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Abstract

Concurrent learning is a form of cooperative multia-
gent learning in which each agent has an independent
learning process and little or no control over its team-
mates” actions. In such learning algorithms, an agent’s
perception of the joint search space depends on the re-
ward received by both agents, which in turn depends
on the actions currently chosen by the other agents. The
agents will tend to converge towards certain areas of the
space because of their learning processes. As a result,
an agent’s perception of the search space may benefit if
computed over multiple rewards at early stages of learn-
ing, but additional rewards have little impact towards
the end. We thus suggest that agents should be lenient
with their teammates: ignore many of the low rewards
initially, and fewer rewards as learning progresses. We
demonstrate the benefit of lenience in a cooperative co-
evolution algorithm and in a new reinforcement learning
algorithm.

1 Introduction

Recently there has been increased interest in decentral-
ized approaches to solving complex real-world prob-
lems. Among such approaches, the area of multiagent
systems (MAS) emphasizes the joint behaviors of agents
with some degree of autonomy. Unfortunately, hard-
coding agents to achieve desired behaviors for the entire
team may be difficult: problem complexity increases
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tremendously with more agents or more complex agent
behaviors and interactions. Additionally, agents might
need to adapt to new conditions that were unforeseen
when their behaviors were designed. Machine learning
promises viable solutions to these difficulties.

Our research interest is in cooperative multiagent
learning, where multiple agents (a team) learn to solve a
joint task or to maximize utility. More specifically, this
paper focuses on applications where multiple agents
simultaneously learn how to better interact with one
another; we refer to this as concurrent learning [9].

Early multiagent learning approaches attempted to di-
rectly apply machine learning techniques to multiagent
systems: each agent behaves rationally and attempts
to improve its own behavior. Recent work debates the
use of rationality and Nash equilibria [6, 13], and sug-
gest concepts such as reputation and mutual trust to
improve learning [1, 8]. We continue this thrust of re-
search with an argument for lenience: each agent should
be lenient with its teammates at early stages of learning,
when each is exploring the space of actions. Lenience
may be reduced as learning progresses and agents have
begun focusing on a solution. We demonstrate this no-
tion in simple two-agent scenarios, although it is easily
extended to multiple agents.

We will begin with an argument for lenience based on
illustrations of a single agent’s perspective of the joint
search space. We then apply lenience to two widely used
multiagent learning paradigms, cooperative coevolution
and reinforcement learning, and we show how the learn-
ing processes benefit as a result. The paper ends with a
set of conclusions and directions for future work.

2 Single-Agent Perspectives on the
Search Space
Imagine a simple scenario where two agents learn to

coordinate. If X is the set of actions that the first agent
can choose from, and Y is the set of actions available
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Figure 1: A bimodal search space for the possible re-
wards received by a two-agent team. Wider peaks may
attract many search trajectories, even though such peaks
may be globally suboptimal.

to the second agent, the task is for the agents to inde-
pendently choose one action each (say x and y) such as
to maximize the joint reward f(x,y) that they receive.
Figure 1 illustrates a search space of joint rewards for a
simple coordination game.

The figure shows two peaks of different sizes. The
lower peak represents a locally-optimal but globally-
suboptimal solution, and the wide coverage of that peak
implies that solution quality changes only a little when
any agent chooses a somewhat different action. The
higher peak represents the global optimum, and its
smaller coverage implies that the solution quality may
change rapidly if any agent chooses slightly different ac-
tions. Both peaks represent Nash equilibria —modifying
either the x or the y value (but not both) would lead to a
decrease in the function value. This implies that if both
agents decide to choose actions corresponding to a Nash
equilibrium, neither of them has a rational incentive to
choose any other action on its own.

In concurrent multiagent learning, each agent is usu-
ally afforded only a partial glimpse of the search space.
Specifically, each agent can only detect and respond to
the difference in rewards it has received for different
actions it has chosen in the past. Given the joint search
space in Figure 1, an ideal search space for one of the
learning agents is illustrated in Figure 2: for each ac-
tion x, we plotted g(x) = max,cy f(x,y). If both agents
perceived the search space in this manner, they could
both learn the actions corresponding to the the globally
optimal team performance.

More realistic projections of the joint search space in
Figure 1 are illustrated in Figure 3. Here, we compute the
projection at point x as the average and the maximum
of the rewards obtained by the agents when the first
agent chooses action x and the second agent chooses
5 or 20 random actions. The graphs show that taking
the average of all rewards results in noisy projections
that lose the desired ranking of actions. On the other
hand, ignoring all but the maximum reward results in
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Figure 2: A desirable projection of solution quality for
the first population provides enough information about
the location of the optimal peadn may be computed
at each point x as max,cy f(x,y), where Y denotes the
range of the second argument.

better projections, especially for larger numbers of such
rewards: the projection obtained for 20 rewards closely
resembles the ideal one in Figure 2. This supports the
empirical analysis and conclusions reported in [17].

The assumption that agents choose actions with uni-
form probability is usually reasonable at the beginning
of a multiagent learning process if there is no a priori
knowledge about the search space. However, as the
agents learn, they tend more and more to choose those
actions that resulted in higher rewards in the past. This
departure from uniformity alters the projections of the
search space, and thus the ranking of actions for each of
the agents. Let us assume for simplicity that the second
agent chooses its actions according to a normal distri-
bution. How does this affect the projection of the joint
search space as perceived by the first agent?

First, suppose that the second agent starts to prefer ac-
tions around the wider, suboptimal peak. Different pro-
jections of the search space as perceived by the first agent
are illustrated in Figure 4. The projections resemble the
one in Figure 2 when the standard deviation and the
number of rewards are high. However, all information
about the optimal solutions is lost in the projections that
correspond to small standard deviations: coordinated
actions of both agents are required to achieve higher pay-
offs on the optimal peak. On the other hand, suppose
that the second agent tends to prefer actions correspond-
ing to the higher, globally optimal peak (Figure 5). The
contour of the optimal peak is clearly distinguishable
on each of those projections, while the projection of the
suboptimal peak becomes noisier at reduced standard
deviation (given the higher peak, this is relatively incon-
sequential to the learning process).

We also observe that differences between pairs of
graphs decrease with standard deviation: while in Fig-
ure 3(b) there is a clear differentiation between using 5
and 20 actions (this setting is equivalent to a normal dis-
tribution with standard deviation = o0), such differences
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Figure 3: Projected search space for the first agent in the two-peaks domain, assuming the second agent chooses his
action randomly with uniform probability. Due to noise, the process is repeated three times — there are three curves
on each graph. (a) The projection at point x is computed by averaging 5 and respectively 20 joint rewards f(x,y;) for
different actions y;. (b) The projection at point x is computed as the maximum of 5 and respectively 20 joint rewards

(the lower 4 and respectively 19 rewards are ignored).

are less obvious in Figures 4(a) and 5(b). This suggests
that agents may benefit from additional rewards at early
stages of learning to increase the accuracy of their pro-
jection of the joint search space. It also indicates that the
impact of additional rewards may be minimal towards
the end of the learning process: there is little increase
in the accuracy of the projection when using different
numbers of rewards.

What do Figures 2-5 have to do with lenience? First,
we observe that using the maximum of multiple rewards
provides agents with valuable information about the
search space. We thus suggest learning agents should be
lenient with their teammates during early stages of con-
current learning processes: ignore many of the low joint
rewards, and only take into consideration the higher
ones. Second, the quality of projections increases almost
insignificantly with more rewards once the learners start
to converge. As a consequence, we suggest learning
agents should become more critical with respect to joint
rewards (ignore fewer of them) during advanced stages
of learning.

3 Lenient Cooperative Coevolution

Cooperative coevolutionary systems [11] are variants
of evolutionary computation — a stochastic optimiza-
tion technique — which apply multiple parallel learners
(optimization processes) to work jointly on different as-
pects of the problem. This makes them a good fit for
multiagent learning, where the joint problem is decom-
posed into several (likely intertwined) individual agent
subproblems.

A standard approach to applying cooperative coevo-
lutionary algorithms (CCEAs) to multiagent learning as-
signs each agents its own population of actions!. CCEAs

For more complex domains, the population could instead contain
state-to-action mappings.

do not evaluate actions for an agent in isolation, but
they rather evaluate only the performance of a complete
team with an action specified for each agent. The fitness
(assessed quality) of an action is determined by testing
it in combination with tuples containing actions for the
other agents (as sampled from their current populations
either randomly or based on their performance during
the past evaluation phase). When combined with such
tuples (which are called collaborators in coevolution par-
lance), an agent’s candidate action receives a reward that
is in fact the joint reward for the entire team of agents.
The fitness of the candidate action is then computed by
aggregating multiple such rewards (via taking the av-
erage or the maximum, similar to the process used for
Figure 3). Aside from this collaborative assessment, each
agent follows its own independent evolutionary process
in parallel with other agents.

For example, suppose we are learning the optimal
joint reward for a team with three agents. If the agents
choose actions x, y, and z respectively, the joint reward
is specified by f(x,y,z). When applying CCEAs to this
problem, one might assign the first population to repre-
sent the actions x for the first agent, the second popula-
tion to represent the actions y for the second agent, and
similarly the third population to represent the actions z
of the third agent. Each population is evolved separately,
except that when evaluating an action in some popula-
tion (e.g., x), collaborating actions are chosen from the
other populations (y and z) in order to obtain a joint
reward f(x,y,z). An action’s fitness is computed as an
aggregation of joint rewards from one or more evalua-
tions with various collaborators: for example, the fitness
of x could be computed as max (f(x,y1,21), f(x,¥2,22)),
where the sets {y1,y2} and {z1,2,} are selected from the
second and from the third populations.

The effects of different settings of cooperative coevo-
lutionary algorithms on search performance have been
the focus of research studies such as [2, 17]. The results
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(b) Standard Deviation = 5
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Figure 4: Projected search space for the first agent in the two-peaks domain, assuming the second agent chooses his
actions according to a normal distribution centered on the suboptimal peak. The projection at point x is computed as
the maximum of 5 and respectively 20 joint rewards f(x,y;) (the lower 4 and respectively 19 rewards are ignored).
The y; are randomly generated from normal distributions with mean 16 (centered on the suboptimal peak) and
standard deviations 20 and 5, respectively. The process is repeated three times.

indicate that computing the fitness of actions as the max-
imum of multiple joint rewards performs significantly
better than computing it as the minimum or as the aver-
age. Also, while using multiple collaborators might fare
better in domains involving complex non-linear interac-
tions among the components, it additionally increases
the computational requirements. Wiegand [16] argues
that the sampling of collaborators introduces a certain
bias on the search: wider peaks (see Figure 1) are more
likely to have collaborators sampled from them, and
this may bias the search toward suboptimal solutions;
this is termed relative overgeneralization. Relative over-
generalization may shift the focus of the search from
optimality to robustness — depending on the problem,
one criterion may be more important than the other. The
impact of multiple collaborators on the learning process
is graphically illustrated in [10].

Most cooperative coevolutionary algorithms assume
that each action is evaluated as the maximum joint re-
ward obtained with a fixed number of collaborators. Us-
ing the maximum to compute the fitness implies that
all but one of the joint rewards are completely ignored.
In terms of our earlier discussion, this translates into a
constant level of lenience for each agent toward its team-
mates. We argue that a better setting involves a high
level of lenience at the beginning of the learning process.
In coevolution, this translates into a higher number of
collaborators at early generations, followed by fewer
collaborators at later stages of search.

There are many approaches to decreasing the number
of collaborators over time, including methods that con-
sider the diversity of the populations. Here, we apply a
trivial ad-hoc setting: start with 10 collaborators for the
first 5 evaluation phases, followed by using only 2 col-
laborators until exhausting the computational resources.
In short notation, we refer to this collaboration setting as
10*5+2*rest. We leave the analysis of other such schemes
for future work.

3.1 Experiments and Results

We constructed several simple coordination games based
on benchmark optimization problems with well-known
properties as described in [12]. All domains were dis-
cretized into 1024 x 1024 intervals: an agent learns to
select one of its 1024 actions so as to maximize the joint
reward. Each agent maintained a population of 32 ac-
tions. Agents kept unmodified their best action from
one learning stage (generation) to another, and the re-
maining population of actions was created by mutating
actions chosen via tournament selection of size 2 (two
random actions were picked with replacement from the
population, and the fitter of the two was selected). Mu-
tation worked as follows: a coin was repeatedly tossed,
and the action (an integer number) was increased or
decreased (the direction chosen at random beforehand)
until the coin came up heads, making sure it did not go
outside the allowed bounds. The coin was biased such
that it came up heads with probability 0.05. One of the
collaborators was always set to the best action from the
other agent’s population at the previous generation; the
others were chosen by a tournament selection of size 2.

The coevolutionary algorithm had a budget of 17600
evaluations of joint rewards. With these settings, CCEAs
with 5 collaborators ran for around 110 generations.
When choosing this budget, we felt that too small of
a value might prevent differentiations among the algo-
rithms because they would not be allowed to search
enough. Similarly, too large of a budget might diminish
the differences between methods that waste evaluations
and methods that use them effectively. The value we
chose seemed to be a good compromise.

Our experiments compared the performance of meth-
ods using a fixed number of collaborators against our
technique employing a variable-sized number of collab-
orators. We tested 10 different numbers of collaborators
(1 to 10). Using a single collaborator allowed for many
generations, while more collaborators promised more
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(b) Standard Deviation = 5
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Figure 5: Projected search space for the first agent in the two-peaks domain, assuming the second agent chooses his
actions according to a normal distribution centered on the optimal peak. The projection at point x is computed as the
maximum of 5 and respectively 20 joint rewards f(x,y;) (the lower 4 and respectively 19 rewards are ignored). The
y; are randomly generated from normal distributions with mean 48 (centered on the optimal peak) and standard
deviations 20 and 5, respectively. The process is repeated three times.

Number of Mean Std. Dev.
Collaborators | Performance Performance
1 960.308064 30.622387
2 989.164076 48.826596
3 1004.111361 49.314857
4 1020.230865 44.603223
5 1031.049270 37.868720
6 1035.819193 32.235383
7 1036.992860 30.671499
8 1042.224061 22.536767
9 1042.303012 22.076877
10 1041.991019 20.991886
10*5+2*rest 1047.110667 16.520011
Table 1: Performance of different collaboration

schemes in the discretized two-peak problem domain.
10*5+2*rest significantly outperforms all other settings.

accurate fitness assessment mechanisms at the expense
of fewer generations.

The experiments were performed using the ECJ li-
brary [7], and they involved 250 runs per method. Per-
formance was computed as the average of the best per-
forming pair of actions (one per each agent) at the last
generation. Statistical significance was verified using
t-tests assuming unequal variances at 95% confidence.

We must point out a few problems with our experi-
ments. First, the same collaborators are used to evaluate
an entire population at each generation, as opposed to
drawing random collaborators for each action. This re-
duces the evaluation noise in the population, but it also
limits the exploration of the search space. We are not
aware of much literature comparing these two settings,
but we do not expect the difference to be significant.
Second, the collaborators are chosen based on a tourna-
ment selection of size 2, as opposed to choosing them
randomly. This setting might diminish the benefit of

multiple collaborators later on in the search (the extra se-
lection pressure might make the population seem more
converged than it actually is). In our defense, we point to
the relationship between this selection pressure and the
diversity in the population: the results of the selection
process might be similar (in terms of expectation) if using
random selection from a less diverse population, or us-
ing tournament selection with size 2 from more diverse
populations. Thus, we argue that other collaboration
schemes could work better than the fixed collaboration
schemes even if random selection were used instead.

The first experiment compared the results of the set-
tings described above in the Two-Peaks domain illus-
trated in Figure 1. Specifically, the joint reward for a
team with two agents, where the first agent chooses
action x and the second agent chooses action y, is com-
puted as

950 — 500 ((x6416)2 + (@16)2>

1050 — 9600 * ((“Efg)z + (y@fs)z)

where x and y range from 0 to 64, discretized into 1024
intervals. This problem domain is illustrated in Figure
1. The results are summarized in Table 1. The results for
our decreasingly lenient setting, 10*5+2*rest, are signifi-
cantly better than the ones for all other settings.

The second experiment tested the methods using a
Rosenbrock-like function? two-dimensional search space
with

f(x,y) = max

F(x,y) = 1000 — (2 « (x2 - y)z +(1- x)z)

where x and y range between -5.12 and 5.12 discretized
into 1024 intervals. The results are presented in Table 2.

2This function resembles the two-dimensional Rosenbrock, but
with a diminished influence of the non-linear component of the fitness
function.



Number of Mean Std. Dev.
Collaborators | Performance Performance

1 999.805368 0.702603

2 999.931824 0.165259

3 999.948679 0.151703

4 999.946774 0.133769

5 999.939639 0.142567

6 999.947729 0.110188

7 999.951085 0.082815

8 999.943306 0.107280

9 999.940341 0.117084

10 999.945124 0.088891
10*5+2*rest 999.986614 0.054527

Table 2: Performance of different collaboration schemes
in the discretized Rosenbrock-like problem domain.
10*5+2*rest significantly outperforms all other settings.

The results for 10*5+2*rest are again significantly better
than the ones for all fixed collaboration schemes.
A third experiment used the Griewangk function

f(x,y) = 1000 — 1+x72+i—cos(x)cos Y
Y= 4000 " 4000 NG

with x and y between -5.12 and 5.12, discretized again
into 1024 intervals. This modified function has several
suboptimal peaks, and an optimum of value 1000 at (0,0).
The results of different collaboration methods on this
problem domain are presented in Table 3. The results
indicate that 10*5+2*rest is significantly better than all
other settings except for 8 collaborators.

The fourth experiment used the Booth problem do-
main. In this domain, the two-argument optimization
function equals

fy) =100~ ((x+2+y =7+ (25 x +y —5))

(again transformed to a maximization problem), with x
and y between -5.12 and 5.12, discretized into 1024 inter-
vals. This is a challenging problem for coevolutionary
search because of non-linearities among the variables;
the optimum of the function is at (1,3) and it has a value
of 1000. The results of the methods in this domain are
presented in Table 4. The 10*5+2*rest method has a sig-
nificantly better performance than all fixed settings.

The fifth and last experiment used the Rastrigin func-
tion (converted for maximization):

£(x,) = 1000—
(6 I (xz —3cos (27tx) + (y2 —3cos (27Ty))>)

with x and y taking values between -5.12 and 5.12, dis-
cretized into 1024 intervals. A peculiarity of this function
is the large number of suboptimal peaks surrounding
the global optimum. Due to large variances among the

Number of Mean Std. Dev.

Collaborators | Performance Performance
1 999.974879 0.087959
2 999.992303 0.017698
3 999.992725 0.014395
4 999.994459 0.003547
5 999.994457 0.003247
6 999.994630 0.003522
7 999.994800 0.003434
8 999.995458 0.003786
9 999.994743 0.004014
10 999.994870 0.004457

10*5+2*rest 999.995700 0.003646

Table 3: Performance of different collaboration

schemes in the discretized Griewangk problem domain.
10*5+2*rest significantly outperforms all other settings,
except for 8 collaborators.

results in this problem domain, we performed 1000 runs
for each of the settings, but we still were not able able
to distinguish among any of the methods. The results
are presented in Table 5. In this domain, the t-tests failed
to indicate the superiority of any fixed collaboration
scheme over the 10*5+2*rest setting.

4 Lenient Multiagent
Reinforcement Learning

Drawing inspiration from dynamic programming con-
cepts, reinforcement learning (RL) methods update the
estimates of utilities for performing actions in various
states of the environment, or for being in those states
themselves [14]. These utilities are used for both the
exploration of the space, as well as for the exploitation
of the agent’s knowledge about the environment. As
the memory requirements of traditional RL grow expo-
nentially with the number of agents, multiagent rein-
forcement learning reduces the memory consumption
by decomposing the joint utility tables into simpler util-
ity tables, one per agent. This in essence projects the joint
utility tables into per-agent tables which discount other
agents. We assume for simplicity that the environment
has a single state, and we only focus on computing the
utility of choosing different actions; this is similar to the
analysis of multiagent RL in [3, 5, 4].

Previous research in multiagent RL has focused on
straightforward applications of traditional techniques
to multiagent problems. This led to algorithms where
agents update their utility estimates based on each and
every reward they observe, similar to applications of
RL to single-agent environments. From a higher-level
perspective, these algorithms approach the multiagent
learning problem using agents with no lenience for one



Number of Mean Std. Dev.
Collaborators | Performance Performance

1 999.944621 0.258064

2 999.945253 0.278818

3 999.896547 0.624545

4 999.927854 0.182885

5 999.940833 0.168899

6 999.911407 0.215897

7 999.912132 0.194326

8 999.893961 0.227951

9 999.903006 0.208813

10 999.877023 0.315515
10*5+2*rest 999.996837 0.022781

Table 4: Performance of different collaboration schemes
in the discretized Booth problem domain. 10*5+2*rest
significantly outperforms all other settings.

another (this resembles a cooperative coevolutionary set-
ting using a single collaborator). We continue with a
brief discussion of previous multiagent reinforcement
learning literature, followed by lenient multiagent rein-
forcement learning algorithm that selectively updates
the utilities of actions based only on some of the re-
wards. The results of preliminary experiments suggest
that agents learning via RL techniques significantly ben-
efit when showing lenience toward one another.

Claus and Boutilier [3] show that straightforward ap-
plications of RL to concurrent learning are not guaran-
teed to find the optimal solution for these games, even in
the case when agents are able to observe the other agents’
actions. The authors suggest that the search could be
improved by using more optimistic exploration actions.
This direction is further explored in [5], who update the
utilities of actions based in part on the maximum re-
ward previously received when performing that action.
Kapetanakis and Kudenko [4] observe that such biasing
of utility computation may not work in domains where
the joint reward information is noisy. They propose an
improved multiagent reinforcement learning algorithm
called FMQ, which uses the maximum reward received
per action to bias the probability of choosing that action.
This improved algorithm shows advantages in domains
with limited amounts of noise, but its performance is
poor when there is a lot of noise. Finally, Verbeeck et al
[15] propose coordinated restarts of suboptimal learn-
ing algorithms in combination with action exclusions
(similar to tabu search) to guarantee convergence to the
globally optimal solution. But the restarts may require a
significant amount of time, and the convergence to op-
tima is guaranteed only if all Nash equilibria are visited
infinitely often.

In contrast, our proposed lenient algorithm improves
the performance of each learning trial without requiring
any a priori coordination. It is based on the following
idea: if at early stages of learning an agent receives re-

Number of Mean Std. Dev.
Collaborators | Performance Performance
1 999.295637 0.686536
2 999.282862 0.696519
3 999.306431 0.707764
4 999.255339 0.752893
5 999.253378 0.715312
6 999.286966 0.730213
7 999.270756 0.696554
8 999.251628 0.716294
9 999.266060 0.741226
10 999.215434 0.717056
10*5+2*rest 999.258291 0.747410

Table 5: Performance of different collaboration schemes
in the discretized Rastrigin problem domain. Although
5*10+2*rest has lower mean performance than other set-
tings, it is not statistically significantly better or worse
because of the large variance in performance.

wards rq,7, ..., ¢ when choosing action a; at various
times, the agent ignores most of these rewards and
only updates the utility of a; based on the maximum
of 1,7y, ..., ;. The reason for this is that those rewards
were obtained while the other learning agent selected
some actions by, ..., by, most of which might be ignored in
the future due to lower utilities. As both agents become
more selective at choosing their actions, it is expected
that they will each tend to primarily select a single action
(the best one) after some time. At this point, we would
prefer that each agent updates the utility of that action
based on every reward he observes. This will lower the
optimistic estimation of the utility for that action until
it equals the mean reward obtained by the agents for
that joint reward. If this mean reward becomes lower
than the estimated utility of other actions, the agent will
tend to prefer other actions instead. This is desirable
for games with stochastic rewards, such as the ones in
Table 7.

We implement the algorithm as follows. We always
update the utility of the action if the current reward
exceeds the utility of the action. Otherwise, we use a
probabilistic approach: if the agent has not explored that
action sufficiently, it should show lenience to its team-
mates and not update its policy; but if the agent has
explored that action many times in the past, it should
tend to be more critical and use the reward to lower the
utility of that action. The algorithm associates a tempera-
ture with each action, as opposed to a single temperature
for the entire learning process. If the temperature associ-
ated with an action is high, the agent is more lenient and
ignores low rewards it receives for choosing that action.
The temperature of an action is decreased slightly every
time that action is selected. As a consequence, actions
that have been chosen more often have their utilities up-
dated more often as well, while the utilities for actions



that have been chosen rarely are mainly updated with
higher rewards. This initially leads to an overoptimistic
evaluation of the utility of an action. An agent may thus
be temporarily fooled into choosing suboptimal actions.
However, the utilities of such actions will decrease with
time, and the agent is more likely to end up choosing the
optimal action. There is also a small (0.01) probability
of ignoring small rewards at all times: we found this to
work in our experiments because agents have non-zero
probabilities of selecting an action at each time step.

Aside from these enhancements, the algorithm follows
a traditional RL approach: the action selection uses the
Boltzman distribution, and the utility is updated based
in part on the reward currently received for an action.
On top of the memory required to store the utility ta-
ble, the proposed algorithm needs storage to encode a
temperature for every action. This is about the same as
the memory requirement of the algorithm proposed in
[5], and half that of FMQ [4]. The pseudocode for the
algorithm is as follows:

Lenient Multiagent Reinforcement Learning
Parameters
1: MaxTemp < maximum temperature
& < temperature multiplication coefficient
B < exponent coefficient
6 < temperature decay coefficient
A < learning rate
N < number of actions

oo wn

Initialization
7. Uy, ..., UN < per-action utilities (all 0)
8: Tempy, ..., Tempy; < per-action temperatures (all 0)
9: for each action i do

10: U; = random value between 0 and 0.001

11: Temp; = MaxTemp

Each Iteration
> Select an Action
12: Py, ..., Py < per-action probability distribution (all 0)
13: MinTemp < 1076 + minf»\il Temp;
14: for each action ﬂ.do
¢ Moy
15: Pi g
Z]’IL e
16: Select action i* € {1,..., N} at random
using probability distribution Py,...,Pn

> Perform Action
17: Perform action i* and observe reward r
18: Temp;, < Temp, X &

> Update Utilities
19: RandVal < random value between 0 and 1 inclusive
20: if (U <) or (RandVal < 1072 + p=2*Tempix) then
21: Up — A U + (1= A) 7

Agent 2 Agent 2
‘ a b ¢ ‘ a b ¢
= "a| 11 30 0 ~ "al| 10 0 -10
gf)D b|-30 7 6 gf)o b| 0 2 0
< ¢/ 0 0 5 < c|-10 0 10

Table 6: Joint reward matrixes for the Climb (left) and
Penalty (right) domains.

Agent 2
a b C
T "al| 11 30 0
§D b|-30 14/0 6
< c| o0 0 5
Agent 2
‘ a b C
T “a| 10/12 5/-65 8/-8
§D b | 5/-65 14/0 12/0
< «¢| 5/-5 5/-5 10/0

Table 7: Joint reward matrixes for the Partially-Stochastic
(left) and the Fully-Stochastic (right) versions of the
Climb domain. The reward is stochastic: if both agents
choose action b, the reward 14 /0 implies that both agents
receive either a reward of 14 or a reward of 0 with prob-
ability 50% each.

For additional clarity, Figure 6 illustrates the utilities
associated with each action during a concurrent learn-
ing process in the Fully-Stochastic Climb domain. Both
agents start with low utilities for all actions, and they
slowly start to believe that action b has a utility value of
14, higher than all other actions. As both agents choose
action b, they decrease the temperature associated with
this action, and soon they start to incorporate lower
rewards (remember that the joint action (b,b) has an
average utility of 7). As a consequence, the utility of
action b decreases, and the agents start to explore other
actions as well. This generates extra miscoordination
penalties which lower the estimates for the utilities of
all actions. Given the higher temperature for action g,
its utility is affected by high rewards, and both agents
start to prefer it over the other actions. This leads to a
decrease in miscoordination penalties, and both agents
end up with precise utilities associated with that action.

4.1 Experiments and Results

We experiment with learning in repeated coordination
games, in which agents repeatedly and independently
choose one action each, and they are rewarded equally
based on the joint action they have selected. The goal is
for the agents to learn a joint action that has a maximum
reward (or maximum average reward for the stochastic
games). We employ four problem coordination games
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Figure 6: Utility of each agent’s three actions.

(Tables 6-7): the Climb and Penalty domains introduced
in [3], and two stochastic variations of the Climb domain
as discussed in [4]. Climb is difficult because of the large
penalties associated with miscoordination of actions cor-
responding to the two higher optima, while Penalty is
challenging because the agents need to select among two
joint actions with equal reward. Agents may also select
suboptimal actions that avoid miscoordination penalties
in each domain: action ¢ in Climb, and action b in the
Penalty domain. The stochastic variations of the Climb
domain are challenging due to the additional noise in
the rewards for joint actions. We experimented with
the lenient multiagent RL algorithm in all four problem
domains. We performed a preliminary sensitivity study
for the parameters; as a result, we set MaxTemp = 500,
x =2,B=25206=099,and A = 0.95. The agents
learned over 7500 moves. Table 8 reports the number
of runs that converged to each of the nine joint actions
(based on each agent’s action with maximal utility at the
end of the run). These numbers are averaged over 10
trials of 1000 runs each.

The lenient multiagent RL algorithm consistently con-
verged to the global optimum in the Climb, Penalty,
and Partially-Stochastic Climb domains. According to
[4], this is equivalent to the performance of FMQ in
these problem domains, and it is also significantly bet-
ter than the performance of both traditional Q-learning
approaches, as well as to the algorithm previously pro-
posed in [5]). However, the lenience also helped the
agents learn the global joint action in the Fully-Stochastic
Climb domain in more than 93.5% of the runs. This con-
trasts FMQ'’s poor performance in this domain as men-
tioned in [4]; we also found that FMQ converged to the
global optimum solution in only around 40% of runs
in this difficult domain, despite an extensive sensitivity
study for parameter values and a higher number of joint
actions (7500 instead of 2000 in previous work)

Climb Penalty
| a b ¢ | a b c
a|9924 0 O a|4946 O 0
b 0 76 0 b 0 0 0
C 0 0 O C 0 0 5054

Partially-Stochastic Climb Fully-Stochastic Climb

| a b C | a b ¢
a|99.0 0 0 a| 9352 0 0.001
b 0 0.0 0.6 b 0 202 204
C 0 0 0.4 C 0 0 241

Table 8: Average number of runs (out of 1000) that con-
verged to each of the joint actions for the four coordina-
tion games.

5 Conclusions

This paper argues that multiple agents that learn concur-
rently can benefit from showing lenience to each other,
especially during early interactions. We illustrated this
concept graphically based on projections of the joint
search space that each agent would perceive during dif-
ferent stages of learning. We then extended two popu-
lar multiagent learning algorithms, namely cooperative
coevolution and multiagent reinforcement learning, to
include lenience in the agents” decision processes, and
we showed the superiority of these extensions in several
coordination games.

Future work is required in multiple directions. What
formal guarantees can be proved for these algorithms?
How can agents automatically detect the appropriate
level of lenience? Are these algorithms readily applicable
to teams with tens, hundreds, or thousands of agents, or
what further extensions are required for this purpose?
We hope future research will help us find answers to
these challenging questions.
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