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Abstract

Software testing can only be formalized and quantified when a solid basis for test generation
can be defined. Tests are commonly generated from the source code, control flow graphs, design
representations, and specifications/requirements. Formal specifications represent a significant
opportunity for testing because they precisely describe what functions the software is supposed
to provide in a form that can be easily manipulated. This paper presents a new method for gen-
erating tests from formal specifications. This method is comprehensive in specification coverage,
applies at several levels of abstraction, and can be highly automated. The paper applies the
method to SOFL specifications, describes the technique, and demonstrates the application on
a case study. A preliminary evaluation using a code-level coverage criterion (mutation testing),
indicates that the method can result in very effective tests.
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1 Introduction

There is an increasing need for effective testing of software for safety-critical applications, such as
avionics, medical, and other control systems. This paper presents results from an ongoing project
to improve the ability to test software for critical systems by developing techniques for generating
test cases from formal specifications of the software. Formal specifications represent a significant
opportunity for testing because they precisely describe what functions the software is supposed to
provide in a form that can easily be manipulated by automated means.

This paper presents a model for developing test inputs from model-based specifications, and a
derivation process for obtaining the test cases. The test data generation model includes techniques
for generating tests at several levels of detail. These techniques provide coverage criteria that
are based on the specifications, and the test generation process details steps for transforming

specifications to tests.
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Specification-based test data generation has several advantages over code-based generation.
Requirements/specifications can be used as a basis for output checking, significantly reducing one
of the major costs of testing. The process of generating tests from the specifications will often help
the test engineer discover problems with the specifications themselves; if this step is done early, the
problems can be eliminated early, saving time and resources. Generating tests during development
also allows testing activities to be shifted to an earlier part of the development process, allowing
for more effective planning and utilization of resources. Another advantage is that the test data is

independent of any particular implementation of the specifications.

1.1 Using Specifications in Testing

Software functional specifications have been incorporated into testing in several ways. They have
been used as a basis for test case generation, to check the output of software on test inputs, and
as a basis for formalizing test specifications (as opposed to functional specifications). This paper
is primarily concerned with the first use, that of generating test cases from specifications. An
immediate goal is to develop mechanical procedures to derive test cases from formal specifications;
long term goals include automated tool support to transform formal functional specifications into
effective test cases.

Figure 1 provides an abstract view of part of the test process. A program P, along with a set
of test cases T, is submitted to a computer €', which runs T on P to produce some results R. A
primary concern for testers is how to produce T; the set of test cases should be effective at finding
faults in the program, adequate at providing some information about the quality of the program,
and preferably satisfy some requirements or criterion for testing that is repeatable, automatable,
and measurable.

A common source for tests is the program code. In code-based test generation, a testing criterion
is imposed on the software to produce test requirements. For example, if the criterion of branch
testing is used, then the tests are required to cover each branch in the program. Figure 2 provides
an abstract view of part of a typical test process that might be used for code-based test generation.
The specification S (which can be formal or informal) is used as a basis for writing the program
P, which is used to generate the tests T, according to some coverage criterion such as branch
or data flow. Execution of T on P creates the actual output, which must be compared with the
expected output. The expected output is produced from the test case with some knowledge of the
specifications. Thus, code-based generation uses the specifications to generate the code and check
the output of the tests.

This is in contrast to specification-based testing, an abstract view of which is shown in Figure



Figure 1: Specifications and Programs in Testing
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Figure 3: Specification-based Test Generation

3. Here the specifications are used to produce test cases, as well as to produce the program. In
this scenario, the specifications are more likely to be formalized, so the arc from 5 to P is labeled
as a “refinement”, a process that is often used to create code from formal specifications. One
significance of producing tests from specifications is that the tests can be created earlier in the
development process, and be ready for execution before the program is finished. Additionally,
when the tests are generated, the test engineer will often find inconsistencies and ambiguities in the
specifications, allowing the specifications to be improved before the program is written. The arcs
from 5 to T and from S to FapectedOutput are labeled with a “?”, because these are currently
areas of active research. This project is looking at ways to generate tests from specifications; others,
such as Li et al. have been developing techniques for creating expected output from specifications
[LS96, HKLT95, LYZ94].

Both specification-based and code-based test generation have strengths, and both are used in
practice. Both methods have been criticized (sometimes unfairly), and both have been supported
(sometimes too strongly). The authors have carried out research involving both approaches, and
would like to present the strengths and weaknesses of both approaches in a scientific, unbiased man-
ner. While some of these are accidental differences of the current state of the research and available
technology (using the philosophical distinction drawn by Brooks [Bro87]), some are also essential.
This paper takes the position that specification-based test data generation is complementary to

code-based test data generation, and that both are necessary.



Because specification-based testing only considers an external view of the software, it can be
said to test the products, but not the design decisions, and it may not test all of the program.
By deriving tests from the specifications, engineers are often able to find problems in the specifi-
cations. While this effect has not been formalized or quantified, experience has provided strong
anecdotal evidence. An example is a project, called Mistix, that has been used in several classes
and research projects [AO94, OI95]. It is a simplified file system program, used to illustrate trees,
lists, type parameterization, and inheritance. The first author had supplied informal specifications
to several classes before using it as an assignment in a graduate testing class. The students applied
a modification of the category-partition method [OB88, BHO89] to the specifications to produce
test cases. During the exercise, they identified many inconsistencies and ambiguities in the specifi-
cations, and found several points of incompleteness. These problems allowed faults to be found in
existing implementations that had previously gone undiscovered.

Specification-based testing is also currently immature, which means there is a scarcity of for-
malizable criteria and automated tool support. It is this problem that this research is attempting
to address. Specification-based testing has the potential to benefit from formal specifications, by
using the formal specifications as input to an formalizable, automatable test generation process.
Another advantage of specification-based testing is that it can support the automation of testing
result analysis, by using specifications as test oracles.

A major disadvantage of code-based generation is that it tests what was built, rather than
what was intended. Code-based tests also may not cover the entire input domain. On the other
hand, code-based generation technology is very mature, and there are many formalized criteria for
testing, and many tools available.

There are several things that are not known about generating tests from code and from specifi-
cations. If specification-based testing is used, engineers do not know how well those tests cover the
program code; likewise, it is not known how well code-based tests might cover the input domain.

The two approaches are sometimes used in combination. The most common way is to generate
tests based on the specifications, and then use code-based coverage analysis to measure the quality
of the tests. For example, the tests might be measured by how many branches in the software are
covered. There has been no published data concerning how effective this combination is. It is widely
agreed, however, that it is difficult to construct tests that are inputs to the top level system that
cover detailed code-level requirements (such as branches). This is why code-based test generation
is typically thought of as useful for unit testing, where individual functions or modules are tested,
and specification-based test generation is typically thought of as useful for system testing, where

an entire working system is tested.



As said, this paper addresses the problem of a lack of formalizable, measurable criteria for
generating test cases from specifications. Specifically, a model for generating tests from SOFL
specifications is presented. SOFL is a specification language and methodology that is intended to
be usable and graphical, and to combine the object-oriented design methodology with the struc-
tured design methodology. This paper first reviews the small but growing body of work on using
formal specifications as a basis for producing test cases, then overviews the SOFL language and
methodology. Then a model for generating tests from SOFL specifications is described, and results

from a case study of testing a small program unit are presented.

2 Approaches to Specification-based Testing

The current research literature reports on specific tools for specific formal specification languages
[BGM91, BCFG86, GMHS1, Jal92, OSW86, TVK90, WGS94], manual methods for deriving tests
from specifications [AA92, AO94, Ber91, DF93, Hay86, SCS97], case studies on using specifications
to check the output of the software [DF91, Kem85, Lay92, SC93a], and formalizations of test
specifications [SC96, SC93b, BHO89, Cho86]. This paper uses the term specification-based testing
in the narrow sense of using specifications as a basis for deciding what tests to run on software. Some
of these techniques are reviewed, dividing them into approaches that use model-based, state-based,

and property-based specifications.

2.1 Model-based Approaches

Model-based specification languages, such as 7Z [Spi89] and VDM [Jon86], support formal specifi-
cations of the software based on set-theoretic models of real-world objects. Dick and Faivre [DF93]
suggested using specifications to produce predicates, and then using predicate satisfaction tech-
niques to generate test data. Given a set of predicates that reflect preconditions, invariants, and
postconditions, test cases are generated to satisfy individual clauses. Their work was for VDM
specifications, and primarily focused on state-based specifications, using finite state automata rep-
resentations. Dick and Faivre discussed straightforward translation of the specifications into dis-
junctive normal form predicates, and presented solutions to the problem of predicate satisfaction
by using prolog theorem proving techniques.

Stocks and Carrington [SC93b, SC93a] and Amla, Ammann, and Offutt [AA92, AO94] proposed
using a form of domain partitioning to generate test cases. Given a description of an input domain,
the idea is to use specifications to partition the input domain into subsets. The Amla, Ammann,
and Offutt approach is based on a modification to the category-partition method for test generation

[BHO89, OSW86]. Hierons [Hie97] presents algorithms that rewrite 7 specifications into a form



that can be used to partition the input domain. From this, states of a finite state automaton are
derived, which are then used to control the test process.

Hayes [Hay86] has suggested a dynamic scheme that uses run-time verification of the program.
The idea is to add code to the program to check predicates from the specifications, such as type
invariants, preconditions, and input-output pairs.

Singh et al. [SCS97] used a method called “classification-tree” to generate test cases from 7
specifications. The classification-tree is used to organize the input predicates, which are put into a

disjunctive normal form for generation of values.

2.2 State-based Approaches

State-based specifications are a variant of model-based specifications with greater emphasis on
states and state transitions. Typical state-based specifications define preconditions on transitions,
which are values that specific variables must have for the transition to be enabled, and triggering
events, which are changes in variable values that cause the transition to be taken. For example, SCR
[Hen80, AG93] calls these WHEN conditions and triggering events. The values of the triggering
events before the transitions are sometimes called before-values, and the values after the transition
are sometimes called after-values. The state immediately preceding the transition is called the
pre-state, and the post-state is the state after the transition.

Blackburn and Busser [BB96] used state-based functional specifications of the software, ex-
pressed in the language T-Vec, to derive disjunctive normal form constraints, similarly to Dick
and Faivre’s method. These constraints are then solved to generate test cases. There is a strong
similarity between Blackburn and Busser’s algorithms and the algorithms used by Offutt’s test data
generator [DGKT88, DO91]; the key difference being that Blackburn and Busser’s is specification-
based, whereas Offutt’s constraints are code-based.

Weyuker, Goradia, and Singh [WGS94] present a method to generate test data from boolean
logic specifications of software. They applied their techniques to the FAA’s Traffic Collision and
Avoidance System (TCAS), and used mutation-style faults to measure the quality of the test cases.

2.3 Property-based Approaches

Property-based approaches attempt to specify software without reference to an explicit model, but
instead with axioms that describe the relationships between functions. Algebraic specifications are
the typical property-based approach, and Gannon, McMullin and Hamlet [GMH81] used a script
derivation approach for deriving test cases from algebraic specifications. They treated the axioms

as a language description and generated strings on that language to serve as test cases. Doong and



Frankl [DF91] used a similar approach to test object-oriented software.

Bernot [Ber91] proposed a similar scheme, with more formalization of the process and the test
cases. Bougé et al. [BCFGR6] suggested a logic programming approach to generating test cases from
algebraic specifications. Tsai, Volovik, and Keefe [TVK90] used a similar approach, but started
with relational algebra queries.

While property-based approaches are certainly worth pursuing, this paper focuses on the model-
based approach to specification. The main reason is that model-based approaches enjoy a wider

currency in industrial application.

2.4 Summary

Most of the current specification-based testing techniques use manual methods that cannot be
easily generalized or automated. The goals of this research include generalizing currently known
techniques, defining measurable criteria, and developing automated tools. This research is part of

an ongoing project into the practical applications of formal methods.

3 Generating Tests from SOFL Specifications

An initial result from this research project is the specification language SOFL. SOFL uses a graph-
ical representation to integrate structured methods, an object-oriented methodology and formal
methods. This section first provides a brief introduction to the SOFL languages, then presents a

technique for generating test data from SOFL specifications.

3.1 Brief Introduction to SOFL

This overview focuses only on the constructs of SOFL that are used for the test generation; a full
description can be found elsewhere [.S95, LSOHS98]. This section starts by describing the overall
structure of a SOFL system and then gives a rather precise definition of the constructs that are

used for test data generation.

3.1.1 SOFL System Structure

Construction of a software system using SOFL starts with the construction of a hierarchical con-
dition data flow diagram, as illustrated in Figure 4. A condition data flow diagram, or CDFD, is a
directed graph consisting of data flows, data stores, and condition processes. A data flow is labeled
with a variable, which represents a data transition between condition processes. A data store is a
variable that represents data at rest. All variables and data objects are typed. A condition process

is like a process in DeMarco data flow diagrams [DeM78]; it is a transition between two states that



uses preconditions to specify when the transition can be taken, and postconditions to state what is
true if the transition is taken. For each CDFD, a specification module, called S-module, is provided
to define types and variables and to specify the functionality of all the condition processes in the
CDFD by giving their pre and postconditions. The specification module and the CDFD are com-
plementary in the sense that the CDFD describes the relationships between condition processes in
terms of data flows and the module describes the precise functionality of each condition processes
(without explicit indication of their relationships). They are also complementary in the sense that
the CDFD provides a graphical view of the system at the current level while the module supplies

the details of the system in a textual form.

S-module Al
Type and variable declar ations

_-Condition processl 1 “
-~ condition process2 it Hin Bl 4]

“ | - -condition process3

_¢-7[  condition process4 a AL
NG ¥ -
S-module A2
Type and variable declar ations
\ - Condition processl.1 - - o - - - - -
‘. /| ,Condition processl.2
\ Condition processl.3
A2 A A3

3 S-module A3 i iate!
Type and variable declar ations

Condition process3.1
Condition process3.2
Condition process3.3

’/\ (b) Hierarchical Structure of Specification Modules

-" I-module1.1

Type, variable and class declar ations
Procedures
Functions

|-module 1.2
Type, variable and class declar ations
Procedures
Functions

(c) Implementation Modules

Figure 4: The Structure of a SOFL System

An important refinement of a high level condition process is its decomposition into a lower
level CDFD under its functional constraints, as expressed by the pre and postconditions. The
decomposed CDFD describes the details of how the functionality of the high level condition process
is realized by lower level condition processes, and the details about all the condition processes in
the lower level CDFD are described in their corresponding specification modules. The relationship

between a high level condition process and its decomposed CDFD is reflected by building a link in



the S-module. This decomposition process proceeds until all the lowest level condition processes
are simple enough for implementation. Then each lowest level condition process is implemented
(or prototyped) in an executable implementation module, called I-module. The structure of an
I-module is similar to a C4++ module, including type, variable and class declarations (optional),
and procedure and/or function definitions. However, since the same abstract data types used in
the specification modules (e.g. sequences, sets, and maps) are adopted, the implementation is done
on a relatively abstract level compared with C++ or Pascal-like programs. This helps prototyping
and facilitates the verification of the implementation against its specification. Since every high
level condition process is realized in terms of a lower level CDFD and every lowest level condition

process is implemented using an I-module, the whole system is executable.

3.1.2 Relevant Constructs of SOFL Specifications

As our interest is that of using SOFL specifications for testing, we focus on the specification part.
Specifically, three kinds of constructs are tested: invariants, condition processes, and condition data
flow diagrams (CDFDs).

In SOFL, an invariant is given in the declaration part of an S-module and is used to describe a
property of some type or variable that remains unchanged throughout the whole system. Its format
is:

forall [x1 in D1, x2 in D2, ..., xn in Dn | P(x1, x2, ..., xn)]
where each xi is a variable and each Di is a type or a variable of type set. A condition process is
specified in an S-module with the following form:

CP-name (x1: T1, x2: T2, ..., xn: Tn) yil: TT1, y2: TT2, ..., ym: TTm

pre P1

post P2

decomposition M-name

In this condition process specification, CP-name is the name of the condition process, the xi’s
represent the input data flows to the condition process, and the yj’s represent the output data
flows. The Ti’s are the types of the input data flows, and the TTi’s are types of the output data
flows. P1 is the precondition of the condition process that constrains the inputs, and P2 is the
postcondition that is required to be satisfied by the outputs after an execution of the condition
process with the precondition. M-name indicates the name of the S-module whose corresponding
CDFD is the decomposition of the condition process.

As described before, a CDFD is a directed graph describing data transitions between condition

processes. Its graphical constructs are given in Figure 5. Figure 5(a) describes a sequential struc-
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ture. It means that after Al, A2, ..., An fire and x1, x2, ..., xn are produced, then B is enabled to
fire, and y is produced as the result. Figure 5(b) indicates that when the condition C(x) is satisfied
by x, then data from x will flow along the upper arc to Bl, otherwise, it will flow along the lower
arc to B2. Figure 5(c) shows a multiple selection structure. When x satisfies Ci(x) (i=1...n), then
data from x will flow along the corresponding arc to the condition process Bi. Otherwise, it will
flow along the lowest level arc to Bn+1. Figure 5(d) presents a loop structure. When x is available,
B will be fired and x1 will be produced as the result. Then, because x1 is available, B is fired again

and x1 is produced again. This repetition continues until y is produced.
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Figure 5: The Graphical Constructs of CDFDs

One advantage of SOFL for testing is that different representations are used for the specifications
at different abstraction levels of the software. The next section discusses how to use the SOFL
specifications to generate tests at different levels. S-modules are used to generate system level

tests, and [-modules to generate tests for module components.
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3.2 SOFL-based Testing

Section 2 discusses the notion of predicate satisfaction. Predicate satisfaction uses preconditions,
invariants, and postconditions to create predicates, and then generates test cases to satisfy indi-
vidual clauses within the predicates. This is closely related to previous code-based automatic test
generation research [D0O91]. The model presented here extends the promising ideas of predicate
satisfaction in several ways.

Instead of just covering the pre and postconditions, it is important to relate the pre to post-
conditions with the tests. Tests should also be created to find faults, as well as to cover the input
domain. For SOFL specifications, it is important to test both S-modules and I-modules; different
approaches can be used to generate tests at these different levels. A remaining problem is that of
finding missing conditions.

SOFL specifications are at two principle levels, the S-module level and the I-module level. These
descriptions take on different forms, so the goals of testing will be different. This paper adapts
a system level testing technique for S-modules, a data flow-based testing approach for integration

testing among S-modules, and extends the predicate-based testing approaches for testing I-modules.

3.2.1 Generating Tests from S-Modules

S-Modules specify condition data flow diagrams (CDFDs) in textual form. These can be viewed as
a definition of types, objects, and functions that operate on objects of those types. Category-
partitioning is directly applied asin Ammann and Offutt [AO94]. Test specifications are constructed
as an intermediate between functional specifications and actual tests. A minimal coverage criterion
for category-partition testing is used, and a mechanical process to produce tests that satisfy the
criterion is applied.

The category-partition method [BHO89, OB88] is a specification-based testing strategy that uses
an informal functional specification to produce formal test specifications. The category-partition
method offers the test engineer a general procedure for creating test specifications. The test en-
gineer’s key job is to develop categories, which are defined to be the major characteristics of the
input domain of the function under test, and to partition each category into equivalence classes of
inputs called choices. By definition, choices in each category must be disjoint, and together the
choices in each category must cover the input domain.

The steps in the category-partition method that lead to a test specification are as follows:

1. Analyze the specification to identify the individual functional units that can be tested

separately.

12



2. Identify the input domain, that is, the parameters and environment variables that affect

the behavior of a functional unit.

3. Identify the categories, which are the significant characteristics of parameter and environ-

ment variables.
4. Partition each category into choices.

5. Specify combinations of choices to be tested, instantiate test cases by specifying actual
data values for each choice, and determine the corresponding results and the changes to the

environment.

Each specified combination of choices results in a test frame. The category-partition method
relies on the test engineer to determine constraints among choices to exclude certain test frames.
There are two reasons to exclude a test frame from consideration. First, the test engineer may
decide that the cost of building a test script for a test frame exceeds the likely benefits of executing
that test. Second, a test frame may be infeasible, in that the intersection of the specified choices is
the empty set.

The developers of the category-partition method have defined a test specification language
called TSL [BHO89]. A test case in TSL is an operation and values for its parameters and relevant
environment variables. A test script in TSL consists of the operations necessary to create the
environmental conditions (called the SETUP portion), the test case operation, whatever command
is necessary to observe the affect of the operation (VERIFY in TSL), and any exit command
(CLEANUP in TSL). Test specifications written in TSL can be used to automatically generate
test script. The test engineer may optionally give specific representative values for any given choice
to aid the test generation tool in deriving specific test cases. The category-partition method supplies
little explicit guidance as to which combinations of choices are desirable — the task is left mostly to
the test engineer’s judgment.

Ammann and Offutt had several differences in their use of the category-partition method. First,
the derivation is based on formal specifications of the software, since, as has been demonstrated
in a variety of papers [AA92, Lay92, SC93b, SC93c], the formality of the functional specification
helps to simplify and organize the production of a test specification. Second, the TSL syntax is not
followed. Specifically, as has been done by others [SC93b, SC93c|, a formal specification notation

is used to describe aspects of the tests themselves as well as to describe functional behavior.
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3.2.2 Integration Tests for S-Modules

Although S-Modules specify condition data flow diagrams (CDFDs) in textual form, they only
define the condition processes of CDFDs separately, giving no relationships between the condition
processes. It is the CDFDs (graphical notation) that describe their relationships in terms of data
flows. In other words, CDFDs describe how the condition processes defined in S-modules are
integrated to form an entire system.

Since condition processes in a CDFD are related in terms of data flows, it is natural and easy
to conduct data flow based testing for integration testing. The essential idea is to generate test
data to cover all the possible data flows. To this end, test data (input data flows) are generated to
test every possible graphical constructs given in Figure 5.

Testing sequential structures. Figure 5(a) shows a sequential structure in a CDFD. This
is a sequential structure in the sense that condition process B cannot fire until after condition
processes Al, A2, ..., An fire. Therefore, generating test data for the variables x1, x2, ..., xn is
necessary to generate values for y.

Criterion CDFD-1:

(1) Every input data flow of a condition process must be used in a test.

(2) Every output data flow of a condition process must be generated in a test.

Testing selection structures. There are two selection constructs in CDFDs, as shown in
Figure 5(b) and (c). To test such selection structures, the following criterion is defined.
Criterion CDFD-2:

Generate test data for x so that each branch of the selection can be used once.

Testing iteration structures. An iteration structure is possible in a CDFD, as shown in
Figure 5(d). To test such a structure, it must be ensured that when condition process B is fired
that consumes the input data flow x, the output data flows x1 and y are generated once, respectively.
This will also test whether a loop like the one in Figure 5(d) terminates. This is actually consistent

with criterion CDFD-2, so a separate criterion is not defined.

3.2.3 Generating Tests for I-Modules

As an I-module provides an implementation of a lowest level condition process specification, a
predicate-based approach is used to test I-modules, but the previous approaches are extended in
several ways. Primarily, the predicates are measured at three different levels; the disjunctive, con-
junctive, and the relational level. For convenience, it is assumed the predicates are in disjunctive
normal form (DNF'). The primary intent is that each clause in each predicate is tested indepen-

dently.
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At the disjunctive level, the predicates are in the form (AV BV C V ...). These are tested by
holding all disjuncts but one False, and varying each one to be True in turn. That is, tests are

generated by finding values that satisfy the following partial truth table:

A v B v C Vv

T F F
F T F
F F T

These tests cases sample from the valid parts of the input space. In addition, the test engineer
may include combinations of two or more True disjuncts that are semantically meaningful. Be-
cause the program will be tested from the specification, it is only necessary to generate test data
for the input parameters and state variables in the pre and postconditions.

At the conjunctive level, the predicates are in the form: (A A B A C A ...) and each clause is
tested in turn. First the entire expression is forced to be True by finding values that cause each
clause to be True. Then invalid parts of the input space are sampled by holding all conjuncts but
one True, and varying each one to be False in turn. That is, tests are generated by finding values

that satisfy the following partial truth table:

A AN B A C A

=
=S
CESEERe

Additionally, the test engineer may include combinations of two or more False conjuncts that
are semantically meaningful.

At the relational level, a limited form of domain analysis [WC80] is applied to the expressions.
This serves to test the boundaries of the relations. Assume that there are unary operators SUCC and
PRED defined for each linearly ordered type, which returns the successor and predecessor respectively
of a given value. These operators are provided in Ada for the built-in types. For example, SUCC
(X) is equivalent to X+1 for integer types. Then for each relational expression X rop Y, where X and

Y are arbitrary expressions and rop is some relational operator, replace the relational expression
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e X = 3UCC (Y)

e X = PRED (Y)

and generate values to satisfy the predicates.

3.3 I-Module Level Example

Triang is a small program that has been widely used in the testing literature [ABD*79, CR83,
DLS78, RHC76]. Triang inputs three integers that represent the relative lengths of the sides of a
triangle and classifies the triangle as equilateral, isosceles, scalene or illegal. SOFL specifications

for Triang are given in Figure 6.

Classifications = {EQUILATERAL, [SOSCELES, SCALENE, INVALID}
Triang (S1, S2, S3 : integer) : Classifications

pre: 51>0 and S2>0 and S3>0;

post: S51=52 and 52=53 and S1=53 implies Triang=EQUILATERAL and
S1+S52 < S3 or S1+S5S3 < 52 or 52453 < S1 implies Triang=INVALID and
S1=52 or 52=53 or S1=53 implies Triang=ISOSCELES and

S1#S2 and S2#53 and S1#S3 and
S1+452 > S3 and S1453 > S2 and S24S3 > S1 implies Triang = SCALENE

Figure 6: SOFL Specifications for Triang

If the preconditions are considered at the conjunctive level, all disjuncts but one must be held
True, and each one is varied to be False in turn. This is done by appending values to the sides of

the following partial truth table:

51>0 A S52>0 A S3>0|S1 S2 53
T T T 1 1 1
F T T o 1 1
T F T 1 0 1
T T F 1 1 0

To generate values for the relational level, the relations are satisfied separately, resulting in the
following table. This is a conjunctive clause, therefore the predicates that are not being considered
must be held constant at True, so as not to affect the value of the full predicate. For example, for
the first three rows of this table, where S1 is being considered, the values for 52 and S3 are held

constant at 1.
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51>0 A 52>0 A 53>0 51 S2  S3
51=0 0 1 1
S1=0+1 1 1 1
S1=0-1 -1 1 1
52=0 1 0 1

S52=0+1 1 1 1

52=0-1 1 -1 1

53=0 1 1 0

53=0+1 | 1 1 1

S3=0-11 1 1 -1

The postconditions are more complicated. There are four separate conditions, which represent
four possible cases. Only one condition can be true at a time, so for the purposes of testing, these
are disjunctive clauses. For convenience, these are labeled as follows:

A: S1=S2 and S2=S53 and S1=53

B: S1+32 < 83 or S1+33 < S2 or S2+33 < 31

C: S1=S2 or S2=S3 or S1=33

D: S1#S2 and S2#S3 and S1#S3 and S1+S2 > S3 and S1+S3 > S2 and S2+S3 > Si

The disjunctive level tests are:

A v B v C v DJ|S51 52 853
1 1

o
RN e

1

1 1 2
1 1 0
2 3 4

o
H ==

At the conjunctive level, case A contains three clauses, so tests should be generated from it
by holding all conjuncts but one True, and varying each one to be False in turn. Unfortunately,
none of these conditions can be satisfied; if S1=52 and 52=53, then by transitivity, S1=53, so it is
impossible for only two of the three clauses to be True. This is illustrated in the following table.
From inspection, it is reasonable to relax the requirement, and allow two of the three clauses to be
False. This kind of reasoning is difficult to introduce algorithmically, but the following scheme will
provide an adequate approximation. If holding one clause False leads to an infeasible constraint
system, the engineer can attempt to cause a second clause to be False. Of course, it is difficult
to recognize whether a constraint system is infeasible. This problem is generally undecidable, but
heuristics have been developed that can find infeasibility in a large number of cases [OP97]. A
reasonable extension that handles this problem is to add one more test case at the conjunctive

level: require all conjuncts in the expression to be False. The bottom line in the table below
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reflects this extenstion.

S1=52 A S2=S3 A S1=S3|S1 S2 S3
T T T T 1 1
F T T infeasible
T F T infeasible
T T F infeasible
F F F 2 3 4

Case B again contains three disjunctive clauses.

following table.

51452 <S3 v S1453 <52 v 52453 <51

The resulting test cases are shown in the

T F F
F T F
F F T

S1 S2 S3
1 1 2
1 2 1
2 1 1

Case C contains three disjunctive clauses, so tests

should be generated from it by holding all

disjuncts but one False, and varying each one to be True in turn. These test cases are shown in

the following table.

51=52 Vv 52=53 Vv S1=53 |51 52 83
T F F 1 1 0
F T F 1 0 1
F F T 0 1 1

Case D contains six conjunctive clauses, test cases for which are shown in the following table.

S1#S2 A S2#S3 A S1#S3 A S1+52 > 53 A S14S53 > S2 A S24S53 > S1 | S1 S2  S3
T T T T T T 3 4 5
T T T T T F 8 3 4
T T T T F T 3 8 4
T T T F T T 3 4 8
T T F T T T 3 4 3
T F T T T T 4 3 3
F T T T T T 3 3 4

At the predicate level, the postconditions have a total of 15 predicates. But most of them are

duplicated, particularly for the purposes of testing. For testing, the relational operator ignored, so,

for example, S1=S52 is equivalent to S1#S2. There are only six distinct predicates, and all of the

test case derivation tables for these predicates are not

generated by this method is 68, 31 of which are unique.
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These test cases are listed in Appendix A.



3.3.1 Triang Mutation Coverage Results

As an initial evaluation of the specification-based test generation technique, the quality of the
tests was measured using a coverage criterion. Mutation testing is considered one of the strongest
testing techniques, and is commonly used as a method for evaluating tests [WGS94, TFWC91,
Nta84, RZ89]. The test sets are evaluated on the basis of their mutation score, which is the ratio
of the number of mutants killed over the total number of mutants. Experience has shown that
mutation scores of over 90% are difficult to achieve, and mutation scores of over 95% are very
difficult.

The Mothra mutation system was used [DGKT88, DO91], and all mutants were generated for
an implementation of Triang. Mothra created 842 non-equivalent mutants, and the 31 test cases
killed 817 mutants, for a mutation score of 97.03%. Additionally, analysis of the relevant mutants
showed that the test data set is completely adequate for the extended branch coverage criterion
(also known as multiple condition coverage). While these numbers are only for one small program,
they are extremely encouraging, and lead us to hope that this kind of specification-based test data

generation scheme can yield tests that do very well at structural code coverage.

4 Conclusions

This paper has introduced a new technique for generating test data from formal software specifica-
tions. Formal specifications represent a significant opportunity for testing because they precisely
describe the functionality of the software in a form that can be easily manipulated by automated
means. This paper addresses the problem of developing formalizable, measurable criteria for gen-
erating test cases from specifications. A model for generating tests from SOFL specifications was
presented, and a case study of a software unit was presented. This case study was evaluated
using mutation analysis, and it was found that the technique can be very effective. This result
indicates that this technique can benefit software developers who construct formal specifications

during development.

4.1 Future Work

Our immediate goal is to develop formal criteria for specification-based test data generation. A
subsequent goal is to develop mechanical procedures to derive test cases from formal specifications;
long term goals include automated tool support to transform formal functional specifications into
effective test cases. A future goal is to build an automatic test data generation tool for this

technique. We also expect to provide more evidence of the effectiveness of this technique, and
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attempt to apply it at the system level.

One disadvantage of the current technique is that the predicates must be assumed to be in
disjunctive normal form. While it is true that all predicates can be put into DNF', it is sometimes
not desirable to change the form of the specifications. The advantage of DNF' is that the predicates
have a simple form, and the algorithms for satisfying them are relatively straightforward. We
are currently considering other representation forms that will allow tests to be generated without

modifying the form of the expressions.
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A Appendix: Test Cases for Triang

52 S3
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