when many samples are drawn from data containing mul-
tiple models, for each model, there will be a subset of
samples which consist of only points belonging to it (in-
liers). For instance suppose that we are given data gener-
ated by three models, with the percentage of inliers for
each model is 33%. If one (minimal) sample needed
to estimate a hypothesis comprises of 4 points, then the
probability that the sample is outlier free for one model
is 0.334 = 0.012. Given 3000 samples, the expected
number1 of outlier free samples is 0.012 × 3000 = 36.
Since the points used to calculate the hypotheses come
from the same model, hypotheses parameters vj esti-
mated based on them will be close and will form a cluster
in the hypothesis space. The clusters of hypotheses will
have similar behavior with respect to a particular data
point xi, in the sense that the residuals of xi with re-
spect to the cluster of hj’s will be similar. The samples
which contain outliers would also generate hypotheses,
whose residuals will be randomly distributed in the resid-
ual space. As a result, the distribution of residuals for
each data point will have peaks (modes) corresponding
to the clusters of hypotheses. For instance, Figure 1(c)
shows a residual distribution for a two-modal data, it has
two strong peaks. The similar idea of search for clus-
ters of hypotheses is also the basis of Randomized Hough
Transform [9]. In that case however the search for clus-
ters proceeds in often multidimensional parameter space
as opposed to residual space and hence is known to suffer
from typical shortcomings of Hough Transform methods
(e.g. localization accuracy, resolution and efficiency).

This observations outlined above give rise to the fol-
lowing four-step sampling based method for estimation
of multiple models in the presence of large number of
outliers. In the following section we will demonstrate
the individual steps of the proposed method on two sim-
ple examples. The first set of data points is generated
by two parallel lines, each with 50 points corrupted by
Gaussian noise N(0, 0.5), 10 random points are added
as outliers. The second set of data points contains three
parallel lines, each with 50 points corrupted by Gaussian
noise N(0, 0.5). Figures 1(a) and 1(b) show the two
configurations.

2.1 Model hypothesis generation

Same as the standard RANSAC scheme, model hypothe-
ses are computed using minimal set of data points re-
quired to estimate the model2. The number of samples to
be drawn is related to the percentage of outliers and the

1The number of outlier free samples obeys a binomial distribution,
the probability of success is the probability that a sample is outlier free.

2For instance, the minimal number is 2 for line fitting, and 4 for
estimating inter-image homography.

Algorithm 1 Multiple Model Estimation

1. In the first stage M hypotheses are generated. The
parameters of the hypotheses models are estimated
from minimal number of data points randomly
drawn from the data.

2. For each data point xi, compute its residuals rj
i for

j = 1 . . . M with respect to all the hypotheses.

3. The number of models D is estimated by determin-
ing the number of modes in residuals histograms of
each data point. Final number is the median of all
the estimates.

4. For each hypothesis, the correct cluster of model hy-
potheses is then identified.

desired confidence of outlier free sample. The higher the
outlier percentage, the more samples are needed to en-
sure that a cluster of hypotheses will be generated. In
RANSAC framework the number of required samples
can be estimated theoretically assuming a known per-
centage of outliers ε and the desired probability ρs that
the samples include at least one outlier free sample, be-
cause of the following relation:

ρs = 1− (1− (1− ε)p)m (1)

where m is the number of samples and p is the number
of points per sample (typically minimal number of points
needed to estimate the hypothesis). For the proposed ap-
proach, a set of outlier free samples is needed to form a
mode (cluster) in the residual space. Therefore, we are
interested in the probability ρ that at least K outlier free
samples are included among m samples:

ρ = 1−
K−1∑

i=0

pm
i = 1−

K−1∑

i=0

(
m
i

)
(1− ε)ip(1− (1− ε)p)m−i

(2)
where the term in the summation pm

i is the probabil-
ity that exactly i samples are outlier free in m samples.
Equation 1 is a special case of Equation 2 for K = 1.
In the standard RANSAC, Equation 1 is typically used to
obtain a closed form solution for the required number of
samples M :

M =
⌈

ln(1− ρ)
ln(1− (1− ε)p)

⌉
(3)

needed for a desired confidence ρ. Using Equation 2 we
can obtain the required number of samples, by comput-
ing how ρ changes while varying m for a desired K.
Let’s consider an example of estimating two homogra-
phies with the same number of supporting features with
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20% gross outliers (i.e. 40% are valid for each motion),
p = 4 in this case and ε = 0.6 for each individual ho-
mography. For the desired number of outlier free sam-
ples K = 50 (sufficient to form a meaningful peak),
2500 hypotheses samples need to be generated to con-
tain at least 50 outlier free samples for one homography
with probability:

ρ = 1−
50∑

i=0

(
2500

i

)
(1− 0.6)4i(1− (1− 0.6)4)2500−i

= 0.96

By varying m, the confidence ρ is computed in Table 1.
Thus the required number of samples M can be obtained
based on the table.

m 2200 2300 2400 2500 2600 2700
ρ 0.78 0.87 0.92 0.96 0.98 0.99

Table 1: The probability ρ for a given number of samples
m.

Now given 2700 samples, the probability that both ho-
mographies have at least 50 outlier free samples would
be 0.99 × 0.99 = 0.9801. In [3], Tordoff and Murray
have shown that if RANSAC is used to estimate two mo-
tions simultaneously, the required number of samples to
find a good pair of motion hypotheses increases dramat-
ically over the single motion case. According to [3], to
estimate two homographies in this example, the proba-
bility ρm that a desired sample is obtained in m samples
is:

ρm = 1− (1− 0.540.540.88)m

which can be simplified to be:

ρm = 1− (1− 0.440.44)m

The above expression captures the fact that a desired
sample should contains 4 inliers of one homography and
4 inliers of the other homography simultaneously. In this
case, 6000 samples are needed for 98% probability that
a desired sample is included. The proposed algorithm
can achieve the same probability with much less (2700)
samples. The reduction of the number of samples is even
more when the outlier percentage is higher.

2.2 Residuals analysis
With M hypotheses generated, M residuals can be com-
puted for each data point. For general linear model the
residual of a data point xi with respect to the model vj

is (rj
i )

2 = (vjT
i xi)2. For line fitting examples the resid-

uals are geometric distances between the points and the

lines hypotheses. The residual of ith point with respect
to the jth hypothesis is:

rj
i =

|ajxi + bjyi + cj |√
a2

j + b2
j

(4)

where vj = [aj , bj , cj ]T are the hypothesis parameters
and xi = [xi, yi]T is the data point. Then the residual
histogram of each data point denoted as fi can be ob-
tained for any point xi, i = 1, . . . , N . As mentioned be-
fore, hypotheses estimated based on inliers to one model
contribute to a peak (mode) in the histogram. This is
demonstrated by the examples in Figure 1(c) and 1(d):
two strong peaks present in the residual histogram of one
point in the first data set which contains two models; For
a point in the second data set containing three models,
three strong peaks stand out in its histogram of residuals.

One thing worth mentioning is that the number of
residual distributions to be studied in our approach is N ,
whereas M residual distributions need to be studied in
RANSAC framework [2]. When percentage of outliers
is high (which is often the case in multi-modal data),
M À N to guarantee outlier free sample. Thus our
approach is computationally more efficient in the resid-
ual histogram analysis stage. Furthermore the number
of data points is usually limited, which might causes a
poor estimate of the residual distribution per hypotheses
as done in [2]. In our case the large number of hypothe-
ses makes the approximation of residual distribution for
each point feasible and more accurate.

2.3 Estimating the number of models
Since one mode corresponds to one model, the number
of models can be estimated by identifying the number of
modes in the residual histograms. While this is straight-
forward for the data in Figure 1(a) and 1(b), it’s not easy
for more noisy data containing many outliers. Figure 2
shows the residual histogram of a data point shown in
Figure 6(a), where there are 3 models and 50% gross out-
liers. Identifying the modes which correspond to models
requires careful treatment.

One possibility would be to employ one of the stan-
dard techniques for nonparametric probability density es-
timation methods, such as the Mean shift algorithm in-
troduced to vision community in [10]. The basic premise
of the method is the estimation of the mean shift vector,
which locally points in the direction of the maximum in-
crease in the density and has been shown to converge to
the modes. Both [2] and [11] pointed out some diffi-
culties with the method in case of multi-modal data, as
well as sensitivity of the mean shift algorithm with re-
spect to the choice of bandwidth (size of the window)
parameter. A tight bandwidth makes it very sensitive
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to local peaks, whereas correct modes would be missed
with large bandwidth. This in particular is the case in
our scenario, where the histograms contain many spu-
rious peaks due to the presence of large percentage of
outliers. Since in our case we are limited to the analy-
sis of 1D distributions of residuals, we have developed
an alternative iterative procedure for detecting the mod-
els and disambiguating the correct modes from spurious
ones. The mode detection method is summarized below:

Algorithm 2 Mode detection

1. In the first stage, the histogram is smoothed with a
narrow window and local maxima (modes) and min-
ima (valleys) are located.

2. Remove he spurious weak modes and valleys, so
that only single local minimum valley is present
between two modes and only one local maximum
mode is presents between two valleys.

3. Choose the weakest unlabelled mode and measure
its distinctness. If the mode is distinct, then it is la-
belled and added to the list of modes; otherwise it
is marked as spurious and removed. If there are no
more unlabelled modes, stop the procedure. Other-
wise, go to step 2.

The distinctness measure is defined as τ =
f(mode)/f(shallow valley), where f(i) is the histogram
value of the ith bin. Let’s look at the two left local
modes of Figure 3, which is the smoothed result of Fig-
ure 2. Note that the true mode is not distinct enough from
its valley, which is a spurious valley. Checking its dis-
tinctness directly would result in removing this correct
mode. However, our approach guarantees that the spuri-
ous mode will be processed before the true peak. Since
the spurious mode is not sufficiently distinct (τ less than
some threshold Tτ ) from its left (shallow) valley, it is re-
moved in Step 3 of the procedure. Then the correct mode
will obtain deeper valley after Step 2, enabling it to pass
Tτ . Note it’s important that shallow valley is used for the
comparison. For spurious modes closed to the correct
mode which is strong, usually their deeper valleys have
much smaller value, only their shallow valleys reflect the
fact that they are spurious modes.

From each residual histogram fi, we obtain an esti-
mate di of the number of peaks and hence the number
of models. Note that the residual histograms are dif-
ferent for different points and it’s likely that di will be
different for different i. Figure 4 plots the estimated
di, i = 1, . . . , 300 for each of the 300 data points in
Figure 6(a). Most of the estimated numbers are equal
to 3. The median of those numbers dm = median(di)

provides a reliable estimate of the number of models.

2.4 Finding the correct hypothesis and
models parameters

Once the number of models has been obtained, we select
a subset S of the data points, S = {xi|di = dm}, which
returned the correct number of models. Among them we
select a point xs whose histogram fs has the strongest
peaks

s = arg max
j

dm∏

i=1

fj(peak(i)) (5)

where fj(peak(i)) is the ith peak’s magnitude of the
residual histogram of jth point in S, xs and fs are then
used to identify the correct models hypotheses.

For each identified mode, the corresponding hypothe-
sis and consequently the model is determined as follow-
ing: we first locate a subset of hypotheses whose resid-
uals rj

s correspond to the mode. We know that a cluster
of hypotheses corresponding to a true model will be in-
cluded in it, but it may happen that some additional ran-
dom hypotheses also have the same residuals. Then, the
problem is how to identify the good hypothesis from the
chosen hypotheses subset. One possibility would be to
apply a clustering methods in the parameter space in the
spirit of Hough Transform. Doing in this way already
results in more efficient approach than Hough Transfor-
mation applied to the original problem, since only a sub-
set of hypotheses need to be checked. Yet we find a
more efficient way, by searching for the clusters in the
1D residual space and by exploiting the distribution of
residuals of another data point. Figure 5(a) illustrates the
idea. The residuals (distances) of xs and a set of line
hypotheses are approximately the same, including cor-
rect hypotheses (solid lines colored blue) and spurious
hypotheses (dotted lines colored red). To disambiguate
them, we choose another random point xi, i 6= s and
study its residual distribution. Clearly, residuals of xi

will be different for the chosen hypotheses, but the clus-
tered hypotheses will still have roughly the same resid-
uals, thus forming a peak in the new residual distribu-
tion. The hypothesis which corresponds to the center
of the peak will be selected as the model. The results
of the synthetic examples are shown in Figure 5(b) and
5(c), respectively. Note we don’t need to identify inliers
throughout the procedure, thus avoiding the need of in-
lier threshold.

3 Experiments
In order to assess the proposed method, we carried out
various experiments. Line fitting was tested first, fol-
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lowed by motion estimation problem from two view cor-
respondences, both with synthetic and real data.

3.1 Multiple Line Fitting

We carried out experiments on the line fitting problem
with a number of data configurations, by varying num-
ber of lines, percentage of outliers and noise level. Four
experiments are shown in Figure 6. The images size is
100 × 100. The ith line has ni data points, perturbed by
Gaussian noise N(0, σ2). κ points are randomly gener-
ated within the image as outliers. Then we can compute
the percentage of outlier for ith line (including gross and
pseudo outliers), denoted as εi.

(a) Three parallel lines, ni = 50, σ = 1, κ = 150;
εi = 83.3%.

(b) Outlier form a cluster, ni = 50, σ = 5, κ = 50;
εi = 50%.

(c) 6-lines, ni = 25, σ = 1, κ = 50; εi = 87.5%.

(d) 6-lines, ni = 25, σ = 0.3, κ = 50; εi = 87.5%.

Our experiments showed that the method can tolerate
rather high level of outliers. For instance, εi = 87.5%
for one line in Figure 6(c). Also it can tolerate signifi-
cant level of noise. The noise standard deviation is rather
large, 1% of image size for most tests. Only when data
are rather complex (6 lines in the image), our approach
didn’t succeed to fitting all the lines, still 3 of them got
detected. When data points are less noisy, more lines
can be detected. As Figure 6(d) shows, 5 lines can be
detected when σ = 0.3. This is roughly equivalent to
2 pixel gaussian noise in a typical image of size 640.
Another interesting observation is that our approach is
fairly robust to cluster of outliers, as Figure 6(b) shown.
As people have already noticed [4], concentrated outliers
are more difficult to handle than scattered outliers. Ac-
cording to the result of [7], existing robust estimators are
likely to fail in this case. Figure 6(b) shows that the cor-
rect line can still be identified. Our approach predicted
that there are two models in data, and detected one spu-
rious line. This is actually not very surprising, since the
cluster of outliers can be considered as a degenerate line.

3.2 Two view correspondences

Synthetic data was tried first. The original data lie in
3D space, containing two planes, each with 40 points
randomly distributed on that plane. Then they are pro-
jected into two views, the image sizes are around 500.
The points coordinates are corrupted by Gaussian noise
of 0.5 pixels, and 20 outliers are randomly distributed in

the image plane. As shown in Figure 7(b), both the num-
ber of homographies and their parameter are estimated
correctly.

The approach was also applied to real images. In one
experiment, we tried to identify planar surfaces in the
image by estimating homographies. 60 correspondences
belonging to two plane were manually selected. 40 ran-
dom outliers were added. As Figure 9 shows, two planes
are identified and their inliers are marked. In another
experiment, we tried motion segmentation of a car leav-
ing a parking lot, by estimating fundamental matrixes
using the linear 8-point algorithm [12]. The result is
shown in Figure 9(a). The estimated number of mod-
els is one, which is not accurate. The reason is that the
moving car has only 1/6 features of the whole scene.
Consequently, the corresponding peak is too weak to be
detected comparing to the strong peak corresponding to
background motion. Note this is because we are assum-
ing the rather general motion model which require 8 cor-
responding points to estimate. Actually, the motion is
this case is degenerated and translation model is more ap-
propriate as adopted in [13]. When using 2D translation
model, even the weak peak can be easily detected and our
approach correctly estimates the number of models. Fig-
ure 9(b) shows the segmentation result using 2D trans-
lation model. Segmentation result of another sequence
is shown in Figure 9(c). Using affine model will return
same results for the two sequences.

4 Conclusion
In this paper, we proposed a robust estimation scheme for
multi-modal data with outliers. Base on the analysis of
the residuals distribution per individual data points with
respect to a set of hypotheses (generated by RANSAC-
like sampling process), we can simultaneously estimate
number of models and parameters of each model. An
iterative technique is developed to robustly identify the
correct modes in the residual histogram, which is then
used to determine the number of models. Model param-
eters are recovered from cluster in residual space instead
of parameter space as did by Hough Transform, so the
proposed approach won’t suffer from common difficulty
of Hough Transform. Our approach was justified by ex-
tensive experiments on both synthetic and real data. Cur-
rently, we are investigating the structure and motion esti-
mation problem with the proposed framework.
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Figure 1: (a) and (b): the first and second data. (c) and (d): residual distribution of point from the first and second
data.
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Figure 5: Identifying the model parameters.
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Figure 6: The line fitting experiments, inliers are denoted as red ’.’, outliers are denoted as blue ’x’.
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(a) One view of original data. Data points from two planes are
represented as ’+’, and colored blue and green respectively. The
outlier points are represented as ’x’ and colored red.
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(b) Identified inliers to each model are denoted by ’♦’. Only one
data point is labelled wrong, which is closed to the border of the
two planes.

Figure 7: The experiment with homograph model.
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(a) One view of the image pair. Data points colored green. The
outlier points are colored red.

(b) Identified inliers to each model are denoted by ’♦’, and colored
blue and green, respectively.

Figure 8: The experiment with homography model. Two homographies are correctly estimated.

(a) (b) (c)

Figure 9: (a)Segmentation based on epipolar geometry. Note the motion of the background features is estimated cor-
rectly, all the inliers of it is identified and no feature of the moving car is included. In another words, the background
motion is segmented correctly. Features of the moving car are returned as gross outliers. (b) 2D translational segmen-
tation. Identified inliers to each model are denoted by ’♦’ and ’2’, and colored blue and red, respectively. (c) 2D
translational segmentation of another sequence.

10


