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Abstract

The data in vision problems, often heavily contaminated
by outliers, call for efficient robust techniques to iden-
tify inliers for correct estimation. RANSAC algorithm
is a frequently used robust estimator for computer vision
problems. In traditional RANSAC scheme, when data
contain significant fraction of outliers, large number of
samples is needed in order to obtain at least one outlier
free sample. In addition to that, each hypothesis gen-
erated from the samples is typically evaluated using all
data points, which further lowers the efficiency. In this
paper, we propose a novel hypothesis evaluation scheme,
which enables efficient classification of the data points as
outliers and inliers, while requiring a small fixed number
of samples. The method is based on the observation that
for each data point the properties of the distribution of
the residuals with respect to the generated hypotheses re-
veal whether the point is an outlier or inlier. The problem
of inlier/outlier identification can then be formulated as
a classification problem. We demonstrate the proposed
method on motion estimation problems with large frac-
tion of outliers on both synthetic and real data.

1 Introduction

Many computer vision tasks need to deal with data set
contaminated by outliers, thus entail a robust estimation
step. RANSAC1 algorithm introduced by Fishler and
Bolles [1] has been widely used for for various robust es-
timation problems in computer vision community. In our
work we are motivated and focus on the problem of esti-

1RANdom SAmple Consensus.

mation of camera motion from correspondence between
two widely separated views, which usually contains large
number of incorrect correspondences. The need for ro-
bust estimation methods has been previously explored in
this context by several authors [2, 3, 4].

The contribution of our paper is a novel inlier iden-
tification scheme for dealing with heavily contaminated
data, so that correct estimation can proceed based on it,
without interferences from outliers. In the traditional
RANSAC algorithm, the hypothesis evaluation stage is
essential for identifying which data points are outliers
and inliers. The stage is often time consuming, espe-
cially for heavily contaminated data. Instead of evaluat-
ing individual hypothesis generated by the sampling pro-
cess, we propose to classify the data points directly based
on the generated hypotheses. The proposed approach is
very efficient especially for data sets heavily contami-
nated with outliers, which cause the standard RANSAC
to run inefficiently. When the percentage of outliers is
low, the existing RANSAC schemes work as efficiently
as the proposed method does. In this paper we focus on
the motion estimation problem between two widely sep-
arated views. The approach is however applicable to any
robust estimation problem. In addition to the efficiency
advantage, the proposed scheme works without the need
of predefined inlier scale. The predefined inlier scale is
a sensitive parameter, recently some work [5] has been
proposed for automatic inlier scale (threshold) selection.

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly review the basic RANSAC algorithm
and discuss its efficiency. Related work is discussed in
Section 3. The proposed hypothesis evaluation and in-
lier/outlier identification scheme is described in Section
4 and demonstrated on synthetic data. In Section 5 we
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present experiments on real data and Section 6 concludes
the paper.

2 RANSAC algorithm
The essence of the RANSAC algorithm is the genera-
tion of multiple hypotheses by means of sampling of the
data. Given a predetermined number of samples M (cal-
culated based on Equation 2), hypothesis model param-
eters are estimated for each sample, followed by finding
the support (typically number of inliers) for each hypoth-
esis. Alternatively, a stopping criterion can be used to
terminate the sampling if sufficient percentage of inliers
has been encountered. It has been shown in [6] that the
stoping times for the two strategies mentioned above dif-
fer only by a multiplicative factor. In the second stage
the hypothesis with the largest support is chosen, and all
its inliers are used to refine the model parameters. More
detailed description of the RANSAC algorithm can be
found in many papers such as [7].

Given m samples, the probability ρ that they include
at least one outlier free sample is:

ρ = 1− (1− (1− ε)p)m (1)

where p is the number of points per sample, and ε is the
outliers percentage. Based on this relation, the required
number of samples M can be computed theoretically for
giving ε and ρ:

M =
⌈

ln(1− ρ)
ln(1− (1− ε)p)

⌉
(2)

Typically, p is the minimum number of data points
needed to compute the model parameters. The larger the
sample size, the less likely that the sample is outlier free.
Consequently, more samples are needed to achieve a tar-
get confidence. For illustration, in the context of wide
baseline matching and motion estimation, fundamental
matrix is the model to be estimated. The fundamental
matrix has 9 elements, but only 7 degrees of freedom.

When data set contains significant portion of outliers,
for example, 50% outliers, to estimate fundamental ma-
trix using linear 8-point algorithm, we need 766 samples
to assure 95% confidence that one outlier free sample is
obtained. The number of required samples goes to 1177
for 99% confidence. As pointed out by [8], the theo-
retical number of iterations is wildly optimistic. In prac-
tice, the number of iterations required to reach a good
hypothesis is around an order of magnitude more. The
experiment in [6] also validated this rule. Thus the ac-
tual number of samples needed is on the order of 5000
(our simulations confirm this), which means around 5000
hypotheses need to be evaluated. Therefore, RANSAC
would cause significant delay, which would rise even

more dramatically for data with more outliers. As shown
in Table 1, when ε = 0.7, the number of required sam-
ples is 45658. Consequently, almost a half million hy-
potheses are needed to be evaluated to obtain a good mo-
tion estimation. Even if the 7-point algorithm (which re-
quires less number of samples) is used instead, the actual
number of hypotheses which needs to be evaluated is at
the same level as that of 8-point algorithm. The reason
is that 7-point algorithm returns up to 3 solutions (hy-
potheses), while 8-point algorithm only returns 1 solu-
tion. Besides the problem caused by large portion of out-
liers, large data sets will also cause additional delay. For
each hypothesis, standard RANSAC computes error for
every data point. Hence the computation increases lin-
early with the number of data points. Most of the related
work tries to alleviate these problems in various ways.

3 Related work

Chum and Matas [6] suggested to improve the efficiency
of the standard RANSAC by a pre-evaluation, called Td,d

test. Even though the number of samples increased a lot,
time is saved in the hypothesis evaluation scheme, be-
cause only a fraction of data points was be evaluated.
In [9], the authors proposed to select sample sets of adja-
cent points based on the assumption that inliers will tend
to be closer to one another than outliers. Guided sam-
pling by quality of matches was proposed by [8]. Torr
and Zisserman [10] have noticed that the traditional in-
lier count approach is faulty, since it treats all the inliers
equally (error terms for the inliers are constant). Conse-
quently, if the threshold T on the residual errors which is
used for classifying the data points as inliers and outliers
is not set appropriately, the final model estimate will be
poor. They suggested using log likelihood of the solution
as support instead of number of inliers. Nister [11] has
demonstrated a preemptive RANSAC scheme which can
run in real time, preemptive score was used to sequen-
tially remove bad hypotheses, until only the best hypoth-
esis is left or time budget is used out. The scheme was
tested on synthetic data with 20% outliers, and tracking
results of a real video sequence. Additional speed up was
obtained by the use of the 5-point algorithm method as-
suming camera is calibrated in advance.

4 The proposed scheme

Our approach is motivated by the wide baseline matching
problem. Due to the often significant viewpoint change
and additional illumination changes and ambiguities due
to the repetitive structures, finding correspondences is
often difficult in the absence of some geometric model.
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Outlier ratio ε 20% 30% 40% 50% 60% 70%
7-point algorithm 13 35 106 382 1827 13696
8-point algorithm 17 51 177 766 4570 45658

Table 1: The theoretical number of samples required to ensure 95% confidence that at least one outlier free sample is
obtained. The actual required number of samples is much higher.

The sets of correspondences contain many outliers, of-
ten more than 50%. Using the traditional sampling tech-
niques would be very time consuming in order to obtain
good outlier free hypothesis.

Identifying inliers is the core of RANSAC algorithm.
The final model parameters are then estimated based
on those identified inliers. Basically, all the existing
versions of RANSAC determine inliers evaluating all
the generated hypotheses and looking for a good one.
As described in Section 2, large number of samples is
needed to obtain a good hypothesis. The preemptive
RANSAC [11] is the only exception which uses a fixed
number of samples (500-800), assuming outlier fraction
around 20% and calibrated setting with 5-point algo-
rithm. The essence of the preemptive RANSAC scheme
is still try to find the good hypotheses. Although this
method has been show to work well with video sequence,
it is not necessarily extendable to data containing more
outliers taking with uncalibrated camera.

The efficiency of our approach comes from the fact
that we try to identify inliers directly bypassing the hy-
pothesis evaluation stage. The proposed method is based
on the observation, that for each data point the proper-
ties of the distribution of the residuals with respect to the
generated hypotheses reveal whether the point is an out-
lier or inlier. The problem of inlier/outlier identification
can then be formulated as a classification problem. Since
we do not require good hypothesis to be generated, large
number of samples is not necessary. The approach in ad-
dition to its efficiency does not require prior knowledge
of the outliers percentage and doesn’t need any threshold
for identification of inlier’s support of the hypothesis. In
the next section we will describe the approach and justify
it on a simple example.

4.1 Inlier identification procedure
We will describe the proposed methods on an exam-
ple of estimation of the epipolar geometry between two
views. Given the correspondences set {xi,x′i} between
two views of the same scene, let the number of corre-
spondences to be C. Our goal is to estimate the funda-
mental matrix. Similarly as in the standard RANSAC
scheme we first use sampling to generate a set of hy-
potheses (i.e.fundamental matrices). This is achieved
by sampling the set of correspondences by selecting 8-
points samples and estimating F using 8-point algorithm

with normalization. At this stage our method dramati-
cally departs from the other proposed approaches. In-
stead of evaluating/scoring each hypothesis, we look at
the data points directly. For each data point (e.g. corre-
spondence) we study the distribution of the errors with
respect to all hypotheses. For a hypothesis Fj instead of
considering residual error (ri

j)
2 = (xT

i Fjx′i)
2 we use the

so called Sampson distance which approximates the ge-
ometric distance of the point from the epipolar line and
is defined as

(ri
j)

2 =
(xT

i Fjx′i)
2

(Fjxi)21 + (Fjxi)22 + (FT
j x′i)

2
1 + (F t

j x
′
i)

2
2

(3)
where (Fx)2k represents the square of the k-th entry of
the vector Fx. Figure 1(a) and Figure 1(b)shows typical
error distributions with respect to all generated hypothe-
ses for a data containing 20% outliers. The data was
generated using a total of 200 3D points projected into
two views related by general motion. Note that the error
histograms of inliers and outliers are very different. We
will use this observation for classification of the points to
inliers and outliers based on nth order statistics of their
residual distribution. The inliers typically have strong
peaks close to 0, while the outliers don’t. The outlier
can also has high value in the first bin, because some hy-
potheses are generated using samples which contain the
outlier itself. For this reason the 1st bin was set to 0
prior to computation of the statistics. The strong peak
of the inlier’s error distribution comes from two sources:
the inlier can be included in several samples and it can
be expected that several good hypotheses yielding a low
residual error are included in the hypotheses set. In this
example the probability that an 8-point sample is outlier
free is 0.88 ≈ 0.168, the expect number of outlier free
samples is approximately 0.168×500 = 84. 2 The num-
ber of samples used to generate the hypotheses is set to
be N = 500. Based on our experiments, 500 samples
are enough to approximate the error histogram, which
is the foundation for inlier identification. The error his-
togram has 150 bins, representing Sampson error ranging
from 0 to 149 (large enough to capture the detail of the
error distribution). Errors greater than 149 are accumu-
lated into the 150th bin. The 150th bin sometimes has a

2The number of outlier free samples obeys a binomial distribution
with N trials and the probability of success is the probability that a
sample is outlier free.
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large value, which will affect the statistics that we want
to measure. Due to this fact it is not considered for com-
puting the statistics.

4.1.1 Features for characterizing distributions

Now we know error histograms of inliers and outliers
are different, some features are needed to be extracted
to capture them. For distributions several order statis-
tics can be used to capture the qualitative properties of
the distribution. Most commonly used are the lower or-
der statistics such as mean, standard deviation, skewness
and kurtosis. Our experiments show that skewness and
kurtosis are very discriminative for the two kinds of er-
ror histograms. Skewness γ measures the asymmetry of
the data around the sample mean µ

γ =
E(x− µ)3

σ3
(4)

The skewness of the normal distribution (or any perfectly
symmetric distribution) is zero. If skewness is positive,
the data are spread out more to the right of the mean than
to the left. Kurtosis β is the degree of peakedness of
a distribution, which in our case measures how outlier
prone a distribution is. Kurtosis is defined as:

β =
E(x− µ)4

σ4
(5)

For the two histograms shown in Figure 1, the kurtosis
and skewness for the inlier are 24.4 and 4.6, while for the
outlier they are much smaller: 7.6 and 1.7, respectively.
These characteristics capture the fact that inlier’s error
histogram has much stronger peak than that of an outlier
and can be used as feature for further classification.

Using skewness and kurtosis as features for each data
point (correspondence) we can plot distribution of data
in the 2D, as Figure 1(c) shows. Note that the kurtosis
and skewness are correlated, thus it’s not necessary to
use the two statistics together. Only kurtosis is used for
identifying the inliers, making the classification more ef-
ficient. From the plot, we can see that the two groups
of points locate in different range. Therefore, we can
use k-means clustering algorithm to divide data into two
groups. The group with larger kurtosis are the identi-
fied inliers. Notice that the true inliers have kurtosis with
much larger variance than that of true outliers. Conse-
quently, some true inliers will be misclassified as outliers
after the grouping. But this wont’s cause problem for
model estimation, because enough true inliers are iden-
tified. Also, a small number of true outliers might
be included in the identified inliers set. The standard
RANSAC can be applied for this inliers set, the computa-
tion is trivial, since outlier percentage is very low in this

case3 with no more than 10% outliers as our experiments
show.

The inlier identification procedure is summarized be-
low (for the case of fundamental matrix estimation).

Algorithm 1 Inliers identifications procedure

1. Randomly select N 8-point samples and gener-
ate N fundamental matrix hypotheses {Fj}, j =
1, 2 . . . , N .

2. For each correspondence (data point), compute its
Sampson error [12] rj

i with regard to every hypoth-
esis.

3. For each correspondence, estimate its error distribu-
tion by constructing histogram of the N errors as-
sociated with it. The histogram is used to evaluate
whether the correspondence is an inlier. A total of
C histograms are constructed.

4. For the C error histograms, compute kurtosis βk to
characterize each of them. In this stage each corre-
spondence is represented by a point in the 1D kur-
tosis space.

5. Use some classication algorithm (k-means cluster-
ing algorithm in our experiments) to cluster the data
into two groups, which are identified inliers and out-
liers.

Note that the proposed scheme doesn’t need a prede-
fined threshold for inliers. The RANSAC schemes re-
quire a threshold T to determine whether a data is in-
lier. As mentioned in [10], the choice of the thresh-
old is a sensitive parameter and can affect the perfor-
mance dramatically. Without the need for the predefined
T makes the proposed scheme very flexible to handle dif-
ferent data, which shows clear advantage over standard
RANSAC scheme.

4.2 Asymptotic running time analysis
Note the 3, 4, and 5 steps require extra computation
than standard RANSAC. Constructing histogram takes
O(N × C) additions, and computing kurtosis takes
O(N × C) multiplications. k-means clustering in one
dimension is very efficient. Together, the computation
time they require are less than the second hypothesis
evaluation stage of standard RANSAC which requires
O(N × C) matrix multiplication. N is set to be 500
throughout our experiments. Standard RANSAC re-
quires O(M × C) matrix multiplication to evaluate all

3This step is not used in our inlier identification scheme, we empha-
size in the inlier identification scheme.
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Figure 1: Error distribution for a true inlier (a) and a true outlier (b), ε = 0.2. (c): plot of skewness vs. kurtosis
computed for all residual distributions of the 200 data points (red ’+’ represents inliers, while blue ’x’ represents
outliers.

the hypotheses. Without knowing outlier percentage a-
priori, M has to be set conservatively, e.g. M = 50000
to handle 60% outliers. Therefore, M is usually much
larger than 500 to deal with real data. i.e., our approach is
much more efficient than standard RANSAC, especially
when the outlier percentage is high.

4.3 Justification based on synthetic data

We have shown in Section 4.1 conceptual example that
inliers can be identified directly. Now we demonstrate
the feasibility of our approach based on a synthetic cor-
respondences set with 200 correspondences (generated
by projecting 200 random 3D point into two views),
200 random correspondences are added as outliers (to-
tal 400 data with ε = 0.5). All the correspondences are
corrupted by Gaussian noise (standard deviation was 1
pixel).

As Figure 2(a) and Figure 2(b) show, error distribu-
tion for inlier and outliers are rather different in this case
(ε = 50%). This can be explained as follow: the residual
distribution of each point is a mixture of two distribu-
tions. Residuals of wrong hypotheses are proximately
random because wrong hypotheses are computed based
on random combination of inliers and outliers; while
residuals of correct hypotheses are coherent and close to-
gether, because correct hypotheses are computed based
on inliers only. Thus residual distributions of inliers are
well peaked unimodal distribution, where the mode is
close to 0 because residuals of inlier to correct hypothe-
ses should be close to 0. On the other hand, for the
outliers the distribution are distributed and has multiple
modes.

Figure 3 shows kurtosis of all the 400 data points (cor-
respondences). For better visibility, the data are orga-
nized as 200 inliers followed by 200 outliers. As is
shown, inliers and outliers have quite different kurtosis.

Inlier identification by k-means clustering is shown in
Figure 4. The true inliers are represented by ”x”, the 138
identified inliers are circled. 2 false positives (outliers are
identified as inliers) are included which are colored red.
Other outliers are not shown for better visibility. With
true positive rate of 138/200 = 68% and false positive
rate 2/200 = 1%, the inlier identification performs fairly
well with this heavily contaminated data set.

As the percentage of outliers increases, it can be ex-
pected that peak of inliers’ error histogram becomes
lower and eventually undistinguishable from the outlier.
It’s interesting to see to what extent our approach can
tolerate outliers. We tried to study the separability of
inliers from data containing different percentage of out-
liers. The number of inliers is fixed to be 200 obtained
by projecting 200 random 3D points into two widely sep-
arated views, while the number of outliers varies for de-
sired percentage. Figure 5 illustrates the changing of
kurtosis. We can see kurtosis of outliers is always small,
because they have no significant peaks. The kurtosis of
inliers is much larger at first, meaning their error distri-
butions do have strong peaks. Then it decreases as more
outliers are added, because outliers would disperse the
peaks. When fraction of outliers ε is less than 0.6, the
mean of kurtosis computed based on inliers is above the
95% confidence interval of that of outliers. Therefore,
the kurtosis of error histogram associated with inliers
and outliers are statistically different, and inlier group
obtained through k-means clustering is very unlikely to
contain true outliers. When the outlier percentage in-
creases further but no more than 0.7, mean of inliers’ kur-
tosis is close to upper bound of that of outliers’. In this
case, the inlier cluster obtained from k-means may con-
tain some true outliers, but the percentage will be much
lower than in the original data. As we mentioned be-
fore, an additional step of standard RANSAC on this in-
lier group can obtain model parameter with a small num-
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Figure 2: Error distribution for a true inlier (a) and a true outlier (b), ε = 0.5.

ber of samples. When outlier percentage goes further
to 0.75, inliers and outliers become indistinguishable.
This indicate that the proposed approach can not toler-
ate more than 75% outliers. Standard RANSAC hasn’t
such limitation theoretically as long as enough samples
are evaluated, but when ε is too high, the required num-
ber of samples is so large that it’s impractical to work
in practice. As mentioned in Section 2, when ε = 0.7,
the required number of samples is on the order of a half
million, which is already too huge to work. So the pro-
posed method has the same working range as standard
RANSAC in practice, only that its much more efficient.
Note that the limitation is obtained based on the estima-
tion of fundamental matrix, which requires at least 7 data
points. If the model to be estimated is simpler, for in-
stance affine model which requires only 3 data points to
estimate, more outliers can be tolerated. The reason is
that the required number of samples would decrease dra-
matically in this case, please refer to Equation 2.

5 Experiments with real data
The proposed scheme was tested with real correspon-
dences sets obtained from wide baseline matching. The
putative correspondences were initiated based on match-
ing of SIFT keypoints [13]. Two keypoints are set to
be correspondence when the distance between the two
SIFT keypoint descriptor is less than some threshold τ .
We ran extensive experiments with correspondences sets
containing different portion of outliers. We tested the
methods in the domain of matching two views of ur-
ban scenes and/or buildings. In addition to large change
of viewpoint between the views, these scene contain
many repetitive structures, making the problem of find-
ing correspondences by means of matching local fea-
ture descriptors highly ambiguous. Our focus is on the
inlier identification capability of the proposed 5 steps
scheme. The identified inliers are not refined with ad-
ditional RANSAC, so they might still contain few true
outliers for severely contaminated data sets.

5.1 Handling data sets with large number
of correspondences

Additional concern we point out in this context is the is-
sue of handling the data sets with large number of corre-
spondences. As mentioned before, when every data point
need to be evaluated, RANSAC will be slower. In our
setting we adopt a strategy that sampling can be guided
by match score [8] between the two descriptors. This
assumes that the score reflects the likelihood of good
match. Instead of assigning sampling sampling the en-
tire set of correspondences, we pick a fixed number L of
matches with highest matching scores. This is same as
setting sampling probability to be 0 for those low quality
match, which is a simpler strategy. Though it seems that
many data points got wasted, we save time by not sam-
pling the likely outliers. In case the number of matches
is high, L shouldn’t be small. We use L = 100 in our
experiments. Even if original data has 60% outliers, 40
inliers can still be expected, which is enough for further
process. The actual inliers is usually more, since high
score match are likely to be inliers.

When percentage of outliers is low, our approach
can identify inliers and outliers directly almost without
mistake. This is not very interesting, since standard
RANSAC can also handle them very well. We empha-
size on correspondences sets with significant portion of
outliers, no less than 40%. The results are very promis-
ing. Three examples are shown in Figures 8, 6 and 7.
The identified inlier sets include most true inliers with
very few outliers. Figure 9 shows that instead of using
all available data, we can use only part of likely better
data. Therefore, the data set with very large number of
correspondences won’t cause too much delay.

It is known that the distance threshold τ used for
matching the SIFT keypoint descriptors affects the num-
ber of matches. Loose threshold results in many false
correspondences. If the threshold is set too tight, hardly
any matches could be found. Our work suggest a
straightforward way to handle this: set a relatively loose
threshold to obtain initial set of correspondences, and ap-
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ply the proposed scheme to identify the true inliers.

6 Conclusion and future work
In this paper we proposed a new inlier identification
scheme for robust estimation problems. We have demon-
strated that it can efficiently handle data sets containing
significant level of outliers. Inliers can be identified di-
rectly without looking for good hypothesis, thus avoiding
the need for large number of samples, which is required
for standard RANSAC algorithm. In addition to the ef-
ficiency of the proposed approach, we have also elimi-
nated the need for sensitive threshold selection for outlier
identification as well as need for prior knowledge about
the percentage of outliers (which is needed when fixed
number of samples is used in standard RANSAC). We
would like to emphasize that the proposed method is es-
pecially suitable for data with large number of outliers as
motivated and demonstrated in our application and often
encountered in wide baseline matching. The proposed
scheme is tested extensively with both synthetic and real
data. We plan to refine the inlier identification step in
future, by replacing the k-means clustering by its prob-
abilistic version and hence obtaining the probability of
being an inlier for each data point. We are also in the
process of carrying out more extensive experiments with
different distributions of outliers, in order to asses the
generality of the presented method.
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(a) correspondences. (b) identified inliers. (c) identified outliers.

Figure 6: 750 correspondences are initiated with around 50% outliers. 364 inliers are identified without false positive.

(a) correspondences. (b) identified inliers. (c) identified outliers.

Figure 7: 285 correspondences are initiated with about 70% outliers. 36 inliers are identified with only 3 false positives.
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(a) correspondences. (b) identified inliers. (c) identified outliers.

Figure 8: 383 correspondences are initiated with approximately 60% outliers. 93 inliers are identified with only 1 false
positive. Note the first left door in the left image corresponds to second left door in the right image.

(a) identified inliers. (b) identified outliers.

Figure 9: Guided by distance between SIFT descriptors, 100 correspondences were selected, which contains about
30% outliers. 64 inliers were identified without false positive. See Figure 8 for original matches.
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