
Globally Consistent Event Ordering

In One-Directional Distributed

Environments

Paul Ammann � Sushil Jajodia y

Center For Secure Information Systems

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030

Phyllis Frankl z

Computer Science Department

Polytechnic University, Brooklyn, NY 11201

Technical Report ISSE-TR-93-104

August, 1993

�Supported in part by the National Science Foundation under grant CCR-9202270.
ySupported in part by a DARPA grant administered by the O�ce of Naval Research

under grant N0014-92-J-4038.
zSupported in part by NSF Grant CCR-9206910 and by the New York State Science

and Technology Foundation Center for Advanced Technology program.



Abstract

We consider communication structures for event ordering algorithms in dis-

tributed environments where information 
ows only in one direction. Exam-

ple applications are multilevel security and hierarchical databases. Although

the most general one-directional communication structure is a partial order,

partial orders do not enjoy the property of being consistently-ordered, a for-

malisation of the notion that globally consistent event ordering is ensured.

Our main result is that the crown-free property is necessary and su�cient for

a communication structure to be consistently-ordered. We discuss the com-

putational complexity of detecting crowns and sketch typical applications.



Index Terms

Crown-free partial orders, Distributed networks, Event ordering, Graph al-

gorithms, Hierarchical databases, Lamport clocks, Multilevel databases, Se-

curity and protection.



Address for Correspondence

Point of Contact Paul Ammann

Address Department of Information and Software Systems Engineering

S&T II, Room 430

George Mason University, Fairfax, VA 22030

Email pammann@isse.gmu.edu

O�ce (703) 993-1660

Dept. Secretary (703) 993-1640



1 Introduction

We consider the ordering of events in a distributed environment. For our

purposes, a distributed environment is one where a set of events compose

some computation, the events occur at a network of sites, and sites com-

municate by passing messages. Some applications impose restrictions on the

communication structure, and these restrictions can be exploited to make

more e�cient ordering decisions. In this paper we consider restrictions that

force communication to occur in one direction only. Our particular focus is

to determine the largest class of such communication structures that are ca-

pable of guaranteeing consistent ordering decisions without resort to further

global synchronization.

A common task in a distributed environment is to decide the ordering

of any pair of events. A standard approach to this problem is Lamport's

timestamp algorithm [Lam78], which can be used to impose a partial order

on events. The basic idea behind Lamport's algorithm is that each event

at a site is marked with a unique local timestamp. Timestamps are drawn

from some monotonically increasing sequence, such as an integer counter. If

site A sends a message to site B, then A includes the most recent timestamp

at A in the message. Upon receipt of the message, B increases its current

timestamp to the timestamp value in the message, if necessary. The ordering

of any pair of events is determined in part by consulting the corresponding

timestamps and in part by consulting the record of message receipts.

Given events e1 and e2, Lamport's algorithm yields three possible out-

comes, namely that e1 precedes e2, that e2 precedes e1, or that e1 and e2 are

concurrent. The interpretation of the last possibility is that it is unknown,

and perhaps unimportant, which of e1 or e2 `really' happened �rst. If all

events must be ordered, concurrent events can be forced into a partial order

according to the corresponding timestamps. Resolving the case of two iden-

tical timestamp values with a static precedence order on sites yields a total

order.

A motivation for this paper is the observation that some of the order-

1



ing decisions made to obtain a total order are inherently arti�cial, and so,

unsurprisingly, no single algorithm suits all applications. For example, in

a transaction processing application, suppose that a site receives a message

about a transaction that a timestamping algorithm determines to be far in

the past at the receiving site. If the site is to accept the message, then the

site may be obliged to unwind all later transactions, incorporate the e�ect of

the remote transaction, and then redo the unwound transactions. From the

perspective of the receiving site, it would be more e�cient for the ordering

of the event to be determined, at least in part, by the clock at the site that

receives the message rather than by the clock at the site where the event

occurred.

Allowing event ordering to be determined upon receipt of a corresponding

message at a given site can lead to inconsistencies. For example, suppose that

event e1 occurs at site A and, concurrently, event e2 occurs at site B. Let

A send a message about e1 to B and B send a message about e2 to A. The

ordering choices that involve the least rework are for A to order e1 prior to

e2 and for B to order e2 prior to e1. Each local order is consistent, but there

is no global consistent order.

This simple example shows that if ordering of otherwise concurrent events

is to be done by the site receiving a message, the structure by which sites

communicate must be antisymmetric. Otherwise, in the absence of some

other global synchronization mechanism, the type of inconsistency exhibited

above can arise. It is not di�cult to extend the above example to show

that the transitive closure of the communication structure must also be an-

tisymmetric, and hence an acyclic communication structure is necessary in

general.

Although a restriction to acyclic communication structures might seem

too strong to be useful, there are applications, such as multilevel security

[BL76, Den82] and hierarchical databases [HC86], that mandate such restric-

tions on information 
ow. For example, in a multilevel security environment,

suppose that site A encapsulates a database at the `Secret' level and site B

encapsulates a database at the `Unclassi�ed' level. Communication from A

2



to B is prohibited to prevent the leakage of classi�ed information. It is satis-

factory for A to make an ordering decision about an event at B upon receipt

of the corresponding message since B has no opportunity to make a con
ict-

ing decision. Indeed, the existence of events at A, as well as any information

that depends on events at A, must be hidden from B to satisfy the security

requirements.

A general acyclic structure is a partial order, but it is known that partial

orders by themselves do not lead to global consistent orderings, as is reviewed

by example later in the paper (c.f. �g. 1). In the multilevel security do-

main, a restriction on partial orders to lattices is common [BL76, Den82]. A

lattice is a partial order in which each pair of sites has a unique least upper

bound and and a unique greatest lower bound. Unfortunately, lattices by

themselves also do not lead to consistent orderings. In [AJ93b], it was shown

that for a variety of concurrency control algorithms for multilevel, replicated,

secure databases [JK90, Cos92, KK92], lattices do permit inconsistent order-

ings, i.e. unserializable execution histories. Serializability is a major concern

in database concurrency control, and conditions that lead to serialization

problems are correspondingly important. A restriction to planar lattices is

su�cient to avoid the identi�ed serializability problem for the cited concur-

rency control algorithms, but planarity is not a necessary condition. In a

related paper, it was shown that for component-based timestamp generation

[AJ93a], a planar lattice is su�cient, but again unnecessary, for consistent

ordering.

In this paper, we develop a formal notion called the consistently-ordered

property to describe communication structures that ensure globally consis-

tent ordering decisions without resort to further global synchronization. Our

main result is showing that the consistently-ordered property is equivalent to

a standard characterization of partial orders known as the crown-free prop-

erty. In terms of the previous paragraph, we show that crown-freedom is both

a necessary and a su�cient condition to guarantee the consistently-ordered

property. The absence of crowns in partial orders has other useful applica-

tions, for example [DRW82] exploit crown-free partial orders to develop an

3



e�cient scheduling algorithm.

The structure for this paper is as follows. In section 2, we supply a model

for event ordering in a distributed environment with a one-way communi-

cation structure. The model yields a formal de�nition of the consistently-

ordered property. In section 3, we introduce the crown-free property and

show that it is equivalent to the consistently-ordered property. In section 4,

we discuss the computational complexity of deciding whether a communica-

tion structure is crown-free. In section 5 we make some observations about

our results and sketch applications to multilevel security and hierarchical

databases. The reader unfamiliar with these applications may wish to read

section 5.2 �rst. In section 6 we conclude the paper.

2 De�nitions

We begin with a remark on the notation. We have chosen to present our

formalisms with the conventions of the Z notation. For the most part, Z

notation follows typical set theory; where di�erent, we give an explanatory

note.

Let Classes be a set, an element of which we refer to as a class. As an

example, in a multilevel security application Classesmight correspond to all

possible security classi�cations, such as `Con�dential', `Secret-NATO', and

so on. Let P = fP1; P2; :::g be some �nite subset of Classes, and let < be a

relation on P that is antisymmetric and transitive. To extend the multilevel

security example above, P corresponds to those security classi�cations that

are actually employed, and < is the dominance relation between security

classi�cations.

S = (P; <) is a partial order. If Pj < Pi, we say that Pi dominates Pj,

which we also write Pi > Pj . We write Pj � Pi, to allow the case where

i = j, and Pj <> Pi to denote that Pi and Pj are incomparable. Finally, we

assume that S has a greatest element; we discuss relaxing this assumption

later in the paper.

Let Events be a set, an element of which we refer to as an event. As

4



an example, in a database application Events might correspond to the set

of all possible transactions. Let E = fe1; e2; :::g be some �nite subset of

Events. To extend the database example, E typically corresponds to the set

of committed transactions.

We associate every event inE with some class inP. The (partial) function

L : Events ! Classes captures this mapping. Combining our prior

examples, we might associate each transaction with a particular security

classi�cation, e.g. L(e1) = Secret means that transaction e1 is classi�ed as

`Secret'.

Event e is said to be local to P if L(e) = P . An event e is visible at class

P if there exists a Pj � P such that e is local to Pj . We de�ne EP to be

the set of all events local to P : formally EP = fe : Events j L(e) = Pg.

Informally, this de�nition reads, `EP is the set of all e of type Events such

that L(e) is P '.

We require that local events at any given class be totally ordered. At �rst,

it might appear that it would be more desirable to only require a partial order

on local events. However, such an approach allows remote sites to extend the

partial order inconsistently. For example, in a transaction processing context,

our model requires each local site to produce a total serialization order for

local transactions, even though some pairs of transactions might not con
ict.

The reason is that two remote sites might induce di�erent serialization orders

by the scheduling of further transactions, thus precluding a global consistent

order.

To model the total order of local events, let AP be a sequence of the

events in EP . AP is total and injective with respect to EP ; each local event

in EP appears exactly once in AP .

In our model, ordering decisions at class P are constrained only by order-

ing decisions at dominated classes, i.e. classes Pj , where Pj � P . Suppose

e1 and e2 are events visible at P . If e1 and e2 are ordered at some class Pj

where Pj < P , then class P must respect that ordering. On the other hand,

if e1 and e2 are not ordered at any class Pj where Pj < P , then class P is free

to choose either ordering for the two events. Also, for the same reason that

5



each site must totally order local events, each site must also totally order all

visible events. We introduce some machinery to formally express this idea.

We de�ne the subsequence predicate, whose signature is:

v : seq[Events]� seq[Events]! Boolean

as follows. Let A and B be two sequences of events. Then A v B is true

i� A can be obtained from B by discarding events in B.

We de�ne global(P ) to be an injective sequence of events visible at P

such that:

1. AP v global(P )

2. 8Pj : Classes j Pj < P � global(Pj) v global(P )

The �rst condition on global(P ) states that global(P ) must respect the local

order at P . The second condition on global(P ) states that global(P ) must

respect the total orders chosen at all dominated classes Pj . The second

constraint reads, `for all Pj of type Classes where Pj is dominated by P , it

is the case that global(Pj) is a subsequence of global(P )'. Note that P is a

free variable in both constraints.

For a given partial order S and set of events E, there may be many

possible values global(P ), i.e. global is a relation, not a function. However,

for some choices of global(Pj) at Pj < P , global(P ) may not exist. This

possibility is exhibited in table 1 and �gure 1. Suppose E = fe1; e2g and

class Eclass Aclass global(Pclass)

1 fe1g he1i he1i

2 fe2g he2i he2i

3 ; hi he1; e2i

4 ; hi he2; e1i

max ; hi does not exist

Table 1: Event And Ordering Assignments

6



Pmax

P3 P4

P1 P2

�
�

�
�

�
�

��+

Q
Q
Q
Q
Q
Q
QQs

?

PPPPPPPPPPPPPPPq

���������������) ?

Figure 1: Example Partial Order That Is Not Consistently-Ordered

consider the event and ordering assignments given in table 1. For the given

events and orderings, global(Pmax) does not exist.

To provide a more concrete interpretation of the di�culty exhibited in

table 1, suppose that e1 and e2 are transactions at classes P1 and P2, re-

spectively. Further suppose that global(P ) represents some equivalent serial

order for the execution history of all transactions visible at P . In the ex-

ample shown, the value of global(P3) indicates that P3 serializes e1 before

e2, perhaps by the scheduling of some (unshown) local transaction. Simi-

larly, the value of global(P4) indicates that P4 serializes e2 before e1. Since

P3 <> P4, P3 and P4 do not communicate and are unable to detect that a

global serialization anomaly has arisen. However, the inconsistent serializa-

tion is apparent at Pmax, and is re
ected by the fact that global(Pmax) does

not exist.

The purpose of this paper is to �nd the largest class of partial orders that

still guarantees the existence of of global(P ) for any class P , no matter what

choices are made in constructing global(Pj) for dominated classes Pj < P .

Informally, each class in a conforming structure can make arbitrary ordering

decisions about otherwise unordered events and still be guaranteed that the

7



resultant global ordering is consistent. We formalize the notion of consistent

global ordering as follows:

De�nition: The partial order S is consistently-ordered at P i� for all

classes Pj < P and for all possible sequences of events global(Pj), there

exists at least one global(P ). To extend the notion of being consistently-

ordered to the entire partial order, we say that S is consistently-ordered i� S

is consistently-ordered at the greatest element.

As an example, the partial order in �gure 1 is consistently-ordered at Pi
for i 2 1; : : : ; 4, but not at Pmax, as shown by the choices exhibited in table

1. Hence the partial order in �gure 1 is not consistently-ordered.

3 The Crown-Free Property

Let D = (VD; ED) be a graph. Q = (VQ; EQ) is an induced subgraph of D

if VQ � VD and EQ = fe : EDjthe head and tail of e belong to VQg. Infor-

mally, an induced subgraph retains as many edges as possible from the parent

graph.

A crown in S = (P; <) is a subset fx1; : : : ; x2ng of P such that xi < xj i�

i 2 1; : : : ; n, j 2 n+1; : : : ; 2n, and i = (j�1 mod n)+1 or i = (j mod n)+1.

A crown is exhibited in �gure 2. (With some imagination, the `crown' can

be envisioned in three dimensions.) S is crown-free i� S has no crown. The

above de�nition of a crown is a variation of one in [Bou85] and is similar to

[Riv85, page 531].

Crowns in directed graphs are de�ned analogously to crowns in partial

orders. Note that a directed acyclic graph D contains a crown i� there exists

an induced subgraph Q of D such that:

1. Q is bipartite.

2. The undirected version of Q is cyclic.

For example, the directed graph shown in �gure 1 has a crown since the

desired Q can be obtained by discarding Pmax. To continue the example, let

8



S = (P; <) be the partial order whose Hasse diagram is shown in �gure 1 and

D be the directed graph whose nodes are P and whose edges are <. Note

that, by de�nition, < is transitively closed even though the corresponding

Hasse diagram, e.g. �gure 1, does not show the transitive edges for purposes

of clarity. S has a crown since if we discard Pmax from D, we obtain the

same Q as before.

We now give the main result of the paper:

Theorem 1 S is consistently-ordered i� S is crown-free.

Proof:

!: Suppose S is consistently-ordered. Then S is crown-free.

For the sake of contradiction, consider an S that has at least one crown.

Let Q be such a crown. Label the minimal n nodes in Q as P1; : : : ; Pn and

label the maximal n nodes in Q as Pn+1; : : : ; P2n. De�ne Ei = feig for i 2

1; : : : ; n; thus Ai = heii for i 2 1; : : : ; n. Without loss of generality, relabel

the 2n nodes in Q as necessary such that Pi, i 2 n+1; : : : ; 2n, dominates

P(i�1 mod n)+1 and P(i mod n)+1, as in �gure 2. Let global(Pi), i 2 n+1; : : : ; 2n,

be he(i�1 mod n)+1; e(i mod n)+1i. Let Pmax denote the maximal element in

P. Then global(Pmax) does not exist, since we are requiring the \sequence"

global(Pmax) to accommodate the orderings:

he1; e2i

he2; e3i

...

hen; e1i

which is impossible. Hence S is not consistently-ordered, which is a contra-

diction. Therefore, S is crown-free.

2

 : Suppose S is crown-free. Then S is consistently-ordered.

9



�
P1

�
Pn+1

�
P2

�
Pn+2

�
P3

�
Pn+3

�
Pn

�
P2n

� � �

?

A
A
A
A
A
A
A
AU?

A
A
A
A
A
A
A
AU?

A
A
A
A
A
A
A
AU

A
A
A
A
A
A
A
AU?

������������������������)

Figure 2: A Crown

For the sake of contradiction, consider a partial order S that is not

consistently-ordered. Consider P , a minimal element inP such that global(P )

does not necessarily exist.

Consider an instance where P is unable to form global(P ). It must be the

case that P is faced with an inconsistent set of event ordering requirements.

Each event ordering is of the form hex; eyi, and each requirement to so order

the events is imposed by some global(Pj), where Pj < P .

Suppose that T is a minimal sized set of inconsistent event orderings. Let

the size of T be n, and relabel the events as needed such that T may be listed

as:

he1; e2i

he2; e3i

...

hen; e1i

We make several observations about T . Since T is assumed to be of minimal

size, each event in the list appears exactly twice. Also, for each event ei,

L(ei) < P .

Since T is minimal, we have that L(ei) <> L(ej) unless i = j. To see

why, suppose that L(ei) < L(ej). Then the ordering of ei and ej is done

10



exactly once done, namely at L(ej). Hence by substituting all occurrences

of ej for ei we could reduce the size of T , which is a contradiction. Similar

arguments apply if L(ei) = L(ej) or L(ei) > L(ej).

Thus there are n incomparable classes where the n events giving rise to

T are local. We collect these n classes in the set Blow. Note that Blow is an

antichain.

For each hei; e(i mod n)+1i in T , consider the least upper bound class of

L(ei) and L(e(i mod n)+1). The claim is that there are exactly n distinct least

upper bound classes for the pairs of classes in T . To see why, suppose that

there there are more than n least upper bound classes. Then some pair of

classes in T would have at least two least upper bounds, and from �gure 1 it

is clear that S has a crown, which is a contradiction. Now suppose that there

are fewer than n least upper bound classes. Then at least two pairs in T must

share a least upper bound, denoted Pj . These two pairs must comprise at

least 3 distinct events, and global(Pj) totally orders these events. But then

T is not of minimal size, which is a contradiction.

We collect the n least upper bound classes into the set Bhigh. Classes in

Bhigh are incomparable, or else we could again argue that T is not minimal.

Note that Bhigh is also an antichain.

Now, let Q be a directed graph whose nodes are Blow [ Bhigh and whose

edges de�ned by <. Q is bipartite and its undirected version is cyclic. The

cycle is exhibited by the structure T . Therefore S has a crown, namely Q,

which is a contradiction. Again, �gure 2 provides an illustration. 2

4 Computational Complexity

We now use the results of section 3 to give a polynomial-time algorithm for

determining whether a communication structure S ensures globally consistent

event orderings. By Theorem 1, it su�ces to show that S is crown-free. The

naive algorithm, explicit checking of each subset for the bipartite property

and for the existence of a cycle, is obviously exponential. Bouchitt�e [Bou85]

gives a polynomial-time algorithm, which we summarize below, for the crown

11



detection problem. The crown detection algorithm is based on deriving a

bipartite graph from the partial order, then using an `elimination scheme' to

examine this bipartite graph.

The split graph of a partial order (P; <) is the bipartite graph G =

(V; V 0; E) where each x 2 P is associated with one vertex v 2 V and one

vertex v0 2 V 0; there is an edge (v;w0) in E if and only if x < y where

v is associated with x and w0 is associated with y. Bouchitt�e [Bou85] and

Trotter [Tro81] establish that crowns in (P; <) give rise to crowns in the

split graph and that any crown in the split graph having more than 4 nodes

comes from a crown in (P; <). Thus, it su�ces to check (P; <) for crowns of

size exactly four and then check the split graph, which is bipartite, for the

existence of crowns.

Note that a bipartite graph has a crown of size greater than 4 if and only

if it has a chordless cycle of length greater than 4. A bipartite graph in which

every cycle of length greater than 4 has a chord is called chordal. Bouchitt�e

shows that bipartite graph G is chordal if and only if the following iterative

procedure results in a graph with no edges:

while not done do

(1) if G contains a vertex with only one neighbor,

then remove such a vertex (and the incident edge)

(2) else if G contains an edge (x,y) such that every

neighbor of x is adjacent to each neighbor of y

and vice-versa then remove such an edge (i.e.,

remove the two vertices and all incident edges).

(3) else done:= true

if G has no edges

then return (CHORDAL)

else return (NOT CHORDAL)

Let G and G0 denote the graph at the beginning and end, respectively, of

an iteration. The correctness of the algorithm follows from the facts that

12



Every chordal graph has an edge of the type described in condition (2)

[GG78]

G is chordal i� G0 is chordal [Bou85]

No edge can be eliminated from a chordless cycle of length greater than

4 [Bou85, GG78]

Let n be the number of nodes and m the number of edges in the graph

arising from (P; <). Checking for crowns of size 4 can be done by brute

force in time O(n4). The split graph has 2n nodes and m edges and can be

constructed in time O(m). The elimination algorithm has at most 2n +m

iterations. In the worst case, each iteration involves time O(n) to search for

a vertex that can be eliminated plus O(m) checks for whether an edge can be

eliminated, each of which takes time O(n2). Thus, the total running time is

O(m2n2) = O(n6). In practice, it should be possible to substantially improve

the running time by precomputing a list of candidates for elimination, then

updating this list on each iteration of the loop.

We remark that the result of major importance is that the complexity

of crown detection in partial orders is polynomial rather than NP-complete.

We do not address the complexity of crown detection in arbitrary directed

graphs since the issue is not directly relevant to this paper. However, given

the variance in complexity results for standard graph problems dependent

on whether the graph in question corresponds to a partial order [Moh], it is

possible that crown detection in arbitrary directed graphs is NP-complete.

5 Discussion

In this section, we make some observations on our results and discuss how our

results can be applied to problems in two areas, namely multilevel security

and hierarchical databases.

13



5.1 Observations

For the analysis given so far, we have assumed that the partial order S =

(P; <) has a greatest element. (Recall that a partial order has a greatest

element i� the partial order has a unique maximal element). The reason

for the assumption is as follows. Suppose S has no greatest element, that S

has at least one crown, and that for every crown Q in S, at least one node

in Q is a maximal element in S. In this scenario, there is clearly still the

possibility for globally inconsistent event ordering, but no node in S is in a

position to observe the inconsistency. This lack of an observer complicates

the discussion, and so, for our analysis, we assumed that S had a greatest

element.

For practical purposes, it is not that important whether S has a greatest

element or not. In either case, if S has a crown, then globally inconsistent

ordering decisions are possible, if not necessarily observable.

Our second set of observations relates the crown-free property to some

other typical classi�cations of partial orders. An often employed special case

of a partial order is a lattice. In a lattice, each pair of classes has a unique least

upper bound and a unique greatest lower bound. Lattices are not necessarily

crown-free, as can be seen by considering the subset lattice on a set with

three elements. (See [AJ93a] or [AJ93b] for an elaboration of this example).

Another intuitively appealing special case of a partial order is a planar

partial order. A partial order is planar if its Hasse diagram is planar and

each edge in the Hasse diagram is monotone, i.e. edges are prohibited from

`looping around' the outside of the diagram. (See [Riv85, The Diagram] for

a fuller explanation.) By consulting the results of [Riv85], where the types of

structures that all nonplanar partial orders must contain are enumerated, we

note that the structure Q in �gure 2 is on the proscribed list [Riv85, �gure

18, page 121]. Thus we can be sure that all planar partial orders are crown-

free. One can also see directly that the structure in �gure 2 is nonplanar.

The existence of other structures on the list in [Riv85] demonstrates that

although the restriction to planarity is a su�cient condition for a partial

14



order to be consistently-ordered, it is not a necessary condition.

5.2 Applications

A primary concern in multilevel security is information leakage, such as in-

formation in a `Secret' database leaking to some process executing at the

`Unclassi�ed' level. Leakage can occur in two ways - directly through an

overt operation such as reading a data item or indirectly through a covert

or signaling channel. Direct leakage can be accounted for by following so-

called mandatory access control policies such as the Bell-Lapadula model

[BL76, Den82].

Indirect leakage is more troublesome. In a covert or signaling channel,

information leaks by means of contention over some resource [BL76, Den82,

Lam73]. An example channel is provided by the read and write locks in a

conventional database. In a database with a locking protocol for concurrency

control, a read (or write) of a data item must be preceded by the acquisition

of a read (or write) lock. A request for a write lock, potentially made by a

transaction at the `Unclassi�ed' level, is delayed if a read lock has already

been granted, perhaps to a transaction at the `Secret' level. The delay ex-

perienced by the `Unclassi�ed' transaction can be used to infer activity at

the `Secret' level. Hence `Secret' information leaks to the `Unclassi�ed' level

if `Secret' transactions can obtain standard read locks on `Unclassi�ed' data

items.

The problem of covert or signaling channels has been extensively studied.

One general approach is to physically separate components at one security

level from components at another, thus simplifying the argument that indi-

rect channels do not arise. A natural outgrowth of this trend is a distributed

implementation with the type of one-directional communication structure

that is the subject of this paper. In particular, multilevel, replicated secure

databases, �rst identi�ed in [Com83], lend themselves to distributed imple-

mentations.

Candidate concurrency control algorithms for multilevel, replicated se-

15



cure databases appear in [JK90, Cos92, KK92]. For the most part, these

algorithms assume that the communication structure between di�erent se-

curity classes is a lattice for reasons outlined in [Den82]. However, as noted

above, some lattices have crowns, and hence without additional synchro-

nization information, distributed implementations of multilevel, replicated

databases cannot guarantee serializable execution transaction histories for

lattices. Recognition of this problem in the published concurrency control

algorithms was in fact the beginning of the present paper. Given the interest

in constructing multilevel systems, a precise demarcation of the problematic

structures was clearly required. Solutions to the dilemma are to ensure that

the communication structure is crown-free, to modify the structure to be

crown-free if it is not, or to add additional synchronization measures, such

as a global clock.

Communication structures similar to those in multilevel security appear

in hierarchical databases [HC86]. Hierarchical databases partition a global

database by the access characteristic of transactions. A typical hierarchi-

cal database might have a main database containing `raw' information, and

derivative databases where transactions read, but do not write the raw data.

The reader is referred to [HC86] and [AJ93a] for more explanation of hierar-

chical databases.

Hierarchical databases have no information leakage requirements. How-

ever, it is still undesirable for a derivative database to interfere with the

concurrency control at a main database. Such interference could take the

form of holding read locks on raw data items or forcing transactions at a

main database to abort to preserve serializability in a timestamp-ordering

protocol. The results of this paper can be applied to hierarchical databases

as follows: if the communication structure of a hierarchical database is re-

stricted to be crown-free, then a distributed implementation that guarantees

globally serializable transaction histories is possible without the introduction

of additional synchronization information.

16



6 Conclusion

Networks in which information 
ow is restricted to one direction in a dis-

tributed network �gure prominently in applications such as multilevel se-

curity and hierarchical databases. In such networks, the requirements for

event ordering di�er substantially from unrestricted networks, and indeed

improvements in ordering decisions are possible.

In this paper, we have de�ned the consistently-ordered property to de-

scribe communication structures where local ordering decisions are guaran-

teed to be globally consistent without the introduction of additional synchro-

nization, such as a centralized clock. For our main result, we employed the

crown-free property of partial orders to prove that a crown-free partial order

is equivalent to a consistently-ordered one. Fortunately, crown detection can

be carried out in polynomial time.

The results in this paper can be applied in any application with one-

directional communication structures, such as multilevel security or hier-

archical databases, to ensure that distributed applications enjoy desirable

properties, such as serializable execution histories.

Future Work

In [AJ93a], a component-based, timestamping algorithm was developed for

planar lattices. The results of this paper indicate that the timestamping algo-

rithm applies to crown-free partial orders. In [HC86], a proof technique called

the partitioned synchronization rule was presented for demonstrating the cor-

rectness of database concurrency control algorithms. The proof technique

was proven for communication structures that are restricted to semitrees.

The results of this paper indicate that the partitioned-synchronization rule

applies to crown-free partial orders. Items for future work are to verify these

two conjectures.

17



Acknowledgements

It is a pleasure to acknowledge Ivan Rival for sharing his expertise on partial

orders, John McDermott for discussing the problem of consistent ordering,

and Je� Salowe for considering the computational aspects of crown detec-

tion.

References

[AJ93a] Paul Ammann and Sushil Jajodia. Distributed timestamp gener-

ation in planar lattice networks. ACM Transactions on Computer

Systems, August 1993. To appear.

[AJ93b] Paul Ammann and Sushil Jajodia. Planar lattice security structures

for multi-level replicated databases. In Seventh IFIP Working Con-

ference on Database Security, Huntsville, AL, September 1993. To

appear.

[BL76] D.E. Bell and L.J. LaPadula. Secure computer systems: Uni�ed

exposition and multics interpretation. Technical Report MTR-2997,

The Mitre Corporation, Bedford, MA, March 1976.

[Bou85] V. Bouchitt�e. Chordal bipartite graphs and crowns. Order, 2:119{

122, 1985.

[Com83] Committee on Multilevel Data Management Security, Air Force

Studies Board, National Research Council, Washington, DC. Multi-

level Data Management Security, 1983.

[Cos92] Oliver Costich. Transaction processing using an untrusted sched-

uler in a multilevel database with replicated architecture. In Carl

Landwehr and Sushil. Jajodia, editors, Database Security V: Status

and Prospects, pages 173{190. North Holland, 1992.

18



[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-

Wesley, Reading, MA, 1982.

[DRW82] D. Du�us, I. Rival, and P. Winkler. Minimizing setups for cycle-

free ordered sets. Proceedings of the American Mathematical Society,

85(4):509{513, August 1982.

[GG78] M.C. Golumbic and C.F. Goss. Perfect elimination and chordal bi-

partite graphs. Journal of Graph Theory, 2:155{163, 1978.

[HC86] M. Hsu and A. Chan. Partitioned two-phase locking. ACM Trans-

actions on Database Systems, 11(4):431{446, December 1986.

[JK90] Sushil Jajodia and Boris Kogan. Transaction processing in

multilevel-secure databases using replicated architecture. In Pro-

ceedings of the 1990 Symposium on Research in Security and Privacy,

Oakland, CA, May 1990.

[KK92] I.E. Kang and T.F. Keefe. On transaction processing for multilevel

secure replicated databases. In Proceedings European Symposium on

Research in Computer Security, pages 329{347, Toulouse, France,

1992. Springer-Verlag. Lecture Notes in Computer Science, Volume

648.

[Lam73] B.W. Lampson. A note on the con�nement problem. Communica-

tions of the ACM, 16(10):613{615, 1973.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-

tributed system. Communications of the ACM, 21(7):558{565, July

1978.

[Moh] R. Mohring. Algorithmic aspects of comparability graphs and inter-

val graphs. In [Riv85]. 41{101.

19



[Riv85] Ivan Rival, editor. Graphs and Order: The Role of Graphs in the

Theory of Ordered Sets. D. Reidel Publishing Company, Dordrecht,

Holland, 1985.

[Tro81] W.T. Trotter Jr. Stacks and splits of partially ordered sets. Discrete

Math., 35:229{256, 1981.

20


