Globally Consistent Event Ordering
In One-Directional Distributed

Environments

Paul Ammann * Sushil Jajodia
Center For Secure Information Systems

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030

Phyllis Frankl *
Computer Science Department
Polytechnic University, Brooklyn, NY 11201

Technical Report ISSE-TR-93-104
August, 1993

*Supported in part by the National Science Foundation under grant CCR-9202270.

TSupported in part by a DARPA grant administered by the Office of Naval Research
under grant N0014-92-J-4038.

tSupported in part by NSF Grant CCR-9206910 and by the New York State Science

and Technology Foundation Center for Advanced Technology program.

Abstract

We consider communication structures for event ordering algorithms in dis-
tributed environments where information flows only in one direction. Exam-
ple applications are multilevel security and hierarchical databases. Although
the most general one-directional communication structure is a partial order,
partial orders do not enjoy the property of being consistently-ordered, a for-
malisation of the notion that globally consistent event ordering is ensured.
Our main result is that the crown-free property is necessary and sufficient for
a communication structure to be consistently-ordered. We discuss the com-

putational complexity of detecting crowns and sketch typical applications.

Index Terms

Crown-free partial orders, Distributed networks, Event ordering, Graph al-
gorithms, Hierarchical databases, Lamport clocks, Multilevel databases, Se-

curity and protection.

Address for Correspondence

Point of Contact
Address

Email
Office
Dept. Secretary

Paul Ammann

Department of Information and Software Systems Engineering
S&T 11, Room 430

George Mason University, Fairfax, VA 22030
pammann@isse.gmu.edu

(703) 993-1660

(703) 993-1640

1 Introduction

We consider the ordering of events in a distributed environment. For our
purposes, a distributed environment is one where a set of events compose
some computation, the events occur at a network of sites, and sites com-
municate by passing messages. Some applications impose restrictions on the
communication structure, and these restrictions can be exploited to make
more efficient ordering decisions. In this paper we consider restrictions that
force communication to occur in one direction only. Our particular focus is
to determine the largest class of such communication structures that are ca-
pable of guaranteeing consistent ordering decisions without resort to further
global synchronization.

A common task in a distributed environment is to decide the ordering
of any pair of events. A standard approach to this problem is Lamport’s
timestamp algorithm [Lam78], which can be used to impose a partial order
on events. The basic idea behind Lamport’s algorithm is that each event
at a site is marked with a unique local timestamp. Timestamps are drawn
from some monotonically increasing sequence, such as an integer counter. If
site A sends a message to site B, then A includes the most recent timestamp
at A in the message. Upon receipt of the message, B increases its current
timestamp to the timestamp value in the message, if necessary. The ordering
of any pair of events is determined in part by consulting the corresponding
timestamps and in part by consulting the record of message receipts.

Given events e; and ey, Lamport’s algorithm yields three possible out-
comes, namely that e¢; precedes ¢y, that e; precedes e1, or that ¢; and e, are
concurrent. The interpretation of the last possibility is that it is unknown,
and perhaps unimportant, which of ¢; or ey ‘really” happened first. If all
events must be ordered, concurrent events can be forced into a partial order
according to the corresponding timestamps. Resolving the case of two iden-
tical timestamp values with a static precedence order on sites yields a total
order.

A motivation for this paper is the observation that some of the order-

ing decisions made to obtain a total order are inherently artificial, and so,
unsurprisingly, no single algorithm suits all applications. For example, in
a transaction processing application, suppose that a site receives a message
about a transaction that a timestamping algorithm determines to be far in
the past at the receiving site. If the site is to accept the message, then the
site may be obliged to unwind all later transactions, incorporate the effect of
the remote transaction, and then redo the unwound transactions. From the
perspective of the receiving site, it would be more efficient for the ordering
of the event to be determined, at least in part, by the clock at the site that
receives the message rather than by the clock at the site where the event
occurred.

Allowing event ordering to be determined upon receipt of a corresponding
message at a given site can lead to inconsistencies. For example, suppose that
event e; occurs at site A and, concurrently, event e, occurs at site B. Let
A send a message about e; to B and B send a message about e; to A. The
ordering choices that involve the least rework are for A to order e; prior to
¢z and for B to order e; prior to e;. Each local order is consistent, but there
is no global consistent order.

This simple example shows that if ordering of otherwise concurrent events
is to be done by the site receiving a message, the structure by which sites
communicate must be antisymmetric. Otherwise, in the absence of some
other global synchronization mechanism, the type of inconsistency exhibited
above can arise. It is not difficult to extend the above example to show
that the transitive closure of the communication structure must also be an-
tisymmetric, and hence an acyclic communication structure is necessary in
general.

Although a restriction to acyclic communication structures might seem
too strong to be useful, there are applications, such as multilevel security
[BL76, Den82] and hierarchical databases [HC86], that mandate such restric-
tions on information flow. For example, in a multilevel security environment,
suppose that site A encapsulates a database at the ‘Secret’ level and site B

encapsulates a database at the ‘Unclassified’ level. Communication from A

to B is prohibited to prevent the leakage of classified information. It is satis-
factory for A to make an ordering decision about an event at B upon receipt
of the corresponding message since B has no opportunity to make a conflict-
ing decision. Indeed, the existence of events at A, as well as any information
that depends on events at A, must be hidden from B to satisfy the security
requirements.

A general acyclic structure is a partial order, but it is known that partial
orders by themselves do not lead to global consistent orderings, as is reviewed
by example later in the paper (c.f. fig. 1). In the multilevel security do-
main, a restriction on partial orders to lattices is common [BL76, Den82]. A
lattice is a partial order in which each pair of sites has a unique least upper
bound and and a unique greatest lower bound. Unfortunately, lattices by
themselves also do not lead to consistent orderings. In [AJ93b], it was shown
that for a variety of concurrency control algorithms for multilevel, replicated,
secure databases [JK90, Cos92, KK92], lattices do permit inconsistent order-
ings, i.e. unserializable execution histories. Serializability is a major concern
in database concurrency control, and conditions that lead to serialization
problems are correspondingly important. A restriction to planar lattices is
sufficient to avoid the identified serializability problem for the cited concur-
rency control algorithms, but planarity is not a necessary condition. In a
related paper, it was shown that for component-based timestamp generation
[AJ93a], a planar lattice is sufficient, but again unnecessary, for consistent
ordering.

In this paper, we develop a formal notion called the consistently-ordered
property to describe communication structures that ensure globally consis-
tent ordering decisions without resort to further global synchronization. Our
main result is showing that the consistently-ordered property is equivalent to
a standard characterization of partial orders known as the crown-free prop-
erty. In terms of the previous paragraph, we show that crown-freedom is both
a necessary and a sufficient condition to guarantee the consistently-ordered
property. The absence of crowns in partial orders has other useful applica-

tions, for example [DRW82] exploit crown-free partial orders to develop an

efficient scheduling algorithm.

The structure for this paper is as follows. In section 2, we supply a model
for event ordering in a distributed environment with a one-way communi-
cation structure. The model yields a formal definition of the consistently-
ordered property. In section 3, we introduce the crown-free property and
show that it is equivalent to the consistently-ordered property. In section 4,
we discuss the computational complexity of deciding whether a communica-
tion structure is crown-free. In section 5 we make some observations about
our results and sketch applications to multilevel security and hierarchical
databases. The reader unfamiliar with these applications may wish to read

section 5.2 first. In section 6 we conclude the paper.

2 Definitions

We begin with a remark on the notation. We have chosen to present our
formalisms with the conventions of the Z notation. For the most part, Z
notation follows typical set theory; where different, we give an explanatory
note.

Let Classes be a set, an element of which we refer to as a class. As an
example, in a multilevel security application C'lasses might correspond to all
possible security classifications, such as ‘Confidential’, ‘Secret-NATO’, and
soon. Let P = {P;, P, ...} be some finite subset of Classes, and let < be a
relation on P that is antisymmetric and transitive. To extend the multilevel
security example above, P corresponds to those security classifications that
are actually employed, and < is the dominance relation between security
classifications.

S = (P, <) is a partial order. If P; < P;, we say that P; dominates P;
which we also write P; > P;. We write P; < P;, to allow the case where
¢ =j, and P; <> P; to denote that P; and P; are incomparable. Finally, we
assume that S has a greatest element; we discuss relaxing this assumption
later in the paper.

Let Events be a set, an element of which we refer to as an event. As

4

an example, in a database application Fvents might correspond to the set
of all possible transactions. Let E = {e;, ez, ...} be some finite subset of
Fvents. To extend the database example, E typically corresponds to the set
of committed transactions.

We associate every event in E with some class in P. The (partial) function
L : FEvents — (lasses captures this mapping. Combining our prior
examples, we might associate each transaction with a particular security
classification, e.g. L(e1) = Secret means that transaction ey is classified as
‘Secret’.

Event e is said to be local to P if L(e) = P. An event e is visible at class
P if there exists a P; < P such that e is local to P;. We define Ep to be
the set of all events local to P: formally Ep = {e: Fvents| L(e) = P}.
Informally, this definition reads, ‘Ep is the set of all ¢ of type Fvents such
that L(e) is P’.

We require that local events at any given class be totally ordered. At first,
it might appear that it would be more desirable to only require a partial order
on local events. However, such an approach allows remote sites to extend the
partial order inconsistently. For example, in a transaction processing context,
our model requires each local site to produce a total serialization order for
local transactions, even though some pairs of transactions might not conflict.
The reason is that two remote sites might induce different serialization orders
by the scheduling of further transactions, thus precluding a global consistent
order.

To model the total order of local events, let Ap be a sequence of the
events in Ep. Ap is total and injective with respect to Ep; each local event
in Ep appears exactly once in Ap.

In our model, ordering decisions at class P are constrained only by order-
ing decisions at dominated classes, i.e. classes P;, where P; < P. Suppose
e1 and ey are events visible at P. If e; and e; are ordered at some class P;
where P; < P, then class P must respect that ordering. On the other hand,
if e; and e, are not ordered at any class P; where P; < P, then class P is free

to choose either ordering for the two events. Also, for the same reason that

each site must totally order local events, each site must also totally order all
visible events. We introduce some machinery to formally express this idea.

We define the subsequence predicate, whose signature is:
_C _:seq[Events] x seq[Events] — Boolean

as follows. Let A and B be two sequences of events. Then A T B is true
iff A can be obtained from B by discarding events in B.

We define global(P) to be an injective sequence of events visible at P
such that:

1. Ap C global(P)
2. YP;: Classes| P; < P e global(P;) C global(P)

The first condition on global(P) states that global(P) must respect the local
order at P. The second condition on global(P) states that global(P) must
respect the total orders chosen at all dominated classes P;. The second
constraint reads, ‘for all P; of type C'lasses where P; is dominated by P, it
is the case that global(P;) is a subsequence of global(P)’. Note that P is a
free variable in both constraints.

For a given partial order S and set of events E, there may be many
possible values global(P), i.e. global is a relation, not a function. However,
for some choices of global(P;) at P; < P, global(P) may not exist. This
possibility is exhibited in table 1 and figure 1. Suppose E = {e1, €3} and

class | Boass | Actass | global(Pugss)
1 {ei} | (er) (e1)
2 {ea} | (e2) (e2)
3 0 () (e1, €2)
4 0 () (€2, €1)
0 {

maz) does not exist

Table 1: Event And Ordering Assignments

Pmax

o

P1 P2

Py

Figure 1: Example Partial Order That Is Not Consistently-Ordered

consider the event and ordering assignments given in table 1. For the given
events and orderings, global(P,,.;) does not exist.

To provide a more concrete interpretation of the difficulty exhibited in
table 1, suppose that ¢; and e, are transactions at classes P, and P, re-
spectively. Further suppose that global(P) represents some equivalent serial
order for the execution history of all transactions visible at P. In the ex-
ample shown, the value of global(Ps) indicates that Ps serializes e; before
€2, perhaps by the scheduling of some (unshown) local transaction. Simi-
larly, the value of global(Py) indicates that Py serializes ey before 1. Since
P; <> P,;, P; and P; do not communicate and are unable to detect that a
global serialization anomaly has arisen. However, the inconsistent serializa-
tion is apparent at P,,q., and is reflected by the fact that global(P,,..) does
not exist.

The purpose of this paper is to find the largest class of partial orders that
still guarantees the existence of of global(P) for any class P, no matter what
choices are made in constructing global(P;) for dominated classes P; < P.
Informally, each class in a conforming structure can make arbitrary ordering

decisions about otherwise unordered events and still be guaranteed that the

resultant global ordering is consistent. We formalize the notion of consistent
global ordering as follows:

Definition: The partial order S is consistently-ordered at P iff for all
classes P; < P and for all possible sequences of events global(P;), there
exists at least one global(P). To extend the notion of being consistently-
ordered to the entire partial order, we say that S is consistently-ordered iff S
is consistently-ordered at the greatest element.

As an example, the partial order in figure 1 is consistently-ordered at P,
fore € 1,...,4, but not at P,,,,, as shown by the choices exhibited in table

1. Hence the partial order in figure 1 is not consistently-ordered.

3 The Crown-Free Property

Let D = (Vp, Ep) be a graph. @ = (Vg, Eg) is an induced subgraph of D
if Vo C Vp and Eg = {e : Ep|the head and tail of e belong to V;}. Infor-
mally, an induced subgraph retains as many edges as possible from the parent
graph.

A crownin S = (P, <) is a subset {x1,...,xq,} of P such that x; < «; iff
ie€l,...on,gen+l,. .., 2n,and e = (j—1modn)+1 ori = (j modn)+1.
A crown is exhibited in figure 2. (With some imagination, the ‘crown’ can
be envisioned in three dimensions.) S is crown-free iff S has no crown. The
above definition of a crown is a variation of one in [Bou85] and is similar to
[Riv85, page 531].

Crowns in directed graphs are defined analogously to crowns in partial
orders. Note that a directed acyclic graph D contains a crown iff there exists
an induced subgraph () of D such that:

1. @ is bipartite.
2. The undirected version of () is cyclic.

For example, the directed graph shown in figure 1 has a crown since the

desired) can be obtained by discarding P,,,,. To continue the example, let

S = (P, <) be the partial order whose Hasse diagram is shown in figure 1 and
D be the directed graph whose nodes are P and whose edges are <. Note
that, by definition, < is transitively closed even though the corresponding
Hasse diagram, e.g. figure 1, does not show the transitive edges for purposes
of clarity. S has a crown since if we discard P,,,, from D, we obtain the
same () as before.

We now give the main result of the paper:
Theorem 1 S s consistently-ordered iff S is crown-free.

Proof:

—: Suppose S is consistently-ordered. Then S is crown-free.

For the sake of contradiction, consider an S that has at least one crown.
Let) be such a crown. Label the minimal n nodes in () as Py,..., P, and
label the maximal n nodes in @) as P,11,..., Pa,. Define E; = {¢;} for ¢ €
L,...,n; thus A; = (e;) for ¢ € 1,...,n. Without loss of generality, relabel
the 2n nodes in () as necessary such that P;, ¢+ € n+1,...,2n, dominates
Plic1 mod ny+1 and P piod ny41, as in figure 2. Let global(P;), e € n+1,...,2n,
be (€(-1 mod n)+1> €(mod n)+1)- Let Pp,, denote the maximal element in
P. Then global(Py.;) does not exist, since we are requiring the “sequence”

global(Py,,.) to accommodate the orderings:

(e1, €2)

(€2, €3)

(€n,€1)

which is impossible. Hence S is not consistently-ordered, which is a contra-

diction. Therefore, S is crown-free.
O

«—: Suppose S is crown-free. Then S is consistently-ordered.

Pn-l—l Pn+2 Pn+3 P

P1 P2 P3 Pn

Figure 2: A Crown

For the sake of contradiction, consider a partial order S that is not
consistently-ordered. Consider P, a minimal element in P such that global(P)
does not necessarily exist.

Consider an instance where P is unable to form global(P). It must be the
case that P is faced with an inconsistent set of event ordering requirements.
FEach event ordering is of the form (e,, ¢,), and each requirement to so order
the events is imposed by some global(P;), where P; < P.

Suppose that T' is a minimal sized set of inconsistent event orderings. Let
the size of T' be n, and relabel the events as needed such that 7" may be listed

as:

(e1, €2)

(€2, €3)

(€n,€1)

We make several observations about 1T'. Since 7' is assumed to be of minimal
size, each event in the list appears exactly twice. Also, for each event ¢;,
Le;) < P.

Since T' is minimal, we have that L(e;) <> L(e;) unless i = j. To see

why, suppose that L(e;) < L(e;). Then the ordering of e; and e; is done

10

exactly once done, namely at L(e;). Hence by substituting all occurrences
of e; for e; we could reduce the size of T', which is a contradiction. Similar
arguments apply if L(e;) = L(e;) or L(e;) > L(e;).

Thus there are n incomparable classes where the n events giving rise to
T are local. We collect these n classes in the set Bj.,. Note that Bj,, 1s an
antichain.

For each <ei,e(i mod n)_|_1> in T', consider the least upper bound class of
L(e;) and L(¢(i mod n)+1)- The claim is that there are exactly n distinct least
upper bound classes for the pairs of classes in T'. To see why, suppose that
there there are more than n least upper bound classes. Then some pair of
classes in T" would have at least two least upper bounds, and from figure 1 it
is clear that S has a crown, which is a contradiction. Now suppose that there
are fewer than n least upper bound classes. Then at least two pairs in 1" must
share a least upper bound, denoted P;. These two pairs must comprise at
least 3 distinct events, and global(P;) totally orders these events. But then
T is not of minimal size, which is a contradiction.

We collect the n least upper bound classes into the set Bj,,;,. Classes in
Byign are incomparable, or else we could again argue that 7' is not minimal.
Note that By, 1s also an antichain.

Now, let () be a directed graph whose nodes are Bj,, U Bjig, and whose
edges defined by <. () is bipartite and its undirected version is cyclic. The
cycle is exhibited by the structure T'. Therefore S has a crown, namely @),

which is a contradiction. Again, figure 2 provides an illustration. O

4 Computational Complexity

We now use the results of section 3 to give a polynomial-time algorithm for
determining whether a communication structure S ensures globally consistent
event orderings. By Theorem 1, it suffices to show that S is crown-free. The
naive algorithm, explicit checking of each subset for the bipartite property
and for the existence of a cycle, is obviously exponential. Bouchitté [Bou85]

gives a polynomial-time algorithm, which we summarize below, for the crown

11

detection problem. The crown detection algorithm is based on deriving a
bipartite graph from the partial order, then using an ‘elimination scheme’ to
examine this bipartite graph.

The split graph of a partial order (P, <) is the bipartite graph G =
(V,V', E) where each x € P is associated with one vertex v € V and one
vertex v/ € V'; there is an edge (v,w’) in F if and only if # < y where
v is associated with « and w’ is associated with y. Bouchitté [Bou85] and
Trotter [Tro81] establish that crowns in (P, <) give rise to crowns in the
split graph and that any crown in the split graph having more than 4 nodes
comes from a crown in (P, <). Thus, it suffices to check (P, <) for crowns of
size exactly four and then check the split graph, which is bipartite, for the
existence of crowns.

Note that a bipartite graph has a crown of size greater than 4 if and only
if it has a chordless cycle of length greater than 4. A bipartite graph in which
every cycle of length greater than 4 has a chord is called chordal. Bouchitté
shows that bipartite graph G is chordal if and only if the following iterative

procedure results in a graph with no edges:

while not done do
(1) if G contains a vertex with only one neighbor,
then remove such a vertex (and the incident edge)
(2) else if G contains an edge (x,y) such that every
neighbor of x is adjacent to each neighbor of y
and vice-versa then remove such an edge (i.e.,
remove the two vertices and all incident edges).
(3) else done:= true
1f G has no edges
then return (CHORDAL)
else return (NOT CHORDAL)

Let G and G’ denote the graph at the beginning and end, respectively, of

an iteration. The correctness of the algorithm follows from the facts that

12

Every chordal graph has an edge of the type described in condition (2)
[GGT8]

G is chordal iff GG’ is chordal [Bou85]

No edge can be eliminated from a chordless cycle of length greater than

4 [Bou85, GGT8]

Let n be the number of nodes and m the number of edges in the graph
arising from (P, <). Checking for crowns of size 4 can be done by brute
force in time O(n*). The split graph has 2n nodes and m edges and can be
constructed in time O(m). The elimination algorithm has at most 2n + m
iterations. In the worst case, each iteration involves time O(n) to search for
a vertex that can be eliminated plus O(m) checks for whether an edge can be
eliminated, each of which takes time O(n?). Thus, the total running time is
O(m?n?) = O(n®). In practice, it should be possible to substantially improve
the running time by precomputing a list of candidates for elimination, then
updating this list on each iteration of the loop.

We remark that the result of major importance is that the complexity
of crown detection in partial orders is polynomial rather than NP-complete.
We do not address the complexity of crown detection in arbitrary directed
graphs since the issue is not directly relevant to this paper. However, given
the variance in complexity results for standard graph problems dependent
on whether the graph in question corresponds to a partial order [Moh], it is

possible that crown detection in arbitrary directed graphs is NP-complete.

5 Discussion

In this section, we make some observations on our results and discuss how our
results can be applied to problems in two areas, namely multilevel security

and hierarchical databases.

13

5.1 Observations

For the analysis given so far, we have assumed that the partial order S =
(P, <) has a greatest element. (Recall that a partial order has a greatest
element iff the partial order has a unique maximal element). The reason
for the assumption is as follows. Suppose S has no greatest element, that S
has at least one crown, and that for every crown () in S, at least one node
in () is a maximal element in S. In this scenario, there is clearly still the
possibility for globally inconsistent event ordering, but no node in S is in a
position to observe the inconsistency. This lack of an observer complicates
the discussion, and so, for our analysis, we assumed that S had a greatest
element.

For practical purposes, it is not that important whether S has a greatest
element or not. In either case, if S has a crown, then globally inconsistent
ordering decisions are possible, if not necessarily observable.

Our second set of observations relates the crown-free property to some
other typical classifications of partial orders. An often employed special case
of a partial order is a lattice. In a lattice, each pair of classes has a unique least
upper bound and a unique greatest lower bound. Lattices are not necessarily
crown-free, as can be seen by considering the subset lattice on a set with
three elements. (See [AJ93a] or [AJ93b] for an elaboration of this example).

Another intuitively appealing special case of a partial order is a planar
partial order. A partial order is planar if its Hasse diagram is planar and
each edge in the Hasse diagram is monotone, i.e. edges are prohibited from
‘looping around’ the outside of the diagram. (See [Riv85, The Diagram] for
a fuller explanation.) By consulting the results of [Riv85], where the types of
structures that all nonplanar partial orders must contain are enumerated, we
note that the structure @) in figure 2 is on the proscribed list [Riv85, figure
18, page 121]. Thus we can be sure that all planar partial orders are crown-
free. One can also see directly that the structure in figure 2 is nonplanar.
The existence of other structures on the list in [Riv85] demonstrates that

although the restriction to planarity is a sufficient condition for a partial

14

order to be consistently-ordered, it is not a necessary condition.

5.2 Applications

A primary concern in multilevel security is information leakage, such as in-
formation in a ‘Secret’ database leaking to some process executing at the
‘Unclassified’ level. Leakage can occur in two ways - directly through an
overt operation such as reading a data item or indirectly through a covert
or signaling channel. Direct leakage can be accounted for by following so-
called mandatory access control policies such as the Bell-Lapadula model
[BL76, Den82].

Indirect leakage is more troublesome. In a covert or signaling channel,
information leaks by means of contention over some resource [BL76, Den82,
Lam73]. An example channel is provided by the read and write locks in a
conventional database. In a database with a locking protocol for concurrency
control, a read (or write) of a data item must be preceded by the acquisition
of a read (or write) lock. A request for a write lock, potentially made by a
transaction at the ‘Unclassified’ level, is delayed if a read lock has already
been granted, perhaps to a transaction at the ‘Secret’ level. The delay ex-
perienced by the ‘Unclassified’ transaction can be used to infer activity at
the ‘Secret’ level. Hence ‘Secret’ information leaks to the ‘Unclassified’ level
if ‘Secret’ transactions can obtain standard read locks on ‘Unclassified” data
items.

The problem of covert or signaling channels has been extensively studied.
One general approach is to physically separate components at one security
level from components at another, thus simplifying the argument that indi-
rect channels do not arise. A natural outgrowth of this trend is a distributed
implementation with the type of one-directional communication structure
that is the subject of this paper. In particular, multilevel, replicated secure
databases, first identified in [Com83], lend themselves to distributed imple-
mentations.

Candidate concurrency control algorithms for multilevel, replicated se-

15

cure databases appear in [JK90, Cos92, KK92]. For the most part, these
algorithms assume that the communication structure between different se-
curity classes is a lattice for reasons outlined in [Den82]. However, as noted
above, some lattices have crowns, and hence without additional synchro-
nization information, distributed implementations of multilevel, replicated
databases cannot guarantee serializable execution transaction histories for
lattices. Recognition of this problem in the published concurrency control
algorithms was in fact the beginning of the present paper. Given the interest
in constructing multilevel systems, a precise demarcation of the problematic
structures was clearly required. Solutions to the dilemma are to ensure that
the communication structure is crown-free, to modify the structure to be
crown-free if it is not, or to add additional synchronization measures, such
as a global clock.

Communication structures similar to those in multilevel security appear
in hierarchical databases [HC86]. Hierarchical databases partition a global
database by the access characteristic of transactions. A typical hierarchi-
cal database might have a main database containing ‘raw’ information, and
derivative databases where transactions read, but do not write the raw data.
The reader is referred to [HC86] and [AJ93a] for more explanation of hierar-
chical databases.

Hierarchical databases have no information leakage requirements. How-
ever, it is still undesirable for a derivative database to interfere with the
concurrency control at a main database. Such interference could take the
form of holding read locks on raw data items or forcing transactions at a
main database to abort to preserve serializability in a timestamp-ordering
protocol. The results of this paper can be applied to hierarchical databases
as follows: if the communication structure of a hierarchical database is re-
stricted to be crown-free, then a distributed implementation that guarantees
globally serializable transaction histories is possible without the introduction

of additional synchronization information.

16

6 Conclusion

Networks in which information flow is restricted to one direction in a dis-
tributed network figure prominently in applications such as multilevel se-
curity and hierarchical databases. In such networks, the requirements for
event ordering differ substantially from unrestricted networks, and indeed
improvements in ordering decisions are possible.

In this paper, we have defined the consistently-ordered property to de-
scribe communication structures where local ordering decisions are guaran-
teed to be globally consistent without the introduction of additional synchro-
nization, such as a centralized clock. For our main result, we employed the
crown-free property of partial orders to prove that a crown-free partial order
is equivalent to a consistently-ordered one. Fortunately, crown detection can
be carried out in polynomial time.

The results in this paper can be applied in any application with one-
directional communication structures, such as multilevel security or hier-
archical databases, to ensure that distributed applications enjoy desirable

properties, such as serializable execution histories.

Future Work

In [AJ93a], a component-based, timestamping algorithm was developed for
planar lattices. The results of this paper indicate that the timestamping algo-
rithm applies to crown-free partial orders. In [HC86], a proof technique called
the partitioned synchronization rule was presented for demonstrating the cor-
rectness of database concurrency control algorithms. The proof technique
was proven for communication structures that are restricted to semitrees.
The results of this paper indicate that the partitioned-synchronization rule
applies to crown-free partial orders. Items for future work are to verify these

two conjectures.

17

Acknowledgements

It is a pleasure to acknowledge Ivan Rival for sharing his expertise on partial
orders, John McDermott for discussing the problem of consistent ordering,
and Jeff Salowe for considering the computational aspects of crown detec-

tion.

References

[AJ93a] Paul Ammann and Sushil Jajodia. Distributed timestamp gener-
ation in planar lattice networks. ACM Transactions on Computer

Systems, August 1993. To appear.

[AJ93b] Paul Ammann and Sushil Jajodia. Planar lattice security structures
for multi-level replicated databases. In Seventh [FIP Working Con-
ference on Database Security, Huntsville, AL, September 1993. To

appear.

[BL76] D.E. Bell and L.J. LaPadula. Secure computer systems: Unified
exposition and multics interpretation. Technical Report MTR-2997,
The Mitre Corporation, Bedford, MA, March 1976.

[Bou85] V. Bouchitté. Chordal bipartite graphs and crowns. Order, 2:119-
122, 1985.

[Com83] Committee on Multilevel Data Management Security, Air Force
Studies Board, National Research Council, Washington, DC. Mult:-
level Data Management Security, 1983.

[Cos92] Oliver Costich. Transaction processing using an untrusted sched-
uler in a multilevel database with replicated architecture. In Carl
Landwehr and Sushil. Jajodia, editors, Database Security V: Status
and Prospects, pages 173-190. North Holland, 1992.

18

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-

Wesley, Reading, MA, 1982.

[DRW8&2] D. Duffus, I. Rival, and P. Winkler. Minimizing setups for cycle-

[GGTS]

[HCS6]

[JK90]

[KK92]

free ordered sets. Proceedings of the American Mathematical Society,

85(4):509-513, August 1982

M.C. Golumbic and C.F. Goss. Perfect elimination and chordal bi-
partite graphs. Journal of Graph Theory, 2:155-163, 1978.

M. Hsu and A. Chan. Partitioned two-phase locking. ACM Trans-
actions on Database Systems, 11(4):431-446, December 1986.

Sushil Jajodia and Boris Kogan. Transaction processing in
multilevel-secure databases using replicated architecture. In Pro-

ceedings of the 1990 Symposium on Research in Security and Privacy,
Oakland, CA, May 1990.

LLE. Kang and T.F. Keefe. On transaction processing for multilevel
secure replicated databases. In Proceedings Furopean Symposium on
Research in Computer Security, pages 329-347, Toulouse, France,
1992. Springer-Verlag. Lecture Notes in Computer Science, Volume
6438.

[Lam73] B.W. Lampson. A note on the confinement problem. Communica-

tions of the ACM, 16(10):613-615, 1973.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-

[Moh]

tributed system. Communications of the ACM, 21(7):558-565, July
1978.

R. Mohring. Algorithmic aspects of comparability graphs and inter-
val graphs. In [Riv85]. 41-101.

19

[Riv85] Ivan Rival, editor. Graphs and Order: The Role of Graphs in the
Theory of Ordered Sets. D. Reidel Publishing Company, Dordrecht,
Holland, 1985.

[Tro81] W.T. Trotter Jr. Stacks and splits of partially ordered sets. Discrete
Math., 35:229-256, 1981.

20

