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EXECUTIVE SUMMARY

This report presents results for the Rockwell Collins Inc. sponsored project on generating test
data from requirements/speci�cations, which started January 1, 1999. The purpose of this project
is to improve our ability to test software that needs to be highly reliable by developing formal
techniques for generating test cases from formal speci�cational descriptions of the software. Formal
speci�cations represent a signi�cant opportunity for testing because they precisely describe what
functions the software is supposed to provide in a form that can be easily manipulated by automated
means.

This Phase III, 1999 report presents results from an empirical evaluation of the full predicate
speci�cation-based testing criterion developed during the �rst two phases of this project, and a
proof-of-concept test data generation tool. The evaluation used a comparative study on a large
industrial system, a research version of the Flight Guidance Mode Logic System (FGS) provided
by Rockwell Collins. Full predicate tests were generated for FGS, and compared against the T-Vec
generation scheme. T-Vec tests for FGS were also provided by Rockwell Collins. While creating and
running the tests, one problem was found in the SCR speci�cations for FGS, and one problem was
found in the already well tested implementation of FGS. Both T-Vec and the full predicate tests
found almost the same number of faults, but T-Vec required more than �ve times as many tests,
thus the full predicate tests were more e�cient. The proof-of-concept test data generator creates
full predicate and transition-pair tests from an SCR speci�cation. Currently, the tool requires the
SCR speci�cation to be a single mode transition table, all variables must be boolean, and the
transition predicates must be single-variable expressions.

Technical Report ISE-TR-00-02, Department of Information and Software Engineering, George
Mason University, Fairfax VA, May, 2000.



1 INTRODUCTION

Software system-level tests have traditionally been based on informal, ad-hoc analyses of the sys-
tem requirements. This can lead to inconsistent results, problems in understanding the goals and
results of testing, and an overall lack of e�ectiveness in testing. This research project is attempting
to establish formal criteria and processes for generating system-level tests from functional require-
ments/speci�cations. The purpose is to improve our ability to test software that needs to be highly
reliable.

Thus far, this work has resulted in a general model for developing test inputs from state-based
speci�cations. This model includes several related criteria for generating test data from formal
speci�cations. These criteria provide a formal process, a method for measuring tests, and a basis
for full automation of test data generation.

The principal results in this report are from an empirical comparison of two speci�cation-based
test strategies. The full-predicate criteria from previous Phase I (during 1997) [O�98, OXL99]
and Phase II (during 1998) [O�99] are compared with T-Vec generated tests [BB96, Bla98]. Also
presented is a proof-of-concept automated test data generation tool. This tool implements the
criteria and some of the algorithms that were developed in previous years. The report begins by
summarizing the results from Phases I and II, then presents the current year goals.
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2 SUMMARY OF PHASES I AND II

Phase I of this project was carried out during Summer 1997, and established the long term goal
of improving our ability to test software that needs to be highly reliable by developing formal
techniques for generating test cases from formal speci�cational descriptions of the software [O�98].
This research addressed the problem of developing formalizable, measurable criteria for generating
test cases from speci�cations.

During Phase I, a general model for developing test inputs from state-based speci�cations
was developed. This model includes a derivation process for obtaining the test cases, and the
report included an example for a small system, and test cases from speci�cations of an industrial
system. The test data generation model includes techniques for generating tests at several levels of
abstraction for speci�cations, including the complete transition sequence level, the transition-pair
level, the transition level, and the full predicate level. These techniques are novel in that they
provide coverage criteria that are based on the speci�cations. It is thought that these are the
�rst formal coverage criteria for functional speci�cations. The tests are made up of several parts,
including test pre�xes that contain inputs necessary to put the software into the appropriate state
for the test values. A test generation process was also developed, which includes several steps for
transforming speci�cations to tests.

Results from applying the model and process to a small example were presented in the Phase
I �nal report. This case study was evaluated using Atac to measure decision coverage, and the
technique was found to achieve a high level of coverage. This result indicates that this technique
can bene�t software developers who construct formal speci�cations during development.

As an additional validation, tests were generated for speci�cations of an industrial software
system supplied by Rockwell-Collins, a research version of the Flight Guidance Mode Logic System.
Construction of these tests resulted in several modi�cations to this technique, and found at least
one problem with the speci�cation.

Phase II of this project was carried out during Spring and Summer 1998. It resulted in algo-
rithms for test case development, and a small empirical evaluation of the test criteria [O�99].

One signi�cant problem in speci�cation-based test data generation is that of reaching the proper
program state necessary to execute a particular test case. Given a test case that must start in a
particular state S, the test case pre�x is a sequence of inputs that will put the software into state
S. This problem was addressed in two ways. First is to combine various test cases to be run in
test sequences that are ordered in such a way that each test case leaves the software in the state
necessary to run the subsequent test case. An algorithm was developed that attempts to �nd test
case sequences that are optimal in the sense that the fewest possible number of test cases are used.
Second, to handle situations where it is desired to run each test case independently, an algorithm
for directly deriving test sequences was created.

The �nal report for Phase II also presented procedures for removing redundant test case values,
and developed the idea of \sequence-pair" testing into a more general idea of \interaction-pair"
testing. A small case study was also carried out. This case study applied the test criteria of
transition coverage and full predicate coverage to the well known cruise control example. The
results were that the speci�cation-based criteria covered most of the blocks and decisions in the
program source code, and found a high percentage of faults that were inserted into the source code.

2.1 Summary of Phase III Goals

The current year research carries the previous results forward in two directions. The �rst results
presented are from a formal empirical evaluation of the speci�cation-based testing technique
developed during the �rst two phases of this project. This evaluation was done by applying the
testing technique to a research version of the Flight Guidance Mode Logic System (FGS) example
supplied by Rockwell Collins. Rockwell Collins supplied an SCR speci�cation of FGS that was
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based on Miller and Hoech's CoRE speci�cations [MH97], and a Java implementation. Two sets of
data are presented. The �rst is based on the speci�cation-based testing criteria developed by this
project and the other is based on tests provided by Rockwell Collins. These tests were generated
by T-Vec, a system level, automatic test data generator [BB96, Bla98].

The two sets of data were compared on the basis of fault �nding e�ectiveness. To measure
e�ectiveness, a number of faults were injected into the software, the tests were executed, and the
number of faults found by both sets of tests are reported.

The second direction is in terms of automation. A preliminary proof-of-concept automatic
test data generator has been developed. This tool applies the test data generation criteria from
the �rst two phases of this project to automatically create inputs. There are currently two sources
for the tests; SCR speci�cations and UML Statecharts. The SCR speci�cations are created by using
the SCRTool developed at the Naval Research Laboratory [HKL97], and the UML Statecharts are
created using Rational Software Corporation's Rational Rose tool [Cor98]. The tool reads the
speci�cations in either the UML or the SCR format, then generates appropriate test cases. Initial
results from using this tool have already been accepted for publication and will appear in the UML
conference this fall [OA99].

2.2 Publications From This Project

Thus far, this project has resulted in the following publications. All publications acknowledge
Rockwell Collins as complete or partial sponsor (related support has also been provided by the
National Science Foundation and the Government of Japan). All publications (except the technical
reports) are completely refereed. Two journal papers and two additional conference papers are also
currently in preparation.

1. Je� O�utt and Aynur Abdurazik. Generating Tests from UML Speci�cations. Second Inter-
national Conference on the Uni�ed Modeling Language (UML '99), Fort Collins, CO, October
1999.

2. Je� O�utt, Yiwei Xiong and Shaoying Liu. Criteria for Generating Speci�cation-based Tests.
Fifth IEEE International Conference on Engineering of Complex Computer Systems (ICECCS
'99), pages 119-131, Las Vegas, NV, October 1999.

3. Zhenyi Jin and Je� O�utt. Coupling-based Integration Testing. Second IEEE International
Conference on Engineering of Complex Computer Systems, pages 10{17, Montreal, Canada,
October 1996. (Outstanding Paper Award).

4. Je� O�utt, Generating Test Data From Requirements/Speci�cations: Phase II Final Report,
January 1999, George Mason University Department of ISE Technical Report ISSE-TR-99-01,
http://www.ise.gmu.edu/techrep.

5. Je� O�utt, Generating Test Data From Requirements/Speci�cations: Phase I Final Report,
April 1998, George Mason University Department of ISE Technical Report ISSE-TR-98-01,
http://www.ise.gmu.edu/techrep.
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3 EMPIRICAL EVALUATION

Evaluating testing criteria is always di�cult. If a particular criterion is evaluated in isolation, the
question always remains as to whether the criterion was valuable, or the evaluation was weak. For
example, suppose a criterion is evaluated in terms of how many faults it �nds. If it �nds a lot
of faults, then it could be because the criterion is strong, or because the faults were easy to �nd.
Thus, testing criteria are usually evaluated by use of comparative studies.

Comparing testing criteria is also problematic. Analytical comparisons (for example, proofs and
subsumptive hierarchies) show theoretical relationships between techniques, and are most satisfying
because they allow claims that are true in all situations. Unfortunately it is often impossible to
make analytical comparisons. Empirical comparisons show relations that are based on speci�c
studies. Although it is di�cult to show that empirical results hold in all situations, analytical
comparisons cannot always be made, but empirical comparisons can.

Two relationships that have been de�ned elsewhere are the ProbBetter and the ProbSub-
sumes relationships. Weyuker, Weiss, and Hamlet [WWH91] suggest a relationship called Prob-

Better:

A testing criterion C1 is ProbBetter than C2 for a program P if a
randomly selected test set T that satis�es C1 is more \likely" to detect
a failure than a randomly selected test set that satis�es C2.

Mathur and Wong [MW94, Won93] suggest a di�erent relationship called ProbSubsumes:

A testing criterion C1 ProbSubsumes C2 for a program P if a test set
T that is adequate with respect to C1 is \likely" to be adequate with
respect to C2. If C1 ProbSubsumes C2, C1 is said to be more \di�cult"
to satisfy than C2.

The ProbBetter relation is de�ned with respect to the fault detection capability of test sets,
whereas the ProbSubsumes relation is de�ned with respect to the di�culty of satisfying one
criterion in terms of another. To evaluate ProbSubsumes, the tests that are generated must be
de�ned in terms of a test criterion. To evaluate ProbBetter, the tests must be executed on faulty
versions of programs. Both are probabilistic relations between two testing criteria and are de�ned
in terms of speci�c programs. Although this means that it is di�cult to draw general conclusions
from any one study, as the number or variety of programs studied increase, our con�dence in the
validity of a ProbSubsumes or a ProbBetter relationship with a larger set of programs also
increases.

3.1 Experimental Hypotheses and Design

The speci�cation-based testing criterion is being evaluated by using a comparative study. It is being
compared with the T-Vec testing technique [BB96, Bla98]. T-Vec includes a technique for generat-
ing test data from software speci�cations, but does not include a formal criterion, thus the Prob-
Subsumes relationship cannot be used. The T-Vec test cases were supplied by Rockwell-Collins,
and compared with full predicate (FP) test cases on the basis of the ProbBetter relationship.
For this comparison, the following hypotheses have been formulated:

Hypothesis 1: Full predicate testing is ProbBetter than T-Vec testing.
Hypothesis 2: T-Vec testing is ProbBetter than full predicate testing.

As an experimental subject, a research version of the Flight Guidance Mode Logic System
(FGS) supplied by Rockwell Collins was used [MH97]. FGS is large enough to provide results that
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are meaningful to industry software developers, and formal speci�cations already exist. A number
of faults were injected into the FGS software, and the number of faults found by both sets of tests
was tracked.

A minimum test case set for a criterion contains the smallest number of test cases necessary
to satisfy the criterion, and a minimal test case set is a satisfying set such that if any test case
was removed, the set would no longer satisfy the criterion. Finding a minimum test set requires an
exponential search process (an NP-complete problem), so this experiment uses minimal test sets.
Redundant test cases were eliminated using previously created test set reduction algorithms.

3.2 Experimental Conduct

The following process was used during the experiment:

1. Acquire FGS speci�cations in SCR

2. Acquire FGS implementation from Rockwell

3. Acquire Rockwell-supplied T-Vec tests

4. Create full predicate tests

5. Insert faults into FGS

6. Run every test case, gather and interpret results

The order of these steps is important. The speci�c values for both test sets could be in
uenced
by knowledge of the faults, so the tests had to be created �rst. In a system the size of FGS,
knowledge of tests that are based on speci�cations are very unlikely to in
uence faults that are
inserted into the code, so the faults can be created after the tests.

3.2.1 Flight guidance Mode Logic system

An SCR speci�cation for FGS and a Java implementation of FGS were provided by Rockwell
Collins. The SCR speci�cation was derived from Miller and Hoech's CoRE speci�cations [MH97].
The speci�cation contains 14 mode transition tables and 36 supporting tables (condition tables,
term tables, etc.). The implementation contains 115 Java classes and about 6500 lines. This was
a research version of the implementation, and was provided without a user interface or other main
program.

It was decided to derive tests for the mode transition tables, which describe the most visible
parts of the system. These tables describe the conditions under which the various objects in the
FGS change their modes. There are 14 mode transition tables in the SCR speci�cations, and they
reference variables and terms that are de�ned in other tables.

3.2.2 T-Vec tests

The T-Vec tests were also provided by Rockwell in the form of Java test driver programs with
test data embedded in the drivers. A total of 3732 tests were embedded in 14 drivers. One
driver, for the Flight Modes Flight Director Mode transition table, would not compile as given.
Flight Modes Flight Director Mode Test Driver.java contained over 300,000 lines of Java code, in-
cluding 2763 tests, and the Java compiler (Sun JDK 1.2.10) ran out of memory when compiling it.
To run this driver, it was broken into 12 separate drivers, each containing 250 tests (the last only
contained 14 tests).
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A goal of T-Vec is to generate tests that provide MCDC structural coverage [CM94] on the
source code implementation. In fact, it might be MCC, which is even more extensive. T-Vec did
not try to reduce the number of tests in any way.

3.2.3 Full predicate tests

Although a proof-of-concept test data generation tool exists for full predicate tests, it is not complete
and cannot yet handle many of the structures used in the FGS SCR speci�cations. The full predicate
tests were generated partially by the tool, and partially by hand. A total of 735 tests were generated
from the 14 mode transition tables.

During test generation, several issues related to generating full predicate testing had to be
resolved. The �rst was with the \@C (A)" predicate. In SCR, @T indicates that the predicate
must change from false to true, @F indicates that the predicate must change from true to false, and
@C simply indicates that the predicate must change. In the full predicate test generation strategy,
@T operators are expanded as:

@T(A) � : A AND A'
where A' is the value of the predicate A after the change. The equivalent expansion for @C had
not been de�ned, and three alternatives presented themselves:

1) @C(A) � A 6= A'

2) @C(A) � @T(A) _ @F(A)

3) @C(A) ) i) @T(A)

ii) @F(A)

The �rst expansion is simple, direct, and consistent with the other trigger operators (\@T"
and \@F"). However, if the condition is a little complicated, generating tests can get messy. For
example, if the trigger is: @C(X <= Y), then the expansion is: (X<=Y) != (X<=Y)', and there
are many choices for how to satisfy the expression. When the event has multiple conditions, the
situation is even more di�cult. For example, if the predicate is: @C(A AND B) == (A AND B) !=
(A AND B)', there are many ways to satisfy it. It is not clear if they should all be chosen, or only
some of them. Consider a truth table approach:

(A AND B) != (A ANDB)'

1) T T T T

2) T F T F

3) F T F T

4) F F F F

The triggering event could be satis�ed by combining choice 1 on the left with options 2, 3, and
4 on the right, or by combining choices 2, 3, and 4 on the left with option 1 on the right:

T T -- T F

T T -- F T

T T -- F F

T F -- T T

F T -- T T

F F -- T T

These are a lot of choices, which makes it more di�cult for the method to be applied by hand
and more di�cult to automate. If the above predicate is expanded even further, the following six
disjunctive clauses are gotten:
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@C(A AND B) == (A AND B) != (A AND B)'

== (ABA' NOT B') OR (AB NOT A'B') OR (AB NOT A' NOT B') OR

(A NOT BA'B') OR ( NOT ABA'B') OR ( NOT A NOT BA'B')

This would result in up to 30 test cases, which seems excessive for one trigger event. The second
expansion is not as messy, but still leads to a large number of test cases.

@C(A) == @T(A) OR @F(A)

== (A AND NOT A') OR (NOT A AND A')

If the trigger contains multiple conditions the fully expanded expression looks like:

@C(A AND B) == @T(A AND B) OR @F(A AND B)

== ((NOT A OR NOT B) AND A' AND B') OR

(A AND B AND (NOT A' OR NOT B'))

Semantically this is equivalent to the �rst expansion, but fewer test cases will result.
The third expansion allows a full separation, and allows both cases (false to true and true to

false) to be tested. It is non-intuitive from a speci�cation point of view, but might be e�ective from
a testing point of view. That is, it could lead to e�ective tests at reasonable cost.

A careful analysis of the SCR speci�cation, however, indicated that all @C() triggers used 
oat-
ing point expressions, and none used boolean expressions. In this case, the potential complexities
in the �rst two expansions are not realized. In fact, the most likely use of @C triggers seems to
be when a numeric quantity is changed as opposed to a boolean variable. Thus, we chose the �rst
expansion for this research project.

The second issue was handling transition predicates that included values for mode transition
tables instead of variables. For example, one transition was:

Current Mode: CLEARED

Expected Mode: CUES

Event: @T(Flight Modes Flight Director Mode = ON)

The event term Flight Modes Flight Director Mode is also a mode transition table, so the
expression could not be set directly. This was handled by a straightforward recursive substitution.
The term (Flight Modes Flight Director Mode = ON) was replaced by the appropriate sequence
of value assignments from the Flight Modes Flight Director Mode mode transition table to put
that table into the mode ON.

3.2.4 Faults inserted into FGS

The faults were also inserted by hand. The strategy was to insert faults that are (1) similar to
naturally occurring faults, and (2) not trivial to detect. All faults passed the Java compiler (Sun
JDK 1.2.10). A total of 155 faults were created. A general outline of the fault creation procedure
is that for each program statement, we attempted to:

1. transpose variables

2. modify multiple, related, arithmetic or relational operators

3. change precedence of operation (i.e., by changing parenthesis)

4. delete a conditional or iterative clause

5. change conditional expressions by adding extra conditions
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6. change the initial values and stop conditions of iteration variables

To gather the results, each fault was inserted into a separate Java source �le, creating 155 incor-
rect versions of FGS. This simpli�es data gathering by making it clear which fault is detected when
the faulty program fails. One complication from using this strategy with a Java implementation is
that the Java compiler does not create complete executables, rather it compiles each Java source
�le to a class bytecode �le, and the class �les are then interpreted during execution. Thus, to
execute the multiple faulty versions of FGS, each Java �le was compiled to a faulty class �le, and
we developed a shell script that copied the faulty class �le into the appropriate directory before
running FGS. Although this was entirely automated, it was quite slow (for example, it took over
eight hours to run the 735 full predicate test cases on all 155 faulty programs).

Figure 1 shows the directory structure of FGS and location of the faulty Java classes. All
faulty classes are stored in subdirectories called BuggyVersions/. In Figure 1, each Java �le
is annotated with the number of faults created for it, and the BuggyVersions/ directories are
annotated with the total number of faults in the directory. No faults were placed into the BusLayer,
AircraftDSOLayer, or the ControlsDSOLayer classes. This is because tests generated from the
SCR mode transition tables could not cause methods in those classes. In addition, CommonTypes
contains classes that are not directly described or modeled in the functional speci�cations. Faults
were added for CommonTypes as a measure of how well the speci�cation-based tests were able to
test code that is not directly described by the speci�cations.

3.2.5 FGS test driver program

T-Vec tests were embedded in their own drivers, which were automatically generated by the T-Vec
system. Rockwell Collins personnel created a driver template �le and a set of mappings tables.
For each variable that appeared in the SCR speci�cation, a mappings table provided the methods
within the implementation for setting and retrieving values for the variable. The driver template �le
and the mappings tables were fed into the T-Vec system, which produced a set of driver programs
that contained tests.

Execution of the full predicate tests on FGS required the construction of a general purpose
test driver. FGS was provided as a collection of Java classes without a main program, thus test
drivers had to be created to run the tests. It was decided to create one general purpose driver that
(1) reads in values for variables, (2) executes the appropriate methods to assign the values to the
variables, (3) calls the appropriate update() methods to run the FGS system, and (4) prints the
results (the new state). The appropriate methods are derived from the mapping �les created by
Dave Statezni for the T-Vec drivers. The test driver is implemented in two Java classes of about
750 lines of code, and is provided in Appendix B. Figure 2 provides the input speci�cation for the
driver. It includes comment lines, a command to set the current mode transition table, a command
to set the previous mode, a command to explicitly update the current modes for the system, and
commands to set values for variables. Note that no input validation is done. Results checking is
done outside of the test driver. In the experiment, a Unix shell script was used to capture the
outputs from the driver. When the original version of FGS was run, the outputs were compared
against the expected outputs in the test case �le to verify correctness, when faulty versions of FGS
were run, the outputs were compared against the outputs from the original version by use of the
Unix tool diff.

3.3 Problems Found During Test Preparation

While preparing the tests, we were able to uncover one fault in the FGS implementation, one prob-
lem with the SCR speci�cation, and one problem with the mappings tables. When generating tests
for the Flight Modes Flight Director Mode mode transition table, a fault in its implementation
(FlightDirectorModeMachine.java) was found. The �rst transition for that table is:
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BusLayer/

AircraftDSOLayer/ NavigationLayer/

BuggyVersions/ (26) BuggyVersions/ (5)

BuggyVersions/ (19)

AircraftDataSources.java (8)
AircraftDataSourcesModeMachine.java (11)
AircraftDataSourcesModes.java (0)
NavigationLayer.java (0)
NavigationSources.java (4)
ProductFamilyVariabilities.java (3)

BooleanTransitions.java (5)
FloatTransitions.java (3)
IntegerTransitions.java (4)
ModeMachine.java (2)
TransitionsType.java (5)

ModeRequests.java (5)

FlightDirectorLayer/

BuggyVersions/ (105)

DisengagedSubmodeMachine.java (5)
EngageModeMachine.java (5)
EngagedSubmodeMachine.java (5)
FlightDirectorCueModeMachine.java (5)
FlightDirectorModeMachine.java (6)
LateralActiveModeMachine.java (13)
LateralApproachModeMachine.java (5)
LateralNavigationModeMachine.java (7)
LateralRollModeMachine.java (8)
VerticalActiveModeMachine.java (30)
VerticalAltitudeSelectModeMachine.java (4)
VerticalApproachModeMachine.java (5)
VerticalFlightLevelChangeModeMachine.java (7)

CommonTypes/ (19)

FGS/ (155 faults)

AircraftLayer/ (131) ControlsLayer/ (5)

ControlsDSOLayer/ ControlsLogicLayer/

Figure 1: Directory Structure Showing FGS Faults

@T(Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left = ON
OR Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right = ON)

WHEN (NOT Aircraft_Data_sources_term_Overspeed AND NOT
Autopilot_Modes_Engage_term_AP_Engaged)

with appropriate substitution, this can be simpli�ed to @T(A OR B) AND (not C AND not D).
To generate test cases for this transition, it is expanded to:
== not(A OR B) AND (A' OR B') AND (not C AND not D)
== not A AND not B AND (A' OR B') AND (not C AND not D)
which yields the following test case requirements (not all test cases are shown):

A B A' B' C D
1) f f t t f f // should transition to OFF
4) f f t t t f // should not transition, stay in ON
5) f f t t f t // should not transition, stay in ON

When executed, tests 4 and 5 took the transition to OFF. Analysis of the results made it
seem like the code implemented (not C OR not D) instead of (not C AND not D). This was im-
plemented in the update() method in FlightDirectorModeMachine.java, which contained the
statements:

10



1) Lines beginning with '//' are comments and are ignored.

2) Blank lines are ignored.

3) The mode transition table is chosen with the line:

Table <#>

Where '#' refers the to the table number as given in the FGS specification.

4) The mode is set with the line:

PreviousMode <MODENAME>

5) A mode condition table update is called with the line:

Update

6) Monitored variables are set by lines such as:

<VARNAME> [PC] <VALUE>

P = Previous value

C = Current value

Boolean values should be F or T.

7) Previous values for term variables are set by lines such as:

<VARNAME> <VALUE>

The update() methods are also called after all input lines have been read.

Figure 2: Test Driver Input Speci�cations

((aircraft.navigation.overspeed().previousEquals(false)) ||
(aircraft.flightDirector.apEngageRequested().previousEquals(false)))))

The \||" (OR) should have been \&&" (AND).
The problem in the mappings tables was with the mappings of monitored variables to imple-

mentation. For the variable
Flight Modes Vertical Approach mon Within Vertical APPR Capture Window,
the mapping �le listed the method to set its previous value to be
aircraft.aircraftDSO.withinVerApprCaptWindow().setCurrentValue().
It should have been
aircraft.aircraftDSO.withinVerApprCaptWindow().setPreviousValue().

The problem with the SCR speci�cation was a duplication in the SCR speci�cation. In the
last transition for mode transition table Flight Modes Flight Director Mode (table 33), one term
appears twice:

OR
@(T(Crew_Interface_Throttles_term_GA_Pressed) OR

...

OR
@(T(Crew_Interface_Throttles_term_GA_Pressed)

This duplication was an artifact of the way in which the SCR speci�cations were generated,
which was by using the Prefer tool, which is a Rockwell Collins proprietary requirements analysis
tool based on the CoRE method. This had no e�ect on the tests.
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Mode Transition Full Predicate T-Vec
Table Num Tests Faults Found Num Tests Faults Found

Table 1 24 18 50 17
Table 2 20 17 20 23
Table 3 16 10 41 10
Table 4 15 16 22 16
Table 5 30 15 63 23
Table 6 44 12 2763 76
Table 7 138 29 237 34
Table 8 12 18 18 16
Table 9 12 19 18 17
Table 10 43 19 130 21
Table 11 301 53 266 57
Table 12 42 45 49 37
Table 13 18 25 30 22
Table 14 20 22 25 30

TOTAL 735 133 3732 128

Percentage 86% 83%

Table 1: Faults Found per Mode Transition Table.

3.4 Results and Analysis

All full predicate and T-Vec tests were run on all faulty versions of FGS. The data from running
these tests on FGS are shown in Table 1. For each mode transition table in FGS, the table shows
the total number of tests for each test technique, and the faults found by each set of tests. The mode
transition table names are given in Table 2; they are the same names used in Miller and Hoech's
FGS report [MH97]. The TOTAL row shows the total number of tests and the total number of
faults found by each test technique. Note that the total faults found are not the sum of the number
of faults found. The tests from the di�erent tables found overlapping sets of faults, so the TOTAL
line is not the sum of the columns. Rather, it is the number of unique faults found.

As can be seen, the fault detection abilities of the two techniques were very similar. Analysis
of the actual faults showed that the two techniques found very close to the same set of faults. Out
of 155 faults inserted into FGS, 20 were not found by either set of tests, 125 were found by both
the full predicate and the T-Vec tests, and ten were only found by one set of tests (seven by the
full predicate but not the T-Vec tests, and three by the T-Vec but not the full predicate tests).

Table 3 shows a di�erent view of the data, the number of faults found in each FGS software layer.
These layers are illustrated in the directory structure in Figure 1. There are several interesting
things about this data. In particular, both sets of tests found 11 faults in the CommonTypes layer.
This is somewhat surprising because CommonTypes contains classes that are not directly described
by the functional speci�cations. Although the tests found a lower percentage of the CommonTypes
faults, the fact that so many were found is encouraging support for speci�cation-based testing. If
CommonTypes is removed from this table, the FP tests found 89% of the faults, and the TVec tests
found 86%.

Some of the 20 faults not found by either set of tests were examined by hand. Although it
was not proved, it appears to be possible to detect all of them. Most of these 20 faults were not
in methods that directly implemented the mode transition tables, but in auxiliary methods for
condition and term tables. Recall that the tests used in the study were derived from the mode
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Table Number Table Name

Table 1 Aircraft Data Sources
Table 2 Autopilot Modes Disengaged Submode
Table 3 Autopilot Modes Engage
Table 4 Autopilot Modes Engaged Submode
Table 5 Flight Modes Flight Director Cues
Table 6 Flight Modes Flight Director Mode
Table 7 Flight Modes Lateral Active
Table 8 Flight Modes Lateral Approach
Table 9 Flight Modes Lateral Navigation
Table 10 Flight Modes Lateral Roll
Table 11 Flight Modes Vertical Active
Table 12 Flight Modes Vertical Altitude Select
Table 13 Flight Modes Vertical Approach
Table 14 Flight Modes Vertical Flight Level Change

Table 2: Mode Transition Table Names.

FGS Layer Faults FP TVec FP TVec
Coverage Coverage Percent Percent

FlightDirectorLayer 105 100 97 95% 92%
NavigationLayer 26 18 17 69% 65%
CommonTypes 19 11 11 58% 58%
ControlsLogicLayer 5 3 3 60% 60%

TOTAL 155 132 128 85% 83%

Table 3: Faults Found in Each FGS Layer.

transition tables, so they did not fully exercise all of the code that was written for the other tables.
The ten faults found by only one technique were examined by hand, but there is no obvious

reason why they were found by one sets of tests but not the other. Thus, it was concluded that
both test techniques were virtually identical in fault detection power, and that both hypotheses
from Section 3.1 should be rejected.

The cost, however, is a di�erent matter. An original goal of the experiment was to carefully
compare both techniques in terms of cost, but this was more di�cult than it might seem. First,
T-Vec is entirely automated, and the full predicate criterion is not. Thus, it took several weeks of
human e�ort to generate the full predicate tests. This comparison, however, would compare the
current state of the tools, not the testing techniques, because it is entirely possible to automate FP
test generation. There was also a cost with preparing the tests. Use of both techniques requires
preparation on the part of the tester to create a mapping from the speci�cation variables to the
program variables. In this study, the same information was used for both techniques, so the cost
could not easily be separated. For the FP tests, a general purpose test driver was generated that
incorporated the variable mapping information used by T-Vec. It is not clear whether production
of this driver should be counted as a cost of using FP testing, and since the mapping �les produced
for the T-Vec method were used to produce the driver, it is di�cult to apportion the preparation
cost between the two methods. It also took several hours to break the excessively large T-Vec driver
into compilable size drivers. One large advantage of both methods is that the expected outputs for
test cases can be produced automatically. This obviates a cost that is often a major cost of testing.
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The major measurable di�erence in the cost of the two methods is in terms of the number of
test cases. T-Vec created 3732 tests compared with only 735 FP tests. The primary di�erence
is due to the goals of the testing techniques. As stated earlier, T-Vec attempts to satisfy MCDC
structural coverage at the source code level, and may achieve MCC coverage. Full predicate testing
attempts to exercise all predicates in the speci�cation, in a manner that is very similar to MCDC.
Since MCC requires 2N tests in the number of clauses in the predicates, it is not surprising that
use of T-Vec results in more tests. This almost 5 to 1 ratio means that the cost of using T-Vec
is more than using full predicate tests. We can express this di�erence by de�ning an e�ciency
rating. The test case e�ciency is the number of faults found per test case, computed by dividing
the number of faults by the number of test cases. In this experiment, the test case e�ciency for
full predicate coverage was .18 and the test case e�ciency for T-Vec was .03. Thus we conclude
that full predicate testing is not more e�ective than T-Vec testing, but may be more e�cient.
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4 PROOF-OF-CONCEPT AUTOMATIC TEST DATA GENER-

ATION TOOL

SpecTest is a proof-of-concept tool that generates test cases from SCR and UML speci�cations
[OA99] according to the speci�cation-based test criteria. The SCR and UML speci�cations that
SpecTest can process are case tool speci�c. The SCR speci�cations are generated by the SCR*
Toolset [HKL97], which was developed by the Naval Research Laboratory. The UML speci�cations
were generated by Rational Software Corporation's Rational Rose, hereafter Rose [Cor98].

SpecTest parses SCR and Rose speci�cation �les into a consistent intermediate form. This
intermediate form is then analyzed, and tests are generated. The tester can choose inputs from
either type of speci�cation �le, and can select which testing criterion to satisfy.

SCR* Toolset supports the speci�cation of the following items:

� Type Dictionary

� Mode Class Dictionary

� Constant Dictionary

� Variable Dictionary

� Speci�cation Assertion Dictionary

� Environmental Assertion Dictionary

� Enumerated Monitored Variable Dictionary

� Controlled Variable Dictionary

� Mode Class Tables

� Term Variable Tables

� Controlled Variable Tables

The speci�cations are saved as ASCII text �les in the above order. There is no restriction on
the �le name, or on the extension. The structure of the text �le is shown in Figure 3.

The following assumptions were made about the SCR speci�cation text �le:

� @T, @F denote trigger events

� AND denotes logical and

� Only one mode class

� Boolean variables

� Single variable change in event

� None/Single/Multiple variables in condition

� State transitions are deterministic
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Type Dictionary

TYPE Type Name

BASETYPE Base Type Name

UNITS Unit Name

COMMENT Comments for the type usage

Mode Class Dictionary

MODECLASS Mode Class Name

MODES List of modes separated by comma

INITMODE Initial Mode

COMMENT Comments for the mode class usage

Constant Dictionary

CONSTANT Constant Name

TYPE Type Name

VAL Value

COMMENT Comments for the constant

Variable Dictionary

MON Name of a monitored variable

TYPE Type Name

INITVAL Initial value

ACCURACY Accuracy

COMMENT Rules for value assignment

CON Name of a controlled variable

TYPE Type Name

INITVAL Initial value

ACCURACY Accuracy

COMMENT Rules for value assignment

Speci�cation Assertion Dictionary

ASSERTION Name of an assertion

EXPR Expression

COMMENT Explanation of assertion

Environmental Assertion Dictionary

Enumerated Monitored Variable Table

Event, Mode Transition, and Condition Functions

EVENTFUNC Event function table name

MCLASS Mode class name

MODES Mode name

EVENTS Event1, Event2

ASSIGNMENTS Value1, Value2

Figure 3: SCR Speci�cation Text File Structure
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CONDFUNC Condition function table name

CONDITIONS Condition1, Condition2

ASSIGNMENTS Value1, Value2

MODETRANS Mode transition table name

FROM State name

EVENT Event

WHEN List of Disjunctive Conditions

TO State name

Figure 3: SCR Speci�cation Text File Structure { continued

Logical Models

object Class

classAttributes

-------------- State Transition: Logical -------------

State Machine

Object State /* StartState, Normal, EndState */

State Transition

State Machine

Object State /* Normal */

-------------- State Transition: Physical ------------

State Diagram

State View /* StartState, Normal, EndState */

Transition View

object Association

object Role

Logical Presentations

object ClassDiagram /* with grouping and name */

object ClassView

Association View

Role View

Inheritance View

Figure 4: Structure of MDL File for Class Diagram and State Transition Diagram
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SpecTest parses a Rose speci�cation �le (called an MDL �le) to get the semantic meanings of
the speci�cations. MDL �les store speci�cation information from di�erent perspectives. There are
two main categories of information, logical and physical. The speci�cation itself is grouped into
two packages: use cases and object collaboration diagrams are packaged into Use Case Packages,
and class diagrams and state transition diagrams are packaged into Logical Views. Figure 4 shows
the internal structure of the class diagram and state transition diagram in a MDL �le.

SpecTest makes several assumptions about the UML speci�cation �le input:
� All transitions are triggered by change events.

� Events and conditions are expressed through boolean type class attributes.

� The speci�cation is written strictly following the UML notation. For example, when denotes
a change event and conditions are in solid brackets ([]). Because there is no way to check
whether a speci�cation is well-formed or consistent, this assumption cannot be checked. The
OCL does not have a mechanism to enforce its syntactic rules on all parts of the UML
speci�cation. Also, Rose does not have a function to write the speci�cation in OCL.

� State transitions are deterministic.

4.1 Architecture

Figure 5 is a UML class diagram that describes SpecTest. Classes are represented as boxes, each
of which have three parts, the class name, data members that are declared in the class, and methods
of the class. The main entry point (SpecTest) has four objects, (1) a UML speci�cation parser, (2)
a SCR speci�cation parser, (3) a full predicate test case generator, and (4) a transition-pair test
case generator.

UMLSpecParser reads a UML speci�cation text �le, parses it, and generates state transition
table(s) for classes that have state machines. SCRSpecParser reads SCR speci�cation text �les,
parses them, and generates state transition tables for mode classes. FullPredicate takes a state
transition table as an input, generates test cases for the full predicate coverage criterion, and saves
the test cases into an ASCII text �le. TransitionPair takes a state transition table as input,
generates test cases for the transition-pair coverage criterion, and saves the test cases in an ASCII
text �le.

4.2 Object Collaboration Diagrams

Object collaboration diagrams (OCDs) for generating full predicate coverage, transition coverage,
and transition-pair coverage test cases are shown in Figures 6, 7, and 8. The OCD is illustrated
for generating test cases for full predicate coverage, the other two OCDs are similar.

In Figure 6, SpecTest is a main program. It interacts with the user, gets the command to
read a SCR or UML speci�cation �le, and invokes SCRSpecParser or UMLSpecParser, sending a
speci�cation �le name as a parameter. SCRSPecParser or UMLSpecParser opens the �le, parses it,
generates a transition table, and returns the transition table to SpecTest. Next, SpecTest invokes
FullPredicate, sending the state transition table as a parameter. FullPredicate generates test
cases for full predicate coverage criteria, saves the test cases in �les, and returns a message to
SpecTest that test cases have been generated.
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<<Algorithm>>
TransitionPair

sttNext: Hashtable
sttPrevious: Hashtable
modeClassDictionary: Hashtable
transitionPairs: Hashtable
tcValueOrder: Hashtable
modeClassName: String
modeClass: ModeClass
modes: Vector
currentState: String
initialState: String
previousState: String
expectedOutput: String
transitions: Vector
transition: Transition
condition: Condition
incomingTrans: Vector
outgoingTrans: Vector
testCaseValue: Vector
testCaseSet: Vector

generateTC()
printTC()
getPrefix()

fileName: String
scrFile: FileInputStream
sttNext: Hashtable
sttPrevious: Hashtable
modeClassDictionary: Hashtable
initialState: String

getTableNext()
getTablePrevious()
getInitState()
getModeClassDictionary()
parseSCRAlgor()
readLine()

fileName: String

sttNext: Hashtable
sttPrevious: Hashtable
modeClassDictionary: Hashtable
initialState: String

umlFile: FileInputStream

getTableNext()
getTablePrevious()
getInitState()
getModeClassDictionary()

readLine()
parseUMLAlgor()

<<TextFile>>
UMLSpecificationFileSCRSpecificationFile

<<TextFile>>

Reads Reads

generateTC()
printTC()
getPrefix()

<<Algorithm>>
FullPredicate

sttNext: Hashtable

initialState: String
previousState: String

expectedOutput: String
transitions: Vector

transition: Transition
condition: Condition
testCaseValue: Vector
testCaseSet: Vector

sttPrevious: Hashtable

nextState: String

newTransitions: Vector

Invokes

Invokes Invokes

Invokes

<<TextFile>>
TestCaseFiles

Generates
Generates

<<Algorithm>><<Algorithm>>
SCRSpecParser UMLSpecParser

<<Controller>>

scrStruc: SCRSpecParser
umlStruc: UMLSpecParser
fptc: FullPredicate
tptc: TransitionPair
sttNext: Hashtable
sttPrevious: Hashtable

main()

SpecTest

Figure 5: Class Diagram for SpecTest Tool

19



2: Read specification

3: Process specification

4: State transition table generated (table)

7: Write test files

:TestCase
Files File

5: Generate full predicate
    coverage test cases(table)

Generate test cases6:

:Full
Predicate

:Spec

:Specification

Parser

1:Process (Specification file name)

:SpecTest

Figure 6: OCD for Generating Full Predicate Coverage Test Cases

2: Read specification

3: Process specification

4: State transition table generated (table)

7: Write test files
:TestCase

Files

Generate test cases

:Transition

:Spec

File
:Specification

5: Generate transition
    coverage test cases(table)

Parser

1:Process (Specification file name)

:SpecTest

Figure 7: OCD for Generating Transition Coverage Test Cases
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2: Read specification

3: Process specification

4: State transition table generated (table)

7: Write test files

:TestCase
Files

Generate test cases6:

:Transition
Pair

5: Generate transition−pair
    coverage test cases(table)

1:Process (Specification file name)
:Spec

File
:Specification

Parser
:SpecTest

Figure 8: OCD for Generating Transition-Pair Coverage Test Cases

5 CONCLUSIONS

This report presents results from an empirical evaluation of the speci�cation-based test criteria
developed previously. This evaluation was done by comparing full predicate testing with tests from
another speci�cation-based testing technique, T-Vec, on faults inserted into an industrial software
system. The results indicate that neither technique is more e�ective than the other, but that
full predicate testing may be more e�cient than T-Vec testing.

This result also presents an initial proof-of-concept tool for generating tests to satisfy the full
predicate criterion. Although this tool has some signi�cant restrictions (it only handles SCR
speci�cations in single mode transition tables, all variables must be boolean, and the transition
predicates must be single-variable expressions), the tool is integrated with the Naval Research
Laboratory's SCRTool [HKL97], and shows great promise.
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6 FUTURE WORK

The immediate goal of this research was to demonstrate the practical feasibility of the test
generation criteria from the previous years. The next goals of this research are threefold: (1) to
expand the tool to remove the restrictions so that it can be used with arbitrary SCR speci�-
cations, (2) to extend the experimentation to include transition-pair tests, and (3) to include
a traceability link between the tests and the speci�c requirements being tested. This requirement
is imposed by the FAA in DO-178B [SC-92]. The tool will allow speci�cation-based tests to be
generated more cheaply, which will allow it to be used in practical situations. It is hoped that the
transition-pair tests will �nd faults that were not found by the full predicate and the T-Vec tests.
Some encouragement for this was found by a separate smaller scale experiment that compared full
predicate tests and transition-pair tests with another speci�cation-based testing technique [AAD+].
This smaller experiment, which was carried out as a class project by a graduate student at George
Mason University, found that the full predicate and transition-pair tests detected very di�erent sets
of faults.

22



References

[AAD+] Aynur Abdurazik, Paul Ammann, Wei Ding, , and Je� O�utt. Evaluation of
speci�cation-based testing criteria. in preparation, 1999.

[BB96] M. Blackburn and R. Busser. T-VEC: A tool for developing critical systems. In Pro-
ceedings of the 1996 Annual Conference on Computer Assurance (COMPASS 96), pages
237{249, Gaithersburg MD, June 1996. IEEE Computer Society Press.

[Bla98] M. Blackburn. Speci�cation Transformation and Semantic Expansion to Support Auto-
mated Testing. PhD thesis, George Mason University, Fairfax VA, 1998.

[CM94] J. J. Chilenski and S. P. Miller. Applicability of modi�ed condition/decision coverage
to software testing. Software Engineering Journal, pages 193{200, September 1994.

[Cor98] Rational Software Corporation. Rational Rose 98: Using Rational Rose. Rational Rose
Corporation, Cupertina CA, 1998.

[HKL97] C. Heitmeyer, J. Kirby, and B. Labaw. Tools for formal speci�cation, veri�cation, and
validation of requirements. In Proceedings of the 1997 Annual Conference on Computer
Assurance (COMPASS 97), pages 35{47, Gaithersburg MD, June 1997. IEEE Computer
Society Press.

[MH97] S. P. Miller and K. F. Hoech. Speci�ying the mode logic of a 
ight guidance system
in CoRE. Technical report WP97-2011, Commercial Avionics, Rockwell Collins, Inc.,
Cedar Rapids, IA, 1997.

[MW94] A. P. Mathur and W. E. Wong. An empirical comparison of data 
ow and mutation-
based test adequacy criteria. The Journal of Software Testing, Veri�cation, and Relia-
bility, 4(1):9{31, March 1994.

[OA99] Je� O�utt and Aynur Abdurazik. Generating tests from UML speci�cations. In Pro-
ceedings of the Second IEEE International Conference on the Uni�ed Modeling Language
(UML99), Fort Collins, CO, October 1999. IEEE Computer Society Press.

[O�98] A. J. O�utt. Generating test data from requirements/speci�cations: Phase I
�nal report. Technical report ISSE-TR-98-01, Department of Information and
Software Systems Engineering, George Mason University, Fairfax VA, April 1998.
http://www.ise.gmu.edu/techrep.

[O�99] A. J. O�utt. Generating test data from requirements/speci�cations: Phase
II �nal report. Technical report ISE-TR-99-01, Department of Information
and Software Engineering, George Mason University, Fairfax VA, January 1999.
http://www.ise.gmu.edu/techrep.

[OXL99] Je� O�utt, Yiwei Xiong, and Shaoying Liu. Criteria for generating speci�cation-based
tests. In Proceedings of the Fifth IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS '99), pages 119{131, Las Vegas, NV, October
1999. IEEE Computer Society Press.

[SC-92] RTCA Committee SC-167. Software considerations in airborne systems and equipment
certi�cation, Seventh draft to Do-178A/ED-12A, July 1992.

[Won93] Weichen Eric Wong. On Mutation and Data Flow. PhD thesis, Purdue University, De-
cember 1993. (Also Technical Report SERC-TR-149-P, Software Engineering Research
Center, Purdue University, West Lafayette, IN).

23



[WWH91] E. J. Weyuker, S. N. Weiss, and R. G. Hamlet. Comparison of program testing strategies.
In Proceedings of the Fourth Symposium on Software Testing, Analysis, and Veri�cation,
pages 1{10, Victoria, British Columbia, Canada, October 1991. IEEE Computer Society
Press.

24



Contents

1 INTRODUCTION 2

2 SUMMARY OF PHASES I AND II 3
2.1 Summary of Phase III Goals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
2.2 Publications From This Project : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

3 EMPIRICAL EVALUATION 5
3.1 Experimental Hypotheses and Design : : : : : : : : : : : : : : : : : : : : : : : : : : : 5
3.2 Experimental Conduct : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.2.1 Flight guidance Mode Logic system : : : : : : : : : : : : : : : : : : : : : : : 6
3.2.2 T-Vec tests : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6
3.2.3 Full predicate tests : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7
3.2.4 Faults inserted into FGS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8
3.2.5 FGS test driver program : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3.3 Problems Found During Test Preparation : : : : : : : : : : : : : : : : : : : : : : : : 9
3.4 Results and Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

4 PROOF-OF-CONCEPT AUTOMATIC TEST DATA GENERATION TOOL 15
4.1 Architecture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
4.2 Object Collaboration Diagrams : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

5 CONCLUSIONS 21

6 FUTURE WORK 22


