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Abstract

This paper proposes a novel methodology for address-
ing the simulation-reality gap for multi-robot swarm sys-
tems. Rather than immediately try to shrink or ‘bridge
the gap’ anytime a real-world experiment failed that
worked in simulation, we characterize conditions under
which this is actually necessary. When these conditions
are not satisfied, we show how very simple simulators
can still be used to both (i) design new multi-robot sys-
tems, and (ii) guide real-world swarming experiments to-
wards certain emergent behaviors when the gap is very
large. The key ideas are an iterative simulator-in-the-
design-loop in which real-world experiments, simulator
modifications, and simulated experiments are intimately
coupled in a way that minds the gap without needing to
shrink it, as well as the use of minimally viable phase dia-
grams to guide real world experiments. We demonstrate
the usefulness of our methods on deploying a real multi-
robot swarm system to successfully exhibit an emergent
milling behavior.

1 Introduction

Swarms of robots have been theorized to help in all sorts
of practical problems including search and rescue [1],
pollution monitoring [2], surveillance [3], and disaster
management systems [4]; however, despite so much re-
search they have not yet found much practical use. The
potential benefits are clear as shown in many different
simulations [5–7], but recreating these simulated behav-
iors on real robotic swarms is not a trivial extension due
to physical limitations on actuation/sensing, imperfect
communication, or collisions that are often overlooked

or oversimplified in the simulated world. Applying
these algorithms to real robots can often result in severe
issues or failure not observed in simulation [8, 9]. The
issues with the simulation-reality gap and the desire
to bridge it is not new [10–13]. However, unlike the
majority of works that discuss this for simulators of a
single robot system, we propose a novel approach that
addresses the simulation-reality gap without necessarily
attempting to shrink this gap unless deemed necessary.

Specifically, this work aims to achieve two major goals.
First, we want to leverage decades worth of research
in discovering different swarming/emergent behaviors
that have only been demonstrated in simulation (e.g.,
Artificial Life) by showing how these agent-based model-
ing tools can be useful for both designing robot swarms
and guiding experiments in real time. Second, we want
to provide a framework to allow a robot swarm engineer
to systematically determine whether a team of available
robots is actually able to recreate some behavior found
in simulation, and how exactly to make it happen.

To solve this problem we kept two things in mind.
Simulations should somehow be representative of real-
world experiments but also be simple enough to en-
able rapid modification, development, and utilization.
The traditional approach to creating a simple simula-
tor of a real-world robotic system is shown in Fig. 1(a),
where the simulated agent often starts in an idealized
disturbance/noise-free environment with perfect sens-
ing, actuation, and communication abilities (shown as
a red circle). This proof-of-concept simulation is then
used as a benchmark or goal to build a robot with ca-
pabilities as close as possible to the simulation (shown
as a smaller and rougher blue shape). The experiment
can then be done with the real robot and everyone can
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hope it works as close enough to the simulator as needed.
Naturally a physical robot will not be able to keep up
with a perfectly simulated agent in a disturbance-free
world, but that doesn’t necessarily mean the experiment
will fail. When the experiment fails and the real robot is
not able to replicate what is observed in simulation, the
traditional approach is to shrink the gap in one of two
ways: either (i) begin simulating more real-world con-
siderations (e.g., characteristics of sensors and actuators,
environmental conditions, or friction) and shrinking the
capabilities of the simulated agent; or (ii) upgrade the
robot (in hardware and/or software) to expand the ca-
pability of the physical robot. In either case the goal is
to bring the capabilities closer. Fig. 1(b) then shows a
higher fidelity simulator for a given system achieved
after spending time painstakingly programming the dif-
ferent actual disturbances into a high fidelity simulator.
It should be acknowledged that for a dedicated robot for
which design changes are minimal, it is perfectly natural
to take the time to build a high fidelity simulator of the
real robot system as well as possible. However, for doing
research in robotic swarm systems, the time to do this is
prohibitive as even minor changes/adjustments made
to the team of robots may require a lot of time to update
in the simulator and validate again.

The main idea of our alternate approach is shown in
Fig. 1(c) where we are purposely making our simulated
robot less capable than physically existing robots in every
aspect possible. The idea behind this is if we make the
simulated robot’s capabilities worse and its environment
harsher, demonstrating success in simulation may serve
as a sufficient condition for the real-world experiment
working rather than simply a (often unattainable) design
goal.

A key aspect of our approach is that we fully acknowl-
edge the fact that, although the multi-agent system of
robots may be meant to be homogenous, there most
certainly are differences from robot to robot (or idiosyn-
crasies). However, researchers in sociobiology study-
ing insects have found that temperatures in bumble bee
nests are able to reach safe stable values due to the differ-
ent thresholds of the individual bees; some bees would
start fanning (cooling) or incubating (heating) at differ-
ent temperatures than others and these idiosyncrasies al-
low for a stable homeostatic state [14]. So rather than try
to diminish or eliminate these idiosyncrasies, we main-
tain these differences and attempt to use them to our
advantage in our goal to deploy real swarming robots
more reliably and predictably than is done today.

Statement of Contributions In order to realize the two
major goals described above, our first contribution is
this novel connection between swarm simulator and
physical robot platform in which the simulated world is
harsher than reality (Steps 1-3 in Fig. 3 connecting the
real world to the simulated world). Our second contri-
bution is the method of using minimally viable phase

(a) (b)

(c)

Figure 1: Cartoon showing the capabilities of robots
(with respect to their environments) in simulation (in
red) versus reality (in blue) in (a) traditional robot swarm
simulation research, (b) the case of a high-fidelity simu-
lator paired with a matching multi-robot platform, and
(c) our approach of making our simulated agents less
capable than their real-world counterparts.

diagrams to make informed decisions on whether avail-
able hardware is sufficient in demonstrating a particular
swarming behavior or some form of upgrade is neces-
sary (e.g., a better sensor or a faster controller). Inspired
by phase diagrams from chemistry [15] that taught us in
high school how to create a swarm of water molecules to
exhibit different global properties (e.g., liquid, solid, or
gas) by controlling temperature and pressure, we wish
to create and immediately make use of similar diagrams
for better controlling robot swarms. Researchers in sim-
ulation have been able to create these phase diagrams
for different multi-agent systems [16–19], albeit using ca-
pable individual agents that require a lot of information
like the position and/or the orientation of it’s neighbors.
Our proposed framework is applied to three different
real multi-robot systems to recreate a milling behavior
using a simple direct sensing-to-action controller using
a binary sensor.

2 Problem Formulation

In this paper we consider only a particular emergent
milling behavior that has already been demonstrated and
recreated in multiple different simulators and research
labs around the world [16, 20–23]. We choose this behav-
ior due to the very simple nature of both the required
sensors and actuators needed to theoretically make this
behavior emerge. The simple controller used in [20] had
the robots turns clockwise if no other robots are present
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Figure 2: Milling circle formed using a simple binary
sensing-to-action controller: if something is detected
steer left, otherwise steer right [20, 21].

within the detection region and counterclockwise if at
least one robot is present (see Fig. 2).

Understanding the simplicity of the controller, the
problem now is how to design, build, and deploy a team
of robots that can achieve this task as efficiently as pos-
sible. First we must acknowledge the minimum capa-
bilities required of a real robot system to even have a
chance of successfully demonstrating the behavior. The
minimally viable capabilities required are:

Actuation: move forward while turning either left or
right.

Sensing: a binary output indicating whether another
robot exists in some forward-facing field-of-view (FOV).

Computation: direct sensing-to-action.

Communication: none.

Note that any robot that is capable of doing at mini-
mum the above is a candidate system for demonstrating
the emergent behavior. For instance, even though the
behavior is only demonstrated in 2D, this could be done
by a swarm of fixed-wing UAVs flying at a fixed height.
The remainder of this paper formalizes and applies a
novel process to systematically bring the desired milling
behavior to life.

The starting point of our problem is the availability
of a team of N homogeneous but idiosyncratic robots
(i.e., slightly different from robot to robot) with general
unmodeled nonlinear dynamics

ẋi = f (xi, ui, θa
i , wi), (1)

where f : Rd → Rd is an unknown function of a robot’s
state xi ∈ Rd, its control input ui ∈ U ⊂ Rm, the actua-
tion idiosyncrasies θa

i ∈ Rp, and the unmodeled distur-
bances wi ∈ Rd. Depending on the physical sensor(s)
used, the robot will need some software able to map the
sensor readings to a binary output as required by the
binary controller visualized in Fig. 2.

Unfortunately, given this starting point there are no
existing works that can help guide exactly how to realize
the behavior on the real robots. While many different
groups have shown their successful behaviors, it is clear
that all the real robot milling behaviors demonstrated
so far required a lot of trial and error due to a lack of a
way to do standard hypothesis testing. Let us now really
make clear the problem at hand that is hidden under the
rug in existing published works.

Problem 2.1 (Real-world milling with binary sensing)
In order to deploy a real world robot swarm experiment
one is quickly faced with a lot of choices with no real
way of choosing them:

(1) How many robots should be deployed?

(2) How fast should they be moving?

(3) How sharp should they be turning?

(4) How good do the sensors need to be?

(5) How homogeneous does the swarm need to be?

Problem 2.1 is not an exhaustive list of questions that
need answers and is completely ignoring environmen-
tal conditions for instance. It is generally assumed that
more robots should always be better in swarms but as
this paper shows it is not that simple. Instead, it re-
veals how complicated searching this space for a suc-
cessfully emergent behavior can be. If the first experi-
ment deployed doesn’t work, how does one know what
to modify for the second experiment? Did the experi-
ment fail because the sensors weren’t good enough, they
were moving too fast, or there were actually too many
robots on the field? Phase diagrams of simulations have
been used by some groups demonstrating the compli-
cated and non-intuitive relationships between the an-
swers to these questions [16–19]. The goal then is to use
low-fidelity simulations-in-the-design-loop to more ef-
fectively navigate this space and better understand why
experiments fail when they do. This will enable a much
more organized and systematic approach to deploying
and testing robot swarm systems than is done today.

3 Methods

In this section rather than providing a solution to Prob-
lem 2.1, we provide a general simulator-in-the-design-
loop framework which can be applied to any real multi-
robot system to both (i) search for new emergent behav-
iors and (ii) bring them to life.

The steps of this ‘Reality-to-Simulation-to-Reality for
Swarms’ (RSRS) process in Fig. 3 clearly show the inti-
mate couplings between the simulator (Steps 2 and 3)
and the real world robots (Steps 1 and 4). Similar to
the work done in [24–26], the entire process starts and
ends with real robots; however, these works apply their
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Figure 3: Flow Chart of RSRS Process

methodologies to train single robots to perform different
tasks. We apply our process on a multi-robot system and
use the simulator as a tool to help make design choices
and guide experiments by enabling hypothesis testing.
The steps of the RSRS process are:

(1) Measure the capabilities/dynamics of robots;

(2) Build simulator;

(3) Exploration within simulation;

(4) Run real robot experiment based on phase dia-
grams.

(1) Measure the capabilities/dynamics of robots

The first step of this iterative process is to figure out
what aspects of the physical robots need to be simulated.
This will vary from system to system (e.g., flying drones,
boats, or ground vehicles) but in general this will require
the sensing, actuation, computation, and communica-
tion abilities of the robots, and ensuring they meet the
minimum viability requirements for the given task. In
the case of the milling goal from Section 2, all we need
are robots capable of following a Dubins path with suffi-
cient sensing to generate a binary output signifying the
presence of a robot in a particular FOV, but this frame-
work can directly be applied to other tasks/behaviors as
well.

Trying to determine the unknown dynamics f in a
parameterized way using θa in (1) is not the focus of this
work. Instead, our starting point is the availability of
a simpler kinematic model and mapping T : Rd → Rn

tracking only a subset of states zi ≜ T(xi) ∈ Rn with n ≤
d. Although this may seem like a strong assumption
or oversimplification, our goal, again, is not to create
a high fidelity simulator but a simpler one that uses
only the required information of the robot in order to
find emergent behaviors. For example the 2D milling
behavior might be demonstrated using 12-state drones
even though we only utilize three (2D projection and
orientation) in our simplified simulator.

More specifically we have access to the kinematics

żi = g(zi, ui, θa
i , wi). (2)

Assuming the availability of a function g parameterized
by the actuation idiosyncrasies θa

i , the first task is to
take real-world measurements of the actuation/sensing
capabilities of the robot in order to synthesize a model
that can be used for analysis.

The capabilities of the actuators need to be ‘mea-
sured’ by experimentally finding θa

i for some subset
of robots i ∈ {1, . . . , N}. It would not be practical to
measure all N robots, but enough robots should be mea-
sured to generate a reliable distribution of the differ-
ing θa

i among the agents.
The capabilities of the sensors/actuators need to be

‘measured’ by experimentally finding how well the hard-
ware can actually be used for their intended purpose. For
example in our milling behavior the controller only re-
quires a binary signal but that doesn’t necessarily mean
a single real-world sensor exists to provide this binary
output; some raw signal will need to be processed. The
output of our simulated robot i with binary sensing is
given by yi ∈ {0, 1}:

yi = h(zi, z−i, θs
i ), (3)

where h : RN×n × Θs → {0, 1} maps the entire simu-
lated world state to a binary output and θs

i characterizes
the inaccuracies of the sensor. The robots may have
cameras, LIDARs, IRs, or a combination of multiple sen-
sors, however these sensing capabilities can be simpli-
fied into a binary, 1-bit signal and the ability at which
the real-world system can actually do this is measured
and captured in h.

In terms of computation the controller can essentially
be memoryless as all we need is a direct (static) sensing-
to-action controller; however, the frequency at which the
sensor data can be processed into a binary signal that is
fed to an actuator is another measurement that must be
taken from the real-world robot. This will provide the
timestep ∆t for the discretized kinematic model used in
Step 2.
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(2) Build Simulator

Equipped now with a simplified kinematic model (2),
the distribution of the capabilities of the actuators in the
form of a distribution over θa

i , and the sensing capabili-
ties θs

i , we are ready to provide these parameters to our
simple simulator.

The second step is to program the information found
in Step 1 into the simulator, which should be pretty
straightforward depending on the coding language and
the previous results. Our simulator is purposely simple
enough to make this step as seamless and fast as possible.
The outcome of this part of the process should be the
discretized (simulated) model of the robot’s kinematics
and the sensing output,

zi(ℓ+ 1) = zi(ℓ) + g(zi(ℓ), ui(ℓ), θa
i (ℓ), wi(ℓ))∆t,

yi(x(ℓ)) = h(zi(ℓ), z−i(ℓ), θs
i (ℓ)), (4)

where z−i is the simulated state of all agents except i.
It is in this step where the disturbances wi and idiosyn-
crasies of the actuation, θa

i , and sensing, θs
i defined in

the simulator are purposefully exaggerated to be worse
than the real-world measurements. Formally, the goal of
our simulator (4) is to have the reachable set of the real
trajectories lie within the reachable set of the simulated
trajectories,

T(R(xi(0), t)) ⊂ R(zi(0), t), (5)

where R(x, T) denotes the set of all reachable points
within T ≥ 0 seconds. In other words, enough noise
should be injected into the simulator to include all tra-
jectories the real robot is physically capable of.

Upon completion of Step 2, before moving onto Step 3,
it is crucial to ensure (through both simulations and real-
world experiments of simple sensing/actuation tests)
that (5) is satisfied. If this is not the case, it may be
necessary to return to Step 1 and gather additional infor-
mation and then reprogram the simulator accordingly
until it holds.

(3) Exploration within simulation

Once the individual robot profiles have properly been
measured in Step 1 and built into the simulator and vali-
dated in Step 2, the fun part begins. In this step we can
leverage decades worth of research dedicated to finding
different emergent behaviors such as the works done
in the field of Artificial Life [27–29]. Unlike the vast
majority of works that do this type of research, the key
difference with our approach is that our simulator was
synthesized through real robot measurements, and will
ultimately be validated on the real-world robot experi-
ments as well.

This step focuses on trying to discover what the sim-
ulated system of agents can do. A popular method of
finding how to create certain behaviors is through the

Figure 4: H-stability Phase Diagram of the Morse Poten-
tial [17]

use of evolutionary algorithms to optimize a sought
after performance metrics as done in [5, 6, 21, 30]. In
these works, the authors were looking for a predeter-
mined behavior hence why they had a performance
metric they wanted to optimize. On the other hand,
there is an alternative method where the goal of the algo-
rithm is not to find how to optimize any specific fitness
value but rather to find behavioral novelty in the simu-
lation [22, 31, 32]. Finding how to create behaviors can
also be done through manually changing the different
parameters, control algorithms, and/or the environment
frequently and observing if anything emerges, although
this method is a bit more time intensive. Once any be-
havior is found, more thorough parameter sweeps can
be done with the given control algorithm to see how
the changes in parameters affects the behavior; however,
only the parameters that can be modified on the real
robots should be adjusted.

The goal of this step is to allow us to generate a real
hypothesis on what we expect to see from the real robot
swarm system when deployed. By first ensuring that
the emergent behaviors are possible in our simple sim-
ulation, the behavior, or phase, of the system can then
be identified for each set of parameters and then be plot-
ted in a chart. This diagram will likely contain different
phases, or regions, where the different behaviors are
formed. Like the phase diagrams of water and other sub-
stances [15], this diagram will allow us to understand
how changes in the parameters affects the system. An
example of this is in [17], where the authors create a
phase diagram (shown in Fig. 4) that allows them to
identify different regions that describe the stability and
morphology of the system at different parameter ratios
l = lr/la and C = Cr/Ca, where lr and la represent the
repulsive and attractive potential ranges, and Cr and Ca
represent their respective amplitudes.

(4) Run real robot experiment

The results from the exploration step can be used to set
up the controls and conditions for experiments using the
real system of robots. Just like a phase diagram can be
used to determine the phase of water in different temper-
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ature/pressure conditions [15], one can use something
like a phase diagram shown in Fig. 4 to make hypotheses
about real world swarm deployments and help guide
sequential experiments.

Of course the goal is for the real-world robots to im-
mediately exhibit the same behavior we find through
simulation given the same parameters and conditions,
this naturally will not always be the case. Or more trou-
blesome, given our approach shown in Fig. 1 of acknowl-
edging a large reality gap, the simulator may not be very
predictive of the real world experiment in general.

Given a particular world setup (either in simulator
or the real world), we let Br(·) and Bs(·) ∈ [0, 1] be the
unknown probability of the conditions leading to the
desired emergent behavior (in this case milling) if given
enough time. Lumping all aspects of the simulator into
a variable E (e.g., number of robots, type of controller
used, sensor quality, environmental disturbances) and
hope for the relation that if something is discovered in
the simulator, there is a higher probability of it occurring
in the real world experiment than not,

Br(E) ≥ Bs(E). (6)

By exploring in the simulator for conditions E for
which Bs(E) ≈ 1, we can be more confident that the
real world system will also demonstrate the same emer-
gent behavior.

There is also the possibility that the simulation in Step
3 isn’t producing any behavior in the system. In other
words, no matter what kinds of simulated environments
and conditions E are tried, the value Bs(E) cannot be
made close to 1 meaning the capabilities of the simu-
lated robots are not good enough to manifest the behav-
ior seen in a more capable robot. It is here where the
cost of continuing this method with the given capabili-
ties should be analyzed. If there are still simple things
that can be done to modify the simulator that wouldn’t
take much time or effort (like reducing the amount of
added noise) then that should be the first course of ac-
tion. However, if a behavior still isn’t produced and the
modifications to the simulator would be far too time-
consuming, then it may be concluded that the robots are
at that point simply too incapable to create any behavior.
Small upgrades and changes to the robot system should
then be done and the RSRS process should start over
with Step 1 since the capabilities of the robots have now
changed.

4 Case Study

Here we show how our general framework proposed in
Section 3 can be applied to a real robot system attempt-
ing to recreate an emergent behavior observed only in
simulation.

(a) (b) (c)

Figure 5: Images of real robot platforms built for dif-
ferent purposes used in various labs or a makerspace
showing (a) SPARX lighter-than-air robots (b) SMARS
robots, and (c) FlockBots.

The main robot platform used were the Flockbots
shown in Fig. 5(c), which were designed and built years
prior to this research. The Flockbots are two-wheeled
differential drive robots that are 15cm in diameter. They
are equipped with several sensors including wheel en-
coders, IR sensors, an RGB camera, and more connected
to a Raspberry Pi computer. The wheel speed is gov-
erned by an Arduino microcontroller which maintains
the robot’s forward speed and turning rate in closed-
loop control. Our only modifications to the system are
the control logic, which uses only a binary output from
the center forward-facing IR sensor to turn left or right
respectively at a constant speed, and retro-reflective tape
on the perimeter of each robot to increase the inter-robot
detection range. The IR sensor generates the output as 1
when the distance measured is less than the maximum
value of the sensor, otherwise the binary output is a 0.

Following the steps of Section 3:

(1) Run real robot experiment

These robots use differential drive to operate, so by mov-
ing the wheel on one side at a different speed than the
other, the robots are able to turn their heading and move
at different speeds. We then modeled the simulation of
these robots as a unicycle model with the kinematics
shown in (7). In this case the reduced order model is
given by n = 3 states for each robot zi,1 and zi,2 represent-
ing the 2D position and zi,3 representing the orientation
of robot i, respectively. Since these robots are ground
vehicles with no slipping, we are able to omit wi and
capture differences in the robots’ capabilities through
the idiosyncrasies θa

i .

g =

 ui,1θa
i,1 cos zi,3

ui,1θa
i,1 sin zi,3

ui,2θa
i,2

 (7)

Actuation: The first step of this process is to measure
the actuation capabilities of the robots. We begin by
determining the maximum and minimum safe control
inputs. Then, we gave the Flockbots constant control
inputs at intervals within the safe bounds and calculated
the average speed from the time taken to cross a 2 meter
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Desired Speed (mm/s) Error Distribution θa
1

u1 = 25 v1 ∼ N(22.15, 0.57) 0.89
u1 = 25 v2 ∼ N(21.48, 0.04) 0.86
u1 = 25 v3 ∼ N(22.32, 0.46) 0.89
u1 = 50 v1 ∼ N(48.47, 0.38) 0.97
u1 = 50 v2 ∼ N(48.66, 0.12) 0.97
u1 = 50 v3 ∼ N(48.54, 0.20) 0.97

Table 1: Speed Measurements

track. We performed multiple trials for each speed across
a representative group of five Flockbots, a sample of
these measurements for three different robots can be
seen below in Table 1. From these measurements, we
found the mean and standard deviation for the measured
speeds of each robot at each set value. The θa

1 values
of each tested robot was found by using the following
equation:

θa
1 =

Average Measured Speed
Desired Speed

(8)

The measurements for the turning rates were con-
ducted in a similar manner. The robots were pro-
grammed to turn in place at constant rates and the actual
turning rate was measured by allowing the robots to turn
in a complete circle and dividing by the time they took
to do so. The values for θa

2 were found using a similar
equation to how θa

1 was calculated:

θa
2 =

Average Measured Turning Rate
Desired Turning Rate

(9)

By finding these distributions for the individual
robots, we can predict the overall distribution of all mea-
sured robots to find how much the speeds and turning
rate can vary in the system. Of course this data doesn’t
encompass all the information of the whole system but it
gives us an idea of how inaccurate and idiosyncratic the
robots may be. These idiosyncrasies of the Flockbots can
be seen in the several different gaussian distributions
of the measured means and standard deviations of the
robot speeds in Fig. 6.

Sensing: Additionally, tests were also done to find the
accuracy of the IR sensors on board the robots. We gath-
ered data on the detection accuracy with which a sin-
gle Flockbot could detect another Flockbot at different
distances and angles. Fig. 7 shows the 80% positive de-
tection threshold as the blue polygon. The IR sensor
detected another Flockbot on this line at least 80% of the
time, with nearly 100% positive detection for Flockbots
within this region thanks to the retro-reflective tape. We
also measured a 5–8% false positive rate with no other
Flockbots nearby.

Figure 6: Measured Speed Distributions of Flockbots

Computation: From our tests, we found that the robots’
sampling period were around 130ms. This value was
used as the time step value (∆t) for (4).

Communication: None.

(2) Build simulator

For the sake of using an extremely intuitive and easy-
to-modify simulator, we utilize NetLogo [33] to rapidly
simulate the measured capabilities of the robots under
different conditions and in different environments us-
ing (4) with the measured parameters θa

i .

Actuation: The size of the robots were programmed
to directly map to the collision radius of each agent, if
an agent’s position is within double the collision radius,
then the simulator would consider it a collision. When
there was a collision with the real Flockbots, the robots
would stop in place if the other robot was in front and
would be generally unaffected if it was pushed from an-
other angle, all of which was programmed into NetLogo.

The speed was set to be how many patches (standard
block on NetLogo, set to represent 0.1m) the agents
would move per second. The turning rate was how
many radians the heading of the agent would change
per second.

For the noise/disturbances, we first found the dis-
tribution of how far off the agents would move from
the target in the real world experiments and the relia-
bility distribution of the IR sensor as mentioned in Step
(1). Once we had a sample of the real distribution of
noise, we expanded it such that the agents in the sim-
ulation would obtain their θa values from the normal
distribution found from all the measured θa values. For
example, when the desired speed was set to be 25 mm/s,
the robots all had slightly different true speeds, so the
agents in simulation were set to have a value within a
larger distribution. This made the agents in simulation
more idiosyncratic/random and less reliable than their
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Figure 7: Measured detection range of Flockbot in blue
and simulated detection range in red

real world counterparts, thus making the agents in the
simulation worse than the real robots.

The discretized equations for the kinematics and the
output were then modeled to be:

g(ℓ) =

 ui,1(ℓ)θ
a
i,1(ℓ) cos zi,3(ℓ)

ui,1(ℓ)θ
a
i,1(ℓ) sin zi,3(ℓ)

ui,2(ℓ)θ
a
i,2(ℓ)

 (10)

zi(ℓ+ 1) =

 zi,1(ℓ+ 1)
zi,2(ℓ+ 1)
zi,3(ℓ+ 1)

 =

 zi,1(ℓ) + g1(ℓ)∆t
zi,2(ℓ) + g2(ℓ)∆t
zi,3(ℓ) + g3(ℓ)∆t


(11)

Sensing: From the information gathered, we can
model the sensing function of the robots as the function:

hi(z) =

{
1 if ∃j ̸= i, s.t. zj ∈ FOVi

0 otherwise.
(12)

where the FOV is the conical area in front of the sensor
with a measured distance and opening angle.

The agents’ FOV was originally believed to be made
up by the vision-distance and vision-cone values (which
when combined gives a conical sensing region in front
of the agents). However, from the measurements con-
ducted, we now know that there are areas in the real
sensors that are more reliable than other areas, making it
more of a detection polygon rather than a cone. Despite
the rough qualities of the real sensor shown in blue in
Fig. 7, we program a simpler polygon into our simula-
tor as shown in red. This again ensures that our simu-
lated agents are simple but less capable than the physical
robots as our approach shown in Fig. 1(c) shows.

Computation: Simulator is set to run at the same fre-
quency ∆t as the real robots.

Communication: None.

To move on to Step 3, it was verified that (5) was
satisfied for all conditions considered in both simulation
and real world experiments.

(3) Exploration within simulation

Since our goal was to recreate milling, here we started
with using the control algorithm similar to ones that
were used in [20] and [23] to make their robots mill
(shown in Fig. 2),

ui,1(ℓ) = v, (13)

ui,2(ℓ) =

{
ω, if yi = 1,
−ω, otherwise.

(14)

where v is the desired forward speed and ω is the desired
turning rate programmed into the robots.

Admittedly, since we already knew exactly what we
were searching for we did not require too much gen-
uine ‘exploration’. We found that the milling behav-
ior was produced in our simulations using the classic
control algorithm mentioned prior, but only in certain
cases. The parameters that were changed were only
ones that we could control (e.g., desired speed, num-
ber of robots, desired turning-rate). The parameters
that weren’t changed were the vision-cone and vision-
distance of the IR sensor, this is because the sensor on
the robots were fixed and was used as a binary sensor
that was set to only output a detection when it had any
non-zero readings. The initial positions of the agents in
simulation also had a large effect on the outcome of the
system, if they were set too close to each other, the possi-
bility of collisions increased dramatically. On the other
hand, if they were randomly positioned in the environ-
ment, there was a high likelihood that some of the agents
would never see any other agent and permanently stay
moving within their own circular path. Therefore, we
initialized the agents to be randomly positioned within
a circle with radius slightly larger than their maximum
vision distance and to also be facing directly away from
the center of the environment; this minimized collisions
and also allowed the agents to interact with others at
least once.

Then we created multiple plots to visualize how these
changes affected the quality of the milling circle pro-
duced. The phase at each point was determined by the
researchers; and although it may be subjective, the plots
give a useful visualization of how the parameters affect
the system. An example of these phase diagrams can be
seen for N = 9 agents in Fig. 9(a). It should be noted
that we are essentially viewing a 2D slice of a much
higher dimensional space in which the ‘phase’ of the
entire swarm can entirely change based on a single pa-
rameter/condition being different. The phase diagram
contains four regions:

Dispersion represents a behavior when the agents
weren’t able to form any shape and instead spread
out towards the walls of the environment.

Stable Milling is the behavior that most closely repre-
sents a circle (i.e. the milling region).

8



(a) (b)

Figure 8: (a) Nine agents milling in NetLogo simulator
and (b) nine Flockbots successfully milling using the
same parameters.

Semi-stable Milling would continuously be colliding
with each other though the group would still be
rotating around a center.

Colliding Unstable is where the agents collide in a
manner that prevented them from continuing to
move.

From these plots we found that, in the simulator, the
set of conditions/parameters with the better chances
of producing a circle was with 9 agents positioned to
face away from the center of the environment and set to
move at a speed of 0.15 m/s and a turning rate of 0.75
radians per second, since it was the point in the center of
the circle phase region. While this initial process is not
guaranteed to work on the real-world experiment, it pro-
vides a much better set of initial answers to Problem 2.1
than is available today for a never-before-deployed robot
swarm.

(4) Run real robot experiment

We then attempted to run an experiment on the robots
using this recommendation that, according to our simu-
lations, has the highest chance of producing the found
behavior. Remarkably, the 9 real robots were able to
successfully mill at the given parameters the very first
time we ran an experiment involving all 9 robots. The
simulated agents can be seen in Fig. 8(a) and the real
robot experiment is shown in Fig. 8(b). The main nov-
elty in this approach is a method of creating minimally
viable phase diagrams to help make informed decisions
on how to deploy a real-world robot swarm.

We then ran multiple experiments after the success-
ful first attempt to see how well the simulated phase
diagrams predicted the behaviors of the real robot sys-
tem at different sets of parameters. We documented the
behavior of the real robot system and created the dia-
gram shown in Fig. 9 showing the results of nine real
experiments with the tested parameters overlaid over
the phase diagram obtained from simulations in Step 3.

As seen, the real robots were able to mill at a speed
of 0.15 m/s and a turning rate of 0.75 radians/s, just as
the simulated phase diagram predicted. Additionally,
the robots recreated this milling behavior at different

Figure 9: A 2D slice of a minimally viable phase diagram
found in simulation overlaid with markings showing
nine real experiments run out of which 5 cases has a
exact match in simulation and reality whereas in the
remaining 4 cases the real robots had an easier time
milling as desired in (6).

points where the simulated agents weren’t able to mill.
This shows that (6) seemed to hold true for our admit-
tedly few number of samples. However, the fact that we
were able to not only create the milling behavior success-
fully on the first full scale experiment and have relative
high reliability for slight changes in parameters was en-
abled due to the systematic RSRS process. Without this
simulation-in-the-loop process, it certainly would have
taken us a lot more tinkering to find successful milling
combinations.

It should be noted that before finding success using
the Flockbots shown in Fig. 5(c), we first applied our
methodology to Lighter-Than-Air (LTA) robots shown in
Fig. 5(a) and discovered after Step 2 that the real-world
disturbances were far too large such that our simulated
world with even harsher conditions didn’t exhibit any
desirable behaviors. We then applied the RSRS process
to SMARS robots shown in Fig. 5(b) and discovered that
the sensors used on them were so bad that when made
worse in simulation, the simulated agents were not capa-
ble of anything either. While discouraging, these initial
simple simulations and measurements were sufficient in
justifying why upgrading the physical robots was even
necessary. Without this process, we may have spent
several months tinkering with either of the prior sets of
robots without even realizing we never stood a chance
of replicating the desired milling behavior.

5 Conclusions

In this paper we challenge the immediate desire to
bridge the simulation-reality gap, particularly when con-
sidering multi-robot swarm systems. In this work we

9



have only focused on a single emergent behavior (circu-
lar milling) that is achievable by the robots using only
a binary sensor. However, the framework proposed is
applicable to any real homogeneous (but idiosyncratic)
multi-robot swarm for which collective/swarm behav-
ior might be a possibility. More specifically, we show
how even simple simulators can be used to help guide
multi-robot control designs for even more complicated
systems without necessarily shrinking or ‘bridging the
gap’ between simulation and real robots. The primary
contribution is a simulation-in-the-design-loop frame-
work for robot swarm systems that can be used as a tool
to not only help understand the connections between
local interactions and globally emergent behaviors but
also bring them to life in real multi-robot systems.
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