Suitability of the UML as an Architecture Description
Language with Applications to Testing
by
Aynur Abdurazik
ISE-TR-00-01

February, 2000
Information and Software Engineering
George Mason University
Fairfax, Virginia 22030

Unlimited Distribution. This report may be distributed without restriction. All partial or com-
plete copies of this report must contain a copy of this page.

Suitability of the UML as an Architecture Description Language
with Applications to Testing

Aynur Abdurazik
Department of Information and Software Engineering

George Mason University
Fairfax, VA 22303

March 3, 2000

Abstract

Increasingly, very high level designs of large software systems are being described by soft-
ware architectures. A software architecture expresses the overall structure of the system in an
abstract, structured way. The Unified Modeling Language (UML) is widely used to express mid-
and low-level designs of software, and recent proposals have been made to adapt the UML for
use as an architecture design language (ADL). This research is looking into problems associ-
ated with creating system-level software tests that are based on architecture descriptions. This
paper discusses issues with using the UML as an ADL, and general problems with then using
the architecture descriptions as a basis for generating tests.

1 Introduction

Architecture Description Languages (ADLs) are common notations for representing software ar-
chitectures. It has been claimed that ADLs lie at the conceptual intersection among requirements,
programming, and modeling languages, and yet they are distinct from all three [BCK98]. ADLs
are also said to enhance mutual communication among stake holders, and to support the analysis
of early design decisions.

Some tool support exists for ADL based software development [AAM99]. However, despite their
popularity among the research community, ADLs have yet to reach common practice. The reason
is said to be that ADLs are not well integrated with common development methods [RMRR97].

The Unified Modeling Language (UML) is a language for specifying, constructing, visualizing,
and documenting artifacts of software-intensive systems. UML, being a third-generation object-
oriented modeling language, does so by providing a collection of views to capture different aspects
of the systems to be developed. Some example views are Use cases to capture user requirements,
class diagrams to capture static structure of objects, collaboration and sequence diagrams to capture
dynamic interactions between objects and systems, and package and deployment views.

Use cases encode detailed system interactions of required system behavior, and are used in the
understanding and analysis phases of development. Class diagrams encode the structure of objects
that are proposed as a solution to provide required system behavior. Interaction diagrams model
possible dynamic interaction between objects and can include both timing and message synchro-
nization annotations. Package diagrams provide a way for designers to collect groups of objects
for organizational purposes. Subsystem diagrams show system decomposition into functional units

with clearly demarcated interfaces. Furthermore, UML is extensible through user defined stereo-
types to cater to special purpose modeling needs. Many CASE tool vendors have already committed
to supporting UML, and it has become a common notation for object-oriented design.

Bass et al. [BCK98] state that ADLs differ from modeling languages because the focus of
modeling languages are the behavior of whole system rather than of their parts, whereas the primary
mission of ADLs is to represent components and their connectivity. Consequently, Robbins et al.
[RMRR97] extended UML for use with more than one ADLs, one for C2-style architectures and
Wright. They did so by incorporating enough stereotypes in UML to encode the chosen ADL.
Consequently, looking for generic extensions that are capable of incorporating any ADL has not
been addressed. The objective of this proposal is to determine a well defined set of requirements
for a language to be an ADL [BCK98] and an extension of UML that would incorporate them. We
examine the software architectures and their description languages with this objective in mind.

1.1 Software Architecture

Software architectures have always existed, but explicitly stated to a lesser extent. They have
been made explicit by researchers and practitioners due to the difficulties in cost estimation and
process management, unique characteristics of programming in the large, and need for software
reuse. Solutions to the above problems were the origins of software architecture concepts.

An architecture provides an early handle for achieving a system’s quality attributes. Specific
quality goals for a system are manifested in architectural decisions [BCK98]. Different architec-
tures satisfy specific quality and behavioral requirements. Since an architecture is a key to quality,
it follows that analysis of an architecture can (and should) be performed to evaluate it with re-
spect to how well suited it is for its intended purpose. Analysis is only useful in the presence of
clearly articulated goals for the artifact being analyzed. Software quality cannot be introduced
late in a project, it must be inherent from the beginning, built in by design and requirements. An
architecture-based assessment provides only one dimension of a system’s quality characteristics and
is a necessary, but not sufficient, component for evaluating the overall quality of a system.

Software architecture has been defined in various ways. We give a brief summary of five pub-
lished definitions.

e Perry and Wolf [PW92]:
Software architecture consists of three components: elements, form, and rationale. Elements
are either processing, data, or connecting elements. Form is defined in terms of the properties
of, and the relationships among, the elements — that is, the constraints on the elements. The
rationale provides the underlying basis for the architecture in terms of the system constraints,
which most often are derived from the system requirements.

Some of the benefits that can be expected from software architecture as a major discipline are:
(1) architecture as the framework for satisfying requirements, (2) architecture as the technical
basis for design and as the managerial basis for cost estimation and process management, (3)
architecture as an effective basis for reuse, and (4) architecture as the basis for dependency
and consistency analysis.

e Shaw and Garlan:
“The architecture of a software system defines that system in terms of computational com-
ponents and interactions among those components” [SG96]. In addition to specifying the
structure and topology of the system, the architecture shows the correspondence between the
system requirements and elements of the constructed system, thereby providing some ratio-
nale for the design decisions. At the architectural level, relevant system-level issues typically

End-user Programmers
Functionality Software Management

Logical View Developmen

View

Process View}_+ Physical Vie

Integrators System Engineers
Performance Topology
Scalability Communications

Figure 1: The “4 4+ 1” View Model

include properties such as capacity, throughput, consistency, and component compatibility.
Architectural models clarify structural and semantic differences among components and in-
teractions.

Bass, Clements, and Kazman [BCK98|:

“The software architecture of a program or computing system is the structure or structures
of the system, which comprise software components, the externally visible properties of those
components, and the relationships among them.”

Kruchten [Kru95]:

Kruchten describes a software architecture by using a model composed of multiple views or
perspectives. Figure 1 shows the model which is made up of five main views. The logical view is
the object model of the design, the process view captures the concurrency and synchronization
aspects of the design, the physical view describes the mapping(s) of the software onto the
hardware and reflects its distributed aspect, and the development view describes the static
organization of the software in its development environment.

Kruchten used Perry & Wolf’s definition of software architecture independently on each view.
Each view has its elements (components, containers, and connectors), forms and patterns, and
rationale and constraints that connect the architecture to some of the requirements. Different
views can have different architectural styles, hence allowing the coexistence of multiple styles
in one system.

Definition from UML Developers [BRJ98]: Architecture is the set of significant decisions
about

— The organization of a software system
— Selection of the structural elements and the interfaces by which the system is composed

— Their behavior, as specified in the collaborations among those elements

— The composition of these structural and behavioral elements into progressively larger
subsystems

— The architectural style that guides this organization: the static and dynamic elements
and their interfaces, their collaborations, and their composition

Software architecture is not only concerned with structure and behavior, but also with us-
age, functionality, performance, resilience, reuse, comprehensibility, economic and technology
constraints and trade-offs, and aesthetic concerns.

Architectural style defines a set of general rules that describe or constrain the structure of architec-
tures and the way their components interact. Styles are a mechanism for categorizing architectures
and for defining their common characteristics. New architectures can be defined as instances of
specific styles. Garlan and Shaw [SG96] identified the following architectural styles: Pipes and Fil-
ters, Object-Oriented, Event-Based, Domain-Specific, Layered, Repositories, Rule-Based, Process
Control (Feedback), Distributed, Main program/subroutines, State-Transition based, and Hetero-
geneous.

1.2 Architecture Description Languages

Architecture description languages (ADLs) are tools for formally representing the architectures of
systems. We have a number of ADLs that vary widely in terms of the abstractions they support
and analysis capabilities they provide. This section surveys the characteristics of ADLs in terms
of the classes of systems they support, the inherent properties of the language themselves, and the
process and technology support they provide to represent, refine, analyze, and build systems from
an architecture. Then we discuss what constitutes an ADL.

Eleven existing ADLs are described:

1. Rapide: Rapide is an event-based, concurrent, object-oriented language specifically designed
for prototyping system architectures [LKAT95]. Rapide allows architectural designs to be
simulated, and has tools for analyzing the results of those simulations. The primary design
criteria for Rapide are (1) to provide architecture constraints that permit system architec-
tures to be expressed in an executable form for simulation before implementation decision are
made, (2) to adopt an ezecution model that captures distributed behavior and timing as pre-
cisely as possible, (3) to provide formal constraints and mappings to support constraint-based
definition of reference architectures and testing of systems for conformance to architecture
standards, and (4) to address some of the issues of scalability involved in modeling large
system architectures.

In Rapide, a system component consists of two separate parts: an interface defining those
features through which it interacts with other components, and a module that either encap-
sulates an executable prototype of the component, or hierarchically defines the component as
an architecture of other components.

Rapide consists of five sub-languages: (1) the type language describes the interfaces of com-
ponents, (2) the architecture language describes the flow of events between components, (3)
the specification language describes abstract constraints on the behavior of components, (4)
the ezecutable language specifies executable modules, and (5) the pattern language describes
patterns of events.

2. Darwin: Darwin is a language for describing software structures that has been around, in var-
ious syntactic guises, since 1991. Darwin encourages a component- or object-based approach
to program structuring in which the unit of structure (the component) hides its behavior be-
hind a well-defined interface. Programs are constructed by creating instances of component
types and binding their interfaces together. Darwin considers such compositions also to be
types and hence encourages hierarchical composition. The general form of a Darwin program

UniCon

. (CMU)
Rapide
(Stanford
MetaH
(Honeywell)
Aesop
Cc2
(CMU) Wright (ucl
(CMU)

Figure 2: ACME and Other ADLs

is therefore a tree in which the root and all intermediate nodes are composite components; the
leaves are primitive components encapsulating behavioral as opposed to structural aspects.

. Wright: Wright supports the specification and analysis of interactions between architectural
components [AG94]. The primary purpose of Wright is to analyze the interconnection behav-
ior. Wright uses a subset of CSP [Hoa95] to provide a formal basis for specifying the behavior
of components and connectors, as well as the protocols supported by their interface elements.
In Wright, components are computation elements with multiple ports. A port is a logical
point of interaction between component and its environment. A port defines the expectations
of a component. The computation of a component describes the relationship between ports.

. Aesop: Aesop [Gar95] supports the use of architectural styles.

. ACME: ACME is developed as a joint effort of the software architecture research community
as a common interchange format for architecture design tools. ACME provides a structural
framework for characterizing architectures, together with annotation facilities for additional
ADL-specific information. This scheme permits subsets of ADL tools to share architectural
information that is jointly understood, while tolerating the presence of information that falls
outside their common vocabulary. Figure 2 shows the ADLs that ACME [GMW97] can
translate into each other.

. UniCon: UniCon (language for UNIversal CONnector support) [Zel96] is an architecture
description language (ADL) that describes software architectures in general. UniCon is or-
ganized around two symmetrical constructs: components and connectors. Components rep-
resent loci of computation and data in a software system. They are used to organize the
computation and data into parts that have well-defined semantics and behaviors. Connectors
represent classes of interactions among the components. They are used to mediate component
interactions. Both components and connectors have a specification part and an implemen-
tation part. With proper set of primitive components, an architecture that is described in
UniCon may be executable. UniCon supports external analysis tools. UniCon has a high-level
compiler for architectural designs that support a mixture of heterogeneous component and
connector types.

7. MetaH: MetaH [BEJV93] is intended to support analysis, verification, and production of
real-time, fault-tolerant, secure, multi- processing, embedded software. MetaH allows no func-
tional specification beyond a simple naming of inputs, shared objects, and outputs. Instead,
MetaH captures connectivity information and behavioral information relevant to real-time
scheduling, fault-tolerance, security, and scalable multiprocessing. MetaH is intended to be
used in conjunction with other specialized tools, languages and library facilities that specify
component functionality.

8. C2: C2 or C2SADL [MT97, EM99, AAM99] is an architecture description language designed
for C2 style architectures. C2 supports the description of user interface systems using a
message-based style. A C2 style architecture consists of three parts: components, connectors
(buses), and their configuration. Connectors transmit messages between components. Each
component has two connection points, a “top” and a “bottom”. The top (bottom) of a
component can only be attached to the bottom (top) of one connector. Components maintain
state, perform operations, and exchange messages with other components via the top and
bottom interface points. Inter-component messages are either requests for a component to
perform an operation, or notifications that a given component has performed an operation or
changed state.

A C2 component consists of two main internal parts. An internal object stores state and
implements the operations that the component provides. A dialog specification maps from
messages received to operations on the internal object and from results of those operations
to outgoing messages. Each component may be attached to at most one connector at the top
and one at the bottom. A connector may be attached to any number of other components
and connectors. request messages may only be sent “upward” through the architecture, and
notification messages may only be sent “downward”.

C2SADL specifies architectures in three parts: component types, connector types, and con-
figuration (topology). C2 specifies a component type with an invariant and sets of services a
component provides and requires. A service consists of an interface and and operation. A sin-
gle operation may export multiple interfaces. Invariants and operations (with their pre- and
post- conditions) are specified as first-logic expressions. A component may be subtyped from
another component, using heterogeneous subtyping that preserves the supertype component’s
naming, interface, behavior, implementation, or a combination of them.

9. ROOM: The Real-Time Object Oriented Modeling (ROOM) language combines a variant
of component (actor) diagrams with another variant of state transition diagrams. It thereby
fulfills the main requirements for an ADL given by Shaw and Garlan [SG96], but it offers
no equivalent for UML’s object constraint language or its package diagrams. ROOM offers
two types of diagrams. ROOM actor diagrams describe the hierarchical decomposition of
a software system into its components as well as all possible connections (communication
channels) between these components. ROOM charts on the other hand are a variant of
hierarchical state transition diagrams derived from StateCharts [Har87]. Any ROOM chart
has an equivalent UML state transition diagram.

A ROOM actor diagram defines the internal structure as well the external interfaces of a
single component (class). The interfaces of different components, so-called ports, are bound
to each other via binary connectors. Therefore, ROOM uses a variant of the “component-
port-connector” model, allowing for the component architecture.

10. SADL: SADL is intended for the definition of software architecture hierarchies that are to

11.

be analyzed formally. The SADL language can be used to specify both the structure and
the semantics of an architecture. SADL support for explicit mappings between architectures,
generic architectures, architectural styles (including well-formedness constraints), and archi-
tecture refinement patterns that provide routine solutions to common design problems. SADL
is programming language independent, but can be tailored to model programs in most con-
ventional programming languages. The advantage of SADL over ADLs is that SADL provides
a formal basis for architectural refinement.

ControlH: ControlH is used to capture high-level specifications for real-time guidance, navi-
gation and control systems [EJ93]. ControlH allows the modeling and analysis of continuous,
time-varying signals. The predefined data types and operations, the syntax, and the seman-
tics of the language have been tailored for that specific domain. ControlH relies heavily on
tool support including Ada generator.

Bass et al. [BCK98] defines the following set of requirements for a language to be an ADL:

The ADL must be suitable for communicating an architecture to all interested parties. All of
the architecture’s structures must be available through the ADL, including a range of dynamic
and static structures. Components and connectors and their types must be identified in each
of the structures, and the level of granularity of the information must be customizable for the
renders of the architecture.

An ADL must support the tasks of architecture creation, refinement, and validation. It must
embody rules about what constitutes a complete or consistent architecture.

An ADL must provide the ability to represent (even if indirectly) most of the common archi-
tectural styles.

An ADL must have the ability to provide structures of the system that express architectural
information but at the same time suppress implementation or non-architectural information.

The ADL must provide a basis for further implementation. It must be possible to add
information to the ADL specification to enable the final system specification to be derived
from the ADL.

If the language can express implementation-level information, it must contain capabilities for
matching more than one implementation to the architecture-level structures of the system.
That is, it must support specification of families of implementations that all satisfy a common
architecture.

An ADL must support either an analytical capability, based on architecture-level information,
or a capability for quickly generating prototype implementations.

Problems with ADLs:

ADLs introduce specific architectural assumptions, which can conflict with ones embodied in
the existing middle-ware.

] 1

i Model
Behavioral
Elements Management
N 7
N /
N /
N 7
N /
N\ 7/
N\ Ve
AT V4

Foundation

Figure 3: UML Metamodel Top Level Packages

*‘ ﬁ
c . —_————— Extension
ore e —— #- Mechanisms
\ V4
\ /
\\ /
/
\ /
\ /
A_‘ y
Data Types

Figure 4: Foundation Packages

1.3 The Unified Modeling Language

The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and
documenting the artifacts of software systems, as well as for business modeling and other non-
software systems. The UML represents a collection of the best engineering practices that have
been found to be successful in the modeling of large and complex systems [Obj99].

The architecture of the UML is based on a four-layer meta-model structure: user objects, model,
metamodel, and meta-metamodel.

The UML metamodel is a logical model, it is described in a semi-formal manner using abstract
syntax, well-formedness rules, and semantics. The complexity of the UML metamodel is managed
by organizing it into logical packages. Figure 3 shows the top level packages of UML metamodel.
Figure 4 and 5 show the further decomposition of Foundation and Behavioral Elements packages.
Model Management package is omitted because of space consideration.

In UML, the complex systems are approached through a small set of nearly independent views
of a model. The UML defines the following graphical diagrams in terms of the views of a model:

Activity
Graphs
I
|
7 7 7 \
V
Collaborations Use Cases State Machines

N
N
N
N

7
e
s
e
s
7

I

|

|

N |

N |
A_‘ Y Y
Common
Behavior

Figure 5: Behavioral Elements Packages

e use case diagram
e class diagram
e behavior diagram

— statechart diagram
— activity diagram
— interaction diagrams:

*x sequence diagram

* collaboration diagram
e implementation diagrams:

— component diagram

— deployment diagram

These diagrams provide multiple perspectives of the system under analysis or development. The
underlying model integrates these perspectives so that a self-consistent system can be analyzed and
built. These diagrams, along with supporting documentation, are the primary artifacts that a
modeler sees [Obj99].

The following constructs of UML have possibility to be used in architecture description:

e Class: A class is a description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics [Obj99]. A class may use a set of interfaces to specify
collections of operations it provides to its environment.

e Classifier: A classifier is an element that describes behavioral and structural features; it
comes in several specific forms, including class, data type, interface, component, and others
that are defined in other metamodel packages.

e Package: Defines a collection of related model elements. All modeling work is done in a
package. Within a package we can reference elements (interfaces, specifications, architectures,

10

etc.) from another package if we import that package. In advanced usage, different aspects
of a model element may be defined in different packages. Packages are used to separate (a)
interfaces from implementations (b) different views of a subject, and (c) business process from
specifications of designs.

Interface: UML interface is a collection of operations that are used to specify services
provided by a class or a component. All the most important component-based operating
system facilities (such as COM+, CORBA, and Enterprise Java Beans) use interfaces as the
glue that binds components together. Interfaces span logical and physical boundaries. The
same interface you find used or realized by a component will be found used or realized by the
classes that the component implements.

Component: A component is a physical and replaceable part of a system that conforms to
and provides the realization of a set of interfaces. Components are used to model the physical
things that may reside on a node, such as executables, libraries, tables, files, and documents.
A component typically represents the physical packaging of otherwise logical elements, such
as classes, interfaces, and collaborations.

Subsystem: A subsystem represents a behavioral unit in the physical system, and hence in
the model. It is defined to be both a classifier and a package. A subsystem offers interfaces
and has operations, and its contents may be partitioned into specification and realization
elements. The specification of the subsystem consists of operations on the subsystem, together
with specification elements such as use cases, state machines, etc. subsystem may or may not
be instantiable.

Model: A model is an abstraction of a physical system, with a certain purpose. It describes
the physical system from a specific viewpoint and at a certain level of abstraction. A model
contains all the model elements needed to represent a physical system completely by the
criteria of this particular model. The model elements on a model are organized into a pack-
age/subsystem hierarchy, where the top-most package/subsystem represents the boundary of
the physical system.

Different models of the same physical system show different aspects of the system, from differ-
ent viewpoints and/or levels of abstraction. The predefined stereotype <<systemModel>>
can be applied to a model containing the entire set of models for the complete physical system.

Relationships among elements in different models have no semantic impact on the contents
of the models because of the self-containment of models. However, they are useful for tracing
refinements and for keeping track of requirements between models.

UML can specify heterogeneous architecture. Subsystems can be used as components. Sub-

systems reflect different abstraction views. From the outside, a subsystem appears as a whole,
collaborating with other parts of the system to fulfill its responsibilities. Its collaborators treat the
subsystem as a black box. Subsystems are another encapsulation mechanism. The services pro-
vided by a subsystem are represented by interfaces and the corresponding operations. Other model
elements (i.e., a state machine with action specification) further specify the behavior. These other
model elements are called specification elements in the UML. The operations, interfaces, and the
specification elements of the subsystem specify the system without reference to its parts [MWB99].

From the inside, a subsystem reveals itself to have a complex structure. It is a system of objects

collaborating with each other to fulfill distinct responsibilities that contribute to the purpose of the

11

oCL

<<evaluateTo>>

Expressions [T T T T T T T a

<<areOfType>>

[
\
\
|
] [

<<instancesOf>>

Figure 6: Package Structure of the OCL Metamodel

subsystem: the fulfillment of its responsibilities. These model elements specify the subsystem in
terms of its parts; they are what UML calls the realization elements of the subsystem.

Complexity will vary by application domain and process phase. One of the key motivation in
the minds of the UML developers was to create a set of semantics and notation that adequately
addresses all scales of architectural complexity, across all domain [Obj99]. UML supports higher
level development concepts such as components, collaborations, frameworks, and patterns. In
object modeling, a component of a system is a subsystem or an object. A connector that consists
of a hierarchy of parts is also a subsystem [MWB99].

1.4 Object Constraint Language

The UML uses mostly graphical notation to describe structural, dynamic, and functional aspects
of a system. However, the graphical notation is inherently limited when specifying complex con-
straints. OCL is the standard for specifying invariants, preconditions, postconditions, and other
kinds of constraints within UML [WK99]. The application of OCL is not limited to user models,
it is also used by the UML standard itself for specifying well-formedness rules in context of UML
semantics definition [Obj99]. OCL is a formal language but does not require strong mathematical
background. Figure 6 shows the package structure of OCL metamodel. For details of OCL and
further decomposition of packages see the papers by Warmer and Kleppe [WK99] and by Richters
and Gogolla [RG99].

2 Related Work

This section gives a summary of work that related to the issues of using UML in architecture
description.
2.1 Representing Architectures in the UML

Describing software architectures with UML works well for communicating the static structure of
the architecture: the elements of the architecture, their relations, and the variability of a structure
[HNS99]. These static properties are much more readily described with it than the dynamic prop-

12

erties. A particular sequence of activities can be easily described, but not general sequences. In
addition, the ability to show peer-to-peer communication is missing from UML.

They separated the software architecture into four views: conceptual, module, execution, and
code. The different views address different engineering concerns, and separation of such concerns
helps the architect make sound decisions about design trade-offs. Fach of the four views has
particular elements that need to be described.

The conceptual view describes the architecture in terms of domain elements. The main concern
of conceptual architecture is the functional features of the system. In conceptual view, UML Class
Diagrams are used to show the static configuration, Real-Time Object-Oriented Modeling (ROOM)
[SGW94] protocol declarations and UML Sequence Diagrams or State Diagrams for showing the
protocols that ports adhere to, and UML Sequence diagrams for showing a particular sequence of
interactions among a group of components.

The module view describes the decomposition of the software and its organization into layers.
An important consideration here is limiting the impact of a change in external software or hardware.
In module view, tables are used for describing the mapping between the conceptual and module
views, UML Package Diagrams for showing subsystem decomposition dependencies, UML Class
Diagrams for showing use-dependencies between modules, and UML Package Diagrams for showing
use-dependencies among layers and the assignment of modules to layers.

The execution view is the run time view of the system: it is the mapping of modules to run
time images, defining the communication among them, and assigning them to physical resources.
Resource usage and performance are the key concerns in the execution view. In the execution view,
the UML Class Diagrams are used to show the static configuration, UML Sequence Diagrams for
showing the dynamic behavior of a configuration, or the transition between configurations, and
UML State Diagrams or Sequence Diagrams for showing the protocol of a communication path.

The code view captures how modules and interfaces in the module view are mapped to source
files, and run-time images in the execution view are mapped to executable files. In code view,
tables are used to describe the mapping between elements in the module and execution views and
elements in the code view, and UML component diagrams for showing the dependencies among
source, intermediate, and executable files.

Hofmeister et al. [HNS99] concludes that the UML is deficient in describing the following ele-
ments:

e correspondences: A graphical notation is too cumbersome for straightforward mappings such
as the correspondence between elements in different views. This information is more efficiently
described in a table.

e protocols: The ability to show peer-to-peer communication is missing from UML. The com-
munication part was described by adopting ROOM [SGW94] notation.

e ports on components: used nesting to show the relationships between ports and components,
but this is visually somewhat misleading. A notation similar to the “lollipop” notation (lines
with circles on one end) for the interfaces of a module is preferable.

e dynamic aspects of the structure: UML class diagrams describe the static structure of a
system. Although UML sequence diagrams and state charts describe the dynamic behavior,
but they don’t support the dynamic configuration of a system.

e a general sequence of activities: UML sequence diagrams describe specific sequences of activ-
ities. Systems generally have defined modes, and the configuration of some of the modes may
change over the time. A general sequence of activities is not supported by UML diagrams.

13

On the contrary, UML worked well for describing:
e the static structure of the architecture
e variability

e a particular sequence of activities

2.2 Integrating an Architecture Description with UML

Software architecture descriptions are high-level models of software systems. Some researchers
have proposed special-purpose architectural notations that have a great deal of expressive power
but are not well integrated with common development methods. Others have used mainstream
development methods that are accessible to developers, but lack semantics needed for extensive
analysis. Medvidovic et al. [RMRR97, MR99] described an approach to combining the advantages
of these two ways of modeling architectures. They presented two examples of extending UML, an
emerging standard design notation, for use with two architecture description languages, C2 and
Wright. Their approach suggests a practical strategy for bringing architectural modeling into wider
use, namely by incorporating substantial elements of architectural models into a standard design
method.

2.3 UML and ROOM as an ADL

Rumpe et al. [RSRS99] explained some deficiencies of UML as an ADL, and made a proposal to
eliminate these deficiencies by integrating the component-based OO modeling language ROOM
with UML. UML combines a number of visual modeling sublanguages:

e Class diagrams and package diagrams offer all concepts of MILs (information hiding, import
relationships, inheritance, genericity, etc.).

e The object constraint language OCL [WK99] allows for the definition of invariants as well as
for pre- and postconditions and offers thereby the necessary means for “designing by contract”.

e Various types of diagrams (state transition diagrams, collaboration diagrams etc.) may be
used to model the dynamic behavior of networks of related objects.

e Finally, component and deployment diagrams may be used to define a mapping of logical
software objects onto available hardware components.

One of UML’s drawbacks is the UML component diagrams are not for representing logical de-
composition of a software system into reusable and combinable subsystems. Also, UML does not
provide the concept of connectors as first-class objects, which would be a hybrid of an associa-
tion (association class) and a dependency between a class and an interface of another class. The
authors suggested an extension of UML class diagrams with ROOM actor diagrams to allow the
component-based description of software architectures.

2.4 Use recognized ADLs first, then map the architecture into UML design
There are three possible strategies in using UML in architecture design [AAM99]:

14

1. Use standard UML constructs to simulate modeling architectural concerns as would be done
in an ADL [MR99]. However, in this approach, UML modeling capabilities do not fully satisfy
architectural description requirements, such as explicit connector abstractions, compositional
style etc.

2. Use UML’s built in extension mechanisms (constraints, stereotypes and tagged values) [HNS99].
This approach was succesful in describing the elements of an architecture, their relations, and
the variability of a structure, but failed in describing a general sequence of activities.

3. Augment the UML meta-model to directly support architectural concerns. Although this
is a potentially effective approach, it would result in a notation that is incompatible with
standard UML.

Egyed [EM99] developed a view integration framework in integrating C2 into UML. Abi-Antoun
[AAM99] developed a semi-automated approach developed to assist in refining a high-level archi-
tecture specified in C2 into a design described with UML.

3 Architecture-based Testing

Testing is related to software quality. We generate test cases from programs and specifications.
Specification-based testing has advantages over program-based testing in terms of providing test
data early in development cycle. Formal requirement specifications have been used to generate test
cases. The existing specification-based testing methods have limitations. For example, Offutt’s
method [OXL99, OL99] generates tests only from state-based specifications. Ammann and Black’s
specification-based mutation testing technique [AB99a, AB99b, ABM98| also relies on the type
of specification — the specification has to be translated into a language that a model checker can
recognize. However, in practice not many specifications are written using languages that can be
model checked or languages that are state-based.

Software architecture descriptions are becoming an essential part of software development
[BCK98, SG96]. Many important decisions about a software system are made at the architec-
ture level, e.g., organization of a system as a composition of components; global control structures;
the protocols for communication, synchronization, and data access; the assignment of function-
ality to design elements; the composition of design elements; physical distribution; scaling and
performance; dimensions of evolution; and selection among design alternatives. Verification and
validation of these decisions are essential in developing a software that is cost-effective, reliable,
and maintainable.

Formalization of architecture description is a major concern among researchers and practitioners
[BRJ98, BCK98, SG96]. Architecture descriptions that are written with architecture description
languages allow us to take advantage of its formalism in generating test cases.

Jin and Offutt [Jin99] have defined six general properties to be tested at software architecture
level. In the list of properties, a conflict occurs when rules, constraints or semantics cannot both
be satisfied at the same time. In general, deadlock implies that a process does not participate in
any events, but has not yet terminated successfully. A process is deadlock free if it can never go
into a deadlock state.

1. Component Consistency Requirements
Semantics, constraints and interfaces can be associated with components. They should be
consistent with respect to each other and this consistency needs to be considered at the
architecture level. Interfaces have types as well as data and control constraints.

15

e Component constraints and semantics should have no conflicts.
e Component constraints and semantics should be deadlock free.

e Component constraints and semantics should have no conflicts with the component in-
terfaces constraints.

2. Connector Consistency Requirements
A connector also contains interfaces, semantics, and constraints that need to be consistent.
Interfaces have types as well as data and control constraints.

e Connector constraints and semantics should have no conflicts.
e Connector constraints and semantics should be deadlock free.

e Connector constraints and semantics should have no conflicts with the associated con-
nector interfaces constraints.

3. Component-Connector Compatibility Requirements
Component interfaces are associated with connector interfaces to enable interactions. Infor-
mally, compatibility means that a component interface behaves in a manner that is consistent
with assumptions made by the connector.

e Component interfaces should be compatible with the associated connector interfaces.

e For some compatibility requirements, it must be determined whether the component/connector
relationship is deadlock free.

4. Configuration Requirements

The configuration of a software architecture should be tested against several test requirements.
An initiation state is the “start state”, the state that the system is initially in. There are
explicit data flows through the architecture of the system; a data element is given a value
(defined) in its source component and the value is used in a target component. There are also
explicit control flows; each architecture element has one or more designated next element.
This transfer of execution could be between states in a component, through connectors, or
across components.

e Initiation Event: There should be at least one event declared to initiate the overall
configuration.

e Data Flow Reachability: A data element should be able to reach its designated target
component from its source component through the connectors. The data element should
reach the target component without having its value modified.

e Control Flow Reachability: Every architecture should be able to reach its designated
next element.

e Connectivity: A component or connector interfaces with no next element or previous
element is said to be “dangling”. Dangling components and connector interfaces could
indicate potential problems.

e Interactions that in isolation are deadlock free can interact in such a way as to cause a
deadlock situation. It should be the case that the system is deadlock free.

5. Style Restriction Requirement

16

CSP Concept CSP Notation UML State Machine

Prefixing P=a = Q

Alternative
(deterministic P=b = Q Oe=r
choice)
c
P
€
P

Desicion
(non-deterministic | P= d = Q e =r
choice)

Parellel

Composition P=Q ‘ ‘ RO LT
—(r)
P
Success Event P= N/ ,\/
o=@

Figure 7: UML State Machine templates for Wright’s CSP constructs

e The architecture style being used imposes some constraints on the software configuration.
The system being used must satisfy those constraints.

In this section we attempt to suggest a way to generate test case from architecture descriptions.
We generate test case from Wright specifications by translating them into UML statecharts, and
then do a coverage analysis in terms of Jin’s architecture level test requirements. Figure 7 shows
the UML State Machine templates for Wright’s CSP constructs [RMRRI7].

We use the Wright specification example in Figure 8 from [AG94] to illustrate the translation
process of Wright specification into UML statecharts. This example is for a system that transforms
a stream of characters by capitalizing alternate characters while reducing the others to lowercase.

Wright’s scoping of events is modeled in UML by prefixing every event’s name with the name
of the role to which the event belongs. The UML state machine of Pipe is shown in Figure 9.

Generating test cases from traditional flat state machines is straightforward and has well defined
criteria and test data generation method [OA99]. In order to use the existing criteria and techniques,
we may want to translate the hierarchical state chart into a flat state machine. However, this
translation may cause a state explosion. Instead, we graphically distinguish the transitions only.
A transition in a UML state machine consists of the following five elements: (1) source — the
originating state vertex, (2) target — the target state vertex, (3) trigger — the event that triggers
the transition, (4) guard — a boolean predicate that must be true for the transition to be fired,
and (5) effect — an optional action to be performed when the transition fires. The UML standard
allows trigger-less transitions (null state transitions) in the statechart. Such transitions are called
completion transitions, and have an implicit trigger, the completion event, which is generated
when all transition and entry actions and activities in the currently active state are completed.
Completion events have priorities over all other events.

We use a set of transitions T, to represent the statechart [LP99]. Figure 10 shows part of the
transitions of statechart in Figure 9. Given this set of transitions, we can use Offutt’s four level
state-based test case generation criteria to do coverage analysis and generate actual test cases.

17

System Capitalize
Component Split =
port In = read?x — In O read-eof — close — /
port Left, Right = writelx — Out M close — /
comp spec =
let Close = In.close — Left.close — Right.close — ./
in Close O
In.read?x — Left.write!x — (Close O In.read?x — Right.write!x — computation)
Component Upper
port In [input protocol]
port Out [output protocol]
comp spec [Upper specification]

Connector Pipe =
role Writer = writelx — Writer M close — ,/
role Reader =
let ExitOnly = close — /
in let DoRead = (read?x — Reader O read-eof — ExitOnly)
in DoRead / ExitOnly
glue = let ReadOnly = Reader.read!y — ReadOnly O Reader.read-eof — Reader.close — ./
O Reader.close — 4/
in let WriteOnly = Writer.write?x — WriteOnly O Writer.close — /
in Writer.write?x — glue
O Reader.read!y — glue
O Writer.close — ReadOnly
O Reader.close — WriteOnly
spec YV Reader.read;ly o 3 Writer.write;?7x ¢ i=j AN z =1y
A Reader.read-eof => (Writer.close A #Reader.read = #lWriter.urite)
Instances
split: Split; upper: Upper; lower: Lower; merge: Merge;
pl.p2,p3,p4: Pipe
Attachments
split.Left as pl.Writer;
upper.In as pl.Reader;
split.Right as p2.Writer;
lower.In as p2.Reader;

end Capitalize.

Figure 8: A Wright Specification Example

18

Pipe

e/ W_write W

riter

s

= r\/ fs

75[5) =, =@
£/ R_close

e/ R_read

DoRead

| R_read-eof

ExitOnly

R close

glue

ReadOnly

R_read-eof R_close

R close

WriteOnly

R_close W_close

Figure 9: UML State Machine Model of the Pipe Connector

19

R_read

R_close

tl : Pipe (glue (1)) - Pipe (glue)
t2 . Pipe (glue (1)) W_erte; Pipe (glue)
. W_close .

t3 . Pipe (glue (1)) __ = - Pipe(glue (ReadOnly))
t4 . Pipe (glue (1)) R_close; Pipe (glue (WriteOnly))
5 Pipe (glue (Readonly(1)) =29 _ pipe (glue ReadOnly))

t6 : Pipe (glue (ReadOnly(1))) R_read—eo}f Pipe (glue (ReadOnly(2)))
t7 . Pipe (glue (ReadOnly(1))) - - Pipe (glue (ReadOnly(3)))

(

~ e~ o~ o~ o~ o~ o~ o~ o~ o~ e~ o~

(
(
(
(
(
(
R_close (
(
(
(
(
(

t8 : Pipe (glue (ReadOnly(2))) — Pipe (glue (ReadOnly(3)))
t9 : Pipe (glue (ReadOnly(3)) ' - Pipe (glue (ReadOnly (fs)))
t10: Pipe (glue (WriteOnly(1))) w wrlte; Pipe (glue (WriteOnly))

{1 Pipe (glue (WiiteOnly(1)) _ "~5°%%_ pipe (glue (WriteOnly(2))
t12: Pipe (glue (WriteOnly(2))) - Pipe (glue (WriteOnly (fs)))

Figure 10: Transitions for the Pipe State Machine

The criteria are transition coverage, full predicate coverage, transition-pair coverage, and complete
sequence coverage. The details of the this method is given elsewhere [OXL99, OL99].

Figure 11 shows the test requirements at architecture level. Identifying which criterion satisfies
which requirements needs more work. Remember that UML statecharts only describe the behavior
of individual components or connectors. From statecharts we may be able to generate test cases
to test component and connectors independently. However, other important issues of architecture
level testing, e.g. the interaction or communication between components, compatibility of the
data exchanged between components can not be tested. To test the conformance of components
and connectors and the configuration of whole architecture, we need to specify an architecture
configuration and component-connector connectivity explicitly and precisely in UML and extend
the existing methods.

4 Future Work

The following issues have to be resolved in order to generate test cases from architecture based
specifications in UML:

e the possible mapping between architecture level test requirements and state-based test gen-
eration criteria

e how to represent architecture configuration in UML
e how to deal with null transitions in UML state machines

e the possibility of dealing with interface compatibility and deadlock detection in UML

20

Test Requirements Criterion

Semantics and constraints have no conflict

Component Deadlock Free

Semantics/Constraints have no conflict with intefface

Semantics and constraints have no conflict

nnector
Connecto Deadlock Free

Semantics/Constraints have no conflict with intefface

Compatibility

Component - Connector Connectivity

Type Usage

' . Data Fl
Configuration ata Flow

Control Flow

Style Rules

Figure 11: Test Requirements Coverage

5 Conclusions

This paper gave an overview of existing ADLs, and surveyed the suitability of UML as an ADL with
applications to testing. The extensibility of UML provides convenience in modeling to a degree
that everything can be modeled in UML. However, tool support would be difficult.

We also made an attempt to generate test cases from Wright specification through existing test-
ing criteria and techniques. The existing testing techniques may not satisfy the testing requirements
at the architecture level.

6 Acknowledgements

This paper was originally written for a PhD seminar in Fall 1999, Software Architectures. Assistance
from professors Liz White, Jeff Offutt, and Duminda Wijesekera is greatly appreciated.

References

[AAM99] Marwan Abi-Antoun and Nenad Medvidovic. Enabling the Refinement of a Software
Architecture into a Design. In Proceedings of the Second IEEE International Conference
on the Unified Modeling Language (UMLY99), page 17, Fort Collins, CO, October 1999.
IEEE Computer Society Press.

[AB99a] Paul Ammann and Paul E. Black. Abstracting formal specifications to generate software
tests via model checking. In Proceedings of the 18th Digital Avionics Systems Conference
(DASC99), volume 2, pages 10.A.6.1-10, St. Louis, Missouri, October 1999. IEEE.

21

[AB99b]

[ABMOYS]

[AGY4]

[BCKOS]

[BEJV93)]

[BRJ9S]

[EJ93]

[EM99)

[Gar95]

[GMW97]

[Har87]

[HNS99]

[Hoa95]

[Jin99]

[Kru95]

Paul E. Ammann and Paul E. Black. A specification-based coverage metric to evaluate
test sets. In Proceedings HASE99, 1999.

Paul E. Ammann, Paul E. Black, and William Majurski. Using model checking to
generate tests from specifications. In Proceedings of the Second IEEE International
Conference on Formal Engineering Methods (ICFEM’98), pages 46-54. IEEE Computer
Society, December 1998.

Robert Allen and David Garlan. Beyond Definition/Use: Architectural Interconnection.
In Proceedings of ACM Workshop on Interface Definition Languages, pages 35-45,
Portland, Oregon, January 1994.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison
Wesley, 1998.

Pam Binns, Matt Englehart, Mike Jackson, and Steve Vestal. Domain-Specific Software
Architectures for Guidance, Navigation, and Control. Technical report, Honeywell Tech-
nology Center, 1993. Available at http://www-ast.tds-gn.lmco.com/arch/arch-ref.html.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1998. ISBN 0-201-57168-4.

Matt Englehart and Mike Jackson. ControlH: A Specification Language and Code
Generator for Real-Time N&C Applications. Technical report, Honeywell Technology
Center, 1993. Available at http://www-ast.tds-gn.lmco.com/arch/arch-ref.html.

Alexander Egyed and Nenad Medvidovic. Extending Architectural Representation in
UML with View Integration. In Proceedings of the Second IEEE International Confer-
ence on the Unified Modeling Language (UML99), page 2, Fort Collins, CO, October
1999. IEEE Computer Society Press.

David Garlan. An Introduction to the Aesop System. Available at
http://www.cs.cmu.edu/afs/cs/project /able/www/aesop/aesop_home.html, July 1995.

David Garlan, Robert T. Monroe, and David Wile. Acme: An Architecture Descrip-
tion Interchange Language. In Proceedings of CASCON’97, pages 169-183, Toronto,
Ontario, November 1997.

David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming, (8):231-274, 1987.

C. Hofmeister, R. L. Nord, and D. Soni. Describing Software Architecture with UML.
In Proceedings of the First Working IFIP Conference on Software Architecture, pages
145-160, San Antonio, TX, February 1999. IEEE Computer Society Press.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1995.

Zhenyi Jin. Software-Architecture Based Testing. PhD Dissertation Proposal, July
1999.

Philippe Kruchten. Architectural Blueprints - The “4 + 17 View Model of Software
Architecture. IEEFE Software, 12(6):42-50, November 1995.

22

[LKA*95]

[LP99)

[MR99]

[MT97]

[MWBYY]

[0A99]

[Obj99]

[OL99]

[OXL99)

[PW92]

[RGY9]

[RMRR97]

David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and
Walter Mann. Specification and Analysis of System Architecture Using Rapide. IEEFE
Transactions on Software Engineering, 21(4):336-355, April 1995.

Johan Lilius and Ivan Porres Paltor. Formalising UML State Machines for Model
Checking. In Proceedings of the Second IEEE International Conference on the Unified
Modeling Language (UML99), pages 430445, Fort Collins, CO, October 1999. IEEE
Computer Society Press.

Nenad Medvidovic and David S. Rosenblum. Assessing the Suitability of a Standard
Design Method for Modeling Software Architectures. In Proceedings of the First IFIP
Working Conference on Software Architecture, San Antonio, TX, February 1999. IEEE
Computer Society Press.

Nenad Medvidovic and Richard N. Taylor. A Framework for Classifying and Compar-
ing Architecture Description Languages. Technical Report ICS-TR-97-02, University
of California, Irvine, Department of Information and Computer Science, Irvine, CA,
February 1997.

Joaquin Miller and Rebecca Wirfs-Brock. How Can a Subsystem Be Both a Package
and a Classifier? In Proceedings of the Second IEEE International Conference on the
Unified Modeling Language (UML99), pages 584-597, Fort Collins, CO, October 1999.
[EEE Computer Society Press.

Jeff Offutt and Aynur Abdurazik. Generating tests from UML specifications. In Pro-
ceedings of the Second IEEE International Conference on the Unified Modeling Lan-
guage (UMLY9), pages 416-429, Fort Collins, CO, October 1999. IEEE Computer So-
ciety Press.

Object Management Group. OMG UML Specification Version 1.3, June 1999. Available
at http://www.omg.org/uml/.

Jeff Offutt and Shaoying Liu. Generating test data from SOFL specifications. The
Journal of Systems and Software, 49(1):49-62, December 1999.

Jeff Offutt, Yiwei Xiong, and Shaoying Liu. Criteria for generating specification-based
tests. In Proceedings of the Fifth IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS ’99), pages 119-131, Las Vegas, NV, October
1999. IEEE Computer Society Press.

Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software
Architecture. In ACM SIGSOFT Software Engineering Notes, volume 17, pages 40-52,
October 1992.

Mark Richters and Martin Gogolla. A Metamodel for OCL. In Proceedings of the
Second IEEE International Conference on the Unified Modeling Language (UML99),
pages 156-171, Fort Collins, CO, October 1999. IEEE Computer Society Press.

Jason E. Robbins, Nenad Medvidovic, David F. Redmiles, and David S. Rosenblum.
Integrating Architecture Description Languages with a Standard Design Method. Tech-
nical Report ICS-TR-97-35, University of California, Irvine, Department of Information
and Computer Science, August 1997.

23

[RSRS99] B. Rumpe, M. Schoenmakers, A. Radermacher, and A. Schurr. UML + ROOM as a
Standard ADL? In Proceedings of the Fifth IEEE International Conference on Engi-
neering of Complex Computer Systems, page 43, Las Vegas, Nevada, October 1999.
[EEE Computer Society Press.

[SGI6] Mary Shaw and David Garlan. Software Architecture - Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[SGW94] B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modeling. John
Wiley and Sons, New York, 1994.

[WK99] Jos Warmer and Anneke Kleppe. The Object Constraint Language. Addison-Wesley,
1999. ISBN 0-201-37940-6.

[Zel96] Gregory Zelesnik. The UniCon Language Reference Manual, May 1996. Available at
http://www.cs.cmu.edu/ UniCon/reference-manual/Reference_ZManual_1.html.

24

