
Generating Test Data from SOFL Speci�cations �

A. Je�erson O�utt

ISSE Department, 4A4

George Mason University

Fairfax, VA 22030-4444 USA

email: ofut@isse.gmu.edu

Shaoying Liu

Faculty of Information Sciences

Hiroshima City University

Asaminami-ku, Hiroshima 731-31 Japan

email: shaoying@cs.hiroshima-cu.ac.jp

Abstract

Software testing can only be formalized and quanti�ed when a solid basis for test generation
can be de�ned. Tests are commonly generated from the source code, control
ow graphs, design
representations, and speci�cations/requirements. Formal speci�cations represent a signi�cant
opportunity for testing because they precisely describe what functions the software is supposed
to provide in a form that can be easily manipulated. This paper presents a new method for gen-
erating tests from formal speci�cations. This method is comprehensive in speci�cation coverage,
applies at several levels of abstraction, and can be highly automated. The paper applies the
method to SOFL speci�cations, describes the technique, and demonstrates the application on
a case study. A preliminary evaluation using a code-level coverage criterion (mutation testing),
indicates that the method can result in very e�ective tests.

Keywords: Formal Methods, Speci�cation-based Testing, Software Testing.

1 Introduction

There is an increasing need for e�ective testing of software for safety-critical applications, such as

avionics, medical, and other control systems. This paper presents results from an ongoing project

to improve the ability to test software for critical systems by developing techniques for generating

test cases from formal speci�cations of the software. Formal speci�cations represent a signi�cant

opportunity for testing because they precisely describe what functions the software is supposed to

provide in a form that can easily be manipulated by automated means.

This paper presents a model for developing test inputs from model-based speci�cations, and a

derivation process for obtaining the test cases. The test data generation model includes techniques

for generating tests at several levels of detail. These techniques provide coverage criteria that

are based on the speci�cations, and the test generation process details steps for transforming

speci�cations to tests.

�The work is supported in part by the Ministry of Education of Japan under Joint Research Grant-in-Aid for
International Scienti�c Research FM-ISEE (08044167).

1

Speci�cation-based test data generation has several advantages over code-based generation.

Requirements/speci�cations can be used as a basis for output checking, signi�cantly reducing one

of the major costs of testing. The process of generating tests from the speci�cations will often help

the test engineer discover problems with the speci�cations themselves; if this step is done early, the

problems can be eliminated early, saving time and resources. Generating tests during development

also allows testing activities to be shifted to an earlier part of the development process, allowing

for more e�ective planning and utilization of resources. Another advantage is that the test data is

independent of any particular implementation of the speci�cations.

1.1 Using Speci�cations in Testing

Software functional speci�cations have been incorporated into testing in several ways. They have

been used as a basis for test case generation, to check the output of software on test inputs, and

as a basis for formalizing test speci�cations (as opposed to functional speci�cations). This paper

is primarily concerned with the �rst use, that of generating test cases from speci�cations. An

immediate goal is to develop mechanical procedures to derive test cases from formal speci�cations;

long term goals include automated tool support to transform formal functional speci�cations into

e�ective test cases.

Figure 1 provides an abstract view of part of the test process. A program P , along with a set

of test cases T , is submitted to a computer C, which runs T on P to produce some results R. A

primary concern for testers is how to produce T ; the set of test cases should be e�ective at �nding

faults in the program, adequate at providing some information about the quality of the program,

and preferably satisfy some requirements or criterion for testing that is repeatable, automatable,

and measurable.

A common source for tests is the program code. In code-based test generation, a testing criterion

is imposed on the software to produce test requirements. For example, if the criterion of branch

testing is used, then the tests are required to cover each branch in the program. Figure 2 provides

an abstract view of part of a typical test process that might be used for code-based test generation.

The speci�cation S (which can be formal or informal) is used as a basis for writing the program

P , which is used to generate the tests T , according to some coverage criterion such as branch

or data
ow. Execution of T on P creates the actual output, which must be compared with the

expected output. The expected output is produced from the test case with some knowledge of the

speci�cations. Thus, code-based generation uses the speci�cations to generate the code and check

the output of the tests.

This is in contrast to speci�cation-based testing, an abstract view of which is shown in Figure

2

T

C R

P

Figure 1: Speci�cations and Programs in Testing

C

P

S
Expected

Output

Actual

Output

Compare

Cov erage
Crit erion

T

Figure 2: Code-based Test Generation

3

C

P

S
Expected

Output

Actual

Output

Compare

T

?
?

refine

Figure 3: Speci�cation-based Test Generation

3. Here the speci�cations are used to produce test cases, as well as to produce the program. In

this scenario, the speci�cations are more likely to be formalized, so the arc from S to P is labeled

as a \re�nement", a process that is often used to create code from formal speci�cations. One

signi�cance of producing tests from speci�cations is that the tests can be created earlier in the

development process, and be ready for execution before the program is �nished. Additionally,

when the tests are generated, the test engineer will often �nd inconsistencies and ambiguities in the

speci�cations, allowing the speci�cations to be improved before the program is written. The arcs

from S to T and from S to ExpectedOutput are labeled with a \?", because these are currently

areas of active research. This project is looking at ways to generate tests from speci�cations; others,

such as Li et al. have been developing techniques for creating expected output from speci�cations

[LS96, HKL+95, LYZ94].

Both speci�cation-based and code-based test generation have strengths, and both are used in

practice. Both methods have been criticized (sometimes unfairly), and both have been supported

(sometimes too strongly). The authors have carried out research involving both approaches, and

would like to present the strengths and weaknesses of both approaches in a scienti�c, unbiased man-

ner. While some of these are accidental di�erences of the current state of the research and available

technology (using the philosophical distinction drawn by Brooks [Bro87]), some are also essential.

This paper takes the position that speci�cation-based test data generation is complementary to

code-based test data generation, and that both are necessary.

4

Because speci�cation-based testing only considers an external view of the software, it can be

said to test the products, but not the design decisions, and it may not test all of the program.

By deriving tests from the speci�cations, engineers are often able to �nd problems in the speci�-

cations. While this e�ect has not been formalized or quanti�ed, experience has provided strong

anecdotal evidence. An example is a project, called Mistix, that has been used in several classes

and research projects [AO94, OI95]. It is a simpli�ed �le system program, used to illustrate trees,

lists, type parameterization, and inheritance. The �rst author had supplied informal speci�cations

to several classes before using it as an assignment in a graduate testing class. The students applied

a modi�cation of the category-partition method [OB88, BHO89] to the speci�cations to produce

test cases. During the exercise, they identi�ed many inconsistencies and ambiguities in the speci�-

cations, and found several points of incompleteness. These problems allowed faults to be found in

existing implementations that had previously gone undiscovered.

Speci�cation-based testing is also currently immature, which means there is a scarcity of for-

malizable criteria and automated tool support. It is this problem that this research is attempting

to address. Speci�cation-based testing has the potential to bene�t from formal speci�cations, by

using the formal speci�cations as input to an formalizable, automatable test generation process.

Another advantage of speci�cation-based testing is that it can support the automation of testing

result analysis, by using speci�cations as test oracles.

A major disadvantage of code-based generation is that it tests what was built, rather than

what was intended. Code-based tests also may not cover the entire input domain. On the other

hand, code-based generation technology is very mature, and there are many formalized criteria for

testing, and many tools available.

There are several things that are not known about generating tests from code and from speci�-

cations. If speci�cation-based testing is used, engineers do not know how well those tests cover the

program code; likewise, it is not known how well code-based tests might cover the input domain.

The two approaches are sometimes used in combination. The most common way is to generate

tests based on the speci�cations, and then use code-based coverage analysis to measure the quality

of the tests. For example, the tests might be measured by how many branches in the software are

covered. There has been no published data concerning how e�ective this combination is. It is widely

agreed, however, that it is di�cult to construct tests that are inputs to the top level system that

cover detailed code-level requirements (such as branches). This is why code-based test generation

is typically thought of as useful for unit testing, where individual functions or modules are tested,

and speci�cation-based test generation is typically thought of as useful for system testing, where

an entire working system is tested.

5

As said, this paper addresses the problem of a lack of formalizable, measurable criteria for

generating test cases from speci�cations. Speci�cally, a model for generating tests from SOFL

speci�cations is presented. SOFL is a speci�cation language and methodology that is intended to

be usable and graphical, and to combine the object-oriented design methodology with the struc-

tured design methodology. This paper �rst reviews the small but growing body of work on using

formal speci�cations as a basis for producing test cases, then overviews the SOFL language and

methodology. Then a model for generating tests from SOFL speci�cations is described, and results

from a case study of testing a small program unit are presented.

2 Approaches to Speci�cation-based Testing

The current research literature reports on speci�c tools for speci�c formal speci�cation languages

[BGM91, BCFG86, GMH81, Jal92, OSW86, TVK90, WGS94], manual methods for deriving tests

from speci�cations [AA92, AO94, Ber91, DF93, Hay86, SCS97], case studies on using speci�cations

to check the output of the software [DF91, Kem85, Lay92, SC93a], and formalizations of test

speci�cations [SC96, SC93b, BHO89, Cho86]. This paper uses the term speci�cation-based testing

in the narrow sense of using speci�cations as a basis for deciding what tests to run on software. Some

of these techniques are reviewed, dividing them into approaches that use model-based, state-based,

and property-based speci�cations.

2.1 Model-based Approaches

Model-based speci�cation languages, such as Z [Spi89] and VDM [Jon86], support formal speci�-

cations of the software based on set-theoretic models of real-world objects. Dick and Faivre [DF93]

suggested using speci�cations to produce predicates, and then using predicate satisfaction tech-

niques to generate test data. Given a set of predicates that re
ect preconditions, invariants, and

postconditions, test cases are generated to satisfy individual clauses. Their work was for VDM

speci�cations, and primarily focused on state-based speci�cations, using �nite state automata rep-

resentations. Dick and Faivre discussed straightforward translation of the speci�cations into dis-

junctive normal form predicates, and presented solutions to the problem of predicate satisfaction

by using prolog theorem proving techniques.

Stocks and Carrington [SC93b, SC93a] and Amla, Ammann, and O�utt [AA92, AO94] proposed

using a form of domain partitioning to generate test cases. Given a description of an input domain,

the idea is to use speci�cations to partition the input domain into subsets. The Amla, Ammann,

and O�utt approach is based on a modi�cation to the category-partition method for test generation

[BHO89, OSW86]. Hierons [Hie97] presents algorithms that rewrite Z speci�cations into a form

6

that can be used to partition the input domain. From this, states of a �nite state automaton are

derived, which are then used to control the test process.

Hayes [Hay86] has suggested a dynamic scheme that uses run-time veri�cation of the program.

The idea is to add code to the program to check predicates from the speci�cations, such as type

invariants, preconditions, and input-output pairs.

Singh et al. [SCS97] used a method called \classi�cation-tree" to generate test cases from Z

speci�cations. The classi�cation-tree is used to organize the input predicates, which are put into a

disjunctive normal form for generation of values.

2.2 State-based Approaches

State-based speci�cations are a variant of model-based speci�cations with greater emphasis on

states and state transitions. Typical state-based speci�cations de�ne preconditions on transitions,

which are values that speci�c variables must have for the transition to be enabled, and triggering

events, which are changes in variable values that cause the transition to be taken. For example, SCR

[Hen80, AG93] calls these WHEN conditions and triggering events. The values of the triggering

events before the transitions are sometimes called before-values, and the values after the transition

are sometimes called after-values. The state immediately preceding the transition is called the

pre-state, and the post-state is the state after the transition.

Blackburn and Busser [BB96] used state-based functional speci�cations of the software, ex-

pressed in the language T-Vec, to derive disjunctive normal form constraints, similarly to Dick

and Faivre's method. These constraints are then solved to generate test cases. There is a strong

similarity between Blackburn and Busser's algorithms and the algorithms used by O�utt's test data

generator [DGK+88, DO91]; the key di�erence being that Blackburn and Busser's is speci�cation-

based, whereas O�utt's constraints are code-based.

Weyuker, Goradia, and Singh [WGS94] present a method to generate test data from boolean

logic speci�cations of software. They applied their techniques to the FAA's Tra�c Collision and

Avoidance System (TCAS), and used mutation-style faults to measure the quality of the test cases.

2.3 Property-based Approaches

Property-based approaches attempt to specify software without reference to an explicit model, but

instead with axioms that describe the relationships between functions. Algebraic speci�cations are

the typical property-based approach, and Gannon, McMullin and Hamlet [GMH81] used a script

derivation approach for deriving test cases from algebraic speci�cations. They treated the axioms

as a language description and generated strings on that language to serve as test cases. Doong and

7

Frankl [DF91] used a similar approach to test object-oriented software.

Bernot [Ber91] proposed a similar scheme, with more formalization of the process and the test

cases. Boug�e et al. [BCFG86] suggested a logic programming approach to generating test cases from

algebraic speci�cations. Tsai, Volovik, and Keefe [TVK90] used a similar approach, but started

with relational algebra queries.

While property-based approaches are certainly worth pursuing, this paper focuses on the model-

based approach to speci�cation. The main reason is that model-based approaches enjoy a wider

currency in industrial application.

2.4 Summary

Most of the current speci�cation-based testing techniques use manual methods that cannot be

easily generalized or automated. The goals of this research include generalizing currently known

techniques, de�ning measurable criteria, and developing automated tools. This research is part of

an ongoing project into the practical applications of formal methods.

3 Generating Tests from SOFL Speci�cations

An initial result from this research project is the speci�cation language SOFL. SOFL uses a graph-

ical representation to integrate structured methods, an object-oriented methodology and formal

methods. This section �rst provides a brief introduction to the SOFL languages, then presents a

technique for generating test data from SOFL speci�cations.

3.1 Brief Introduction to SOFL

This overview focuses only on the constructs of SOFL that are used for the test generation; a full

description can be found elsewhere [LS95, LSOHS98]. This section starts by describing the overall

structure of a SOFL system and then gives a rather precise de�nition of the constructs that are

used for test data generation.

3.1.1 SOFL System Structure

Construction of a software system using SOFL starts with the construction of a hierarchical con-

dition data
ow diagram, as illustrated in Figure 4. A condition data
ow diagram, or CDFD, is a

directed graph consisting of data
ows, data stores, and condition processes. A data
ow is labeled

with a variable, which represents a data transition between condition processes. A data store is a

variable that represents data at rest. All variables and data objects are typed. A condition process

is like a process in DeMarco data
ow diagrams [DeM78]; it is a transition between two states that

8

uses preconditions to specify when the transition can be taken, and postconditions to state what is

true if the transition is taken. For each CDFD, a speci�cation module, called S-module, is provided

to de�ne types and variables and to specify the functionality of all the condition processes in the

CDFD by giving their pre and postconditions. The speci�cation module and the CDFD are com-

plementary in the sense that the CDFD describes the relationships between condition processes in

terms of data
ows and the module describes the precise functionality of each condition processes

(without explicit indication of their relationships). They are also complementary in the sense that

the CDFD provides a graphical view of the system at the current level while the module supplies

the details of the system in a textual form.

(a) Hierarchical Condition Data Flow Diagram

A1

A2 A3

1

2

3

4

1.1

1.2

1.3

3.1 3.2 3.3

condition process3
condition process2
Condition process1

condition process4

Condition process1.1
Condition process1.2
Condition process1.3

Condition process3.1
Condition process3.2
Condition process3.3

(b) Hierarchical Structure of Specification Modules

Procedures
Functions

Procedures
Functions

(c) Implementation Modules

Type and variable declarations
S-module A1

Type and variable declarations
S-module A2

Type and variable declarations

Type, variable and class declarations

Type, variable and class declarations

I-module 1.1

I-module 1.2

S-module A3

Figure 4: The Structure of a SOFL System

An important re�nement of a high level condition process is its decomposition into a lower

level CDFD under its functional constraints, as expressed by the pre and postconditions. The

decomposed CDFD describes the details of how the functionality of the high level condition process

is realized by lower level condition processes, and the details about all the condition processes in

the lower level CDFD are described in their corresponding speci�cation modules. The relationship

between a high level condition process and its decomposed CDFD is re
ected by building a link in

9

the S-module. This decomposition process proceeds until all the lowest level condition processes

are simple enough for implementation. Then each lowest level condition process is implemented

(or prototyped) in an executable implementation module, called I-module. The structure of an

I-module is similar to a C++ module, including type, variable and class declarations (optional),

and procedure and/or function de�nitions. However, since the same abstract data types used in

the speci�cation modules (e.g. sequences, sets, and maps) are adopted, the implementation is done

on a relatively abstract level compared with C++ or Pascal-like programs. This helps prototyping

and facilitates the veri�cation of the implementation against its speci�cation. Since every high

level condition process is realized in terms of a lower level CDFD and every lowest level condition

process is implemented using an I-module, the whole system is executable.

3.1.2 Relevant Constructs of SOFL Speci�cations

As our interest is that of using SOFL speci�cations for testing, we focus on the speci�cation part.

Speci�cally, three kinds of constructs are tested: invariants, condition processes, and condition data

ow diagrams (CDFDs).

In SOFL, an invariant is given in the declaration part of an S-module and is used to describe a

property of some type or variable that remains unchanged throughout the whole system. Its format

is:

forall [x1 in D1, x2 in D2, ..., xn in Dn j P(x1, x2, ..., xn)]

where each xi is a variable and each Di is a type or a variable of type set. A condition process is

speci�ed in an S-module with the following form:

CP-name (x1: T1, x2: T2, ..., xn: Tn) y1: TT1, y2: TT2, ..., ym: TTm

pre P1

post P2

decomposition M-name

In this condition process speci�cation, CP-name is the name of the condition process, the xi's

represent the input data
ows to the condition process, and the yj's represent the output data

ows. The Ti's are the types of the input data
ows, and the TTi's are types of the output data

ows. P1 is the precondition of the condition process that constrains the inputs, and P2 is the

postcondition that is required to be satis�ed by the outputs after an execution of the condition

process with the precondition. M-name indicates the name of the S-module whose corresponding

CDFD is the decomposition of the condition process.

As described before, a CDFD is a directed graph describing data transitions between condition

processes. Its graphical constructs are given in Figure 5. Figure 5(a) describes a sequential struc-

10

ture. It means that after A1, A2, ..., An �re and x1, x2, ..., xn are produced, then B is enabled to

�re, and y is produced as the result. Figure 5(b) indicates that when the condition C(x) is satis�ed

by x, then data from x will
ow along the upper arc to B1, otherwise, it will
ow along the lower

arc to B2. Figure 5(c) shows a multiple selection structure. When x satis�es Ci(x) (i=1...n), then

data from x will
ow along the corresponding arc to the condition process Bi. Otherwise, it will

ow along the lowest level arc to Bn+1. Figure 5(d) presents a loop structure. When x is available,

B will be �red and x1 will be produced as the result. Then, because x1 is available, B is �red again

and x1 is produced again. This repetition continues until y is produced.

B1

B2

C(x)
x

yes

no

A1

A2

An

B

x1

x2

xn

y

B1

B2

B

x1

yx

(a) (b)

(c)
(d)

Bn

Bn+1

C1(x)
C2(x)

Cn(x)

Figure 5: The Graphical Constructs of CDFDs

One advantage of SOFL for testing is that di�erent representations are used for the speci�cations

at di�erent abstraction levels of the software. The next section discusses how to use the SOFL

speci�cations to generate tests at di�erent levels. S-modules are used to generate system level

tests, and I-modules to generate tests for module components.

11

3.2 SOFL-based Testing

Section 2 discusses the notion of predicate satisfaction. Predicate satisfaction uses preconditions,

invariants, and postconditions to create predicates, and then generates test cases to satisfy indi-

vidual clauses within the predicates. This is closely related to previous code-based automatic test

generation research [DO91]. The model presented here extends the promising ideas of predicate

satisfaction in several ways.

Instead of just covering the pre and postconditions, it is important to relate the pre to post-

conditions with the tests. Tests should also be created to �nd faults, as well as to cover the input

domain. For SOFL speci�cations, it is important to test both S-modules and I-modules; di�erent

approaches can be used to generate tests at these di�erent levels. A remaining problem is that of

�nding missing conditions.

SOFL speci�cations are at two principle levels, the S-module level and the I-module level. These

descriptions take on di�erent forms, so the goals of testing will be di�erent. This paper adapts

a system level testing technique for S-modules, a data
ow-based testing approach for integration

testing among S-modules, and extends the predicate-based testing approaches for testing I-modules.

3.2.1 Generating Tests from S-Modules

S-Modules specify condition data
ow diagrams (CDFDs) in textual form. These can be viewed as

a de�nition of types, objects, and functions that operate on objects of those types. Category-

partitioning is directly applied as in Ammann and O�utt [AO94]. Test speci�cations are constructed

as an intermediate between functional speci�cations and actual tests. A minimal coverage criterion

for category-partition testing is used, and a mechanical process to produce tests that satisfy the

criterion is applied.

The category-partition method [BHO89, OB88] is a speci�cation-based testing strategy that uses

an informal functional speci�cation to produce formal test speci�cations. The category-partition

method o�ers the test engineer a general procedure for creating test speci�cations. The test en-

gineer's key job is to develop categories, which are de�ned to be the major characteristics of the

input domain of the function under test, and to partition each category into equivalence classes of

inputs called choices. By de�nition, choices in each category must be disjoint, and together the

choices in each category must cover the input domain.

The steps in the category-partition method that lead to a test speci�cation are as follows:

1. Analyze the speci�cation to identify the individual functional units that can be tested

separately.

12

2. Identify the input domain, that is, the parameters and environment variables that a�ect

the behavior of a functional unit.

3. Identify the categories, which are the signi�cant characteristics of parameter and environ-

ment variables.

4. Partition each category into choices.

5. Specify combinations of choices to be tested, instantiate test cases by specifying actual

data values for each choice, and determine the corresponding results and the changes to the

environment.

Each speci�ed combination of choices results in a test frame. The category-partition method

relies on the test engineer to determine constraints among choices to exclude certain test frames.

There are two reasons to exclude a test frame from consideration. First, the test engineer may

decide that the cost of building a test script for a test frame exceeds the likely bene�ts of executing

that test. Second, a test frame may be infeasible, in that the intersection of the speci�ed choices is

the empty set.

The developers of the category-partition method have de�ned a test speci�cation language

called TSL [BHO89]. A test case in TSL is an operation and values for its parameters and relevant

environment variables. A test script in TSL consists of the operations necessary to create the

environmental conditions (called the SETUP portion), the test case operation, whatever command

is necessary to observe the a�ect of the operation (VERIFY in TSL), and any exit command

(CLEANUP in TSL). Test speci�cations written in TSL can be used to automatically generate

test script. The test engineer may optionally give speci�c representative values for any given choice

to aid the test generation tool in deriving speci�c test cases. The category-partition method supplies

little explicit guidance as to which combinations of choices are desirable { the task is left mostly to

the test engineer's judgment.

Ammann and O�utt had several di�erences in their use of the category-partition method. First,

the derivation is based on formal speci�cations of the software, since, as has been demonstrated

in a variety of papers [AA92, Lay92, SC93b, SC93c], the formality of the functional speci�cation

helps to simplify and organize the production of a test speci�cation. Second, the TSL syntax is not

followed. Speci�cally, as has been done by others [SC93b, SC93c], a formal speci�cation notation

is used to describe aspects of the tests themselves as well as to describe functional behavior.

13

3.2.2 Integration Tests for S-Modules

Although S-Modules specify condition data
ow diagrams (CDFDs) in textual form, they only

de�ne the condition processes of CDFDs separately, giving no relationships between the condition

processes. It is the CDFDs (graphical notation) that describe their relationships in terms of data

ows. In other words, CDFDs describe how the condition processes de�ned in S-modules are

integrated to form an entire system.

Since condition processes in a CDFD are related in terms of data
ows, it is natural and easy

to conduct data
ow based testing for integration testing. The essential idea is to generate test

data to cover all the possible data
ows. To this end, test data (input data
ows) are generated to

test every possible graphical constructs given in Figure 5.

Testing sequential structures. Figure 5(a) shows a sequential structure in a CDFD. This

is a sequential structure in the sense that condition process B cannot �re until after condition

processes A1, A2, ..., An �re. Therefore, generating test data for the variables x1, x2, ..., xn is

necessary to generate values for y.

Criterion CDFD-1:

(1) Every input data
ow of a condition process must be used in a test.

(2) Every output data
ow of a condition process must be generated in a test.

Testing selection structures. There are two selection constructs in CDFDs, as shown in

Figure 5(b) and (c). To test such selection structures, the following criterion is de�ned.

Criterion CDFD-2:

Generate test data for x so that each branch of the selection can be used once.

Testing iteration structures. An iteration structure is possible in a CDFD, as shown in

Figure 5(d). To test such a structure, it must be ensured that when condition process B is �red

that consumes the input data
ow x, the output data
ows x1 and y are generated once, respectively.

This will also test whether a loop like the one in Figure 5(d) terminates. This is actually consistent

with criterion CDFD-2, so a separate criterion is not de�ned.

3.2.3 Generating Tests for I-Modules

As an I-module provides an implementation of a lowest level condition process speci�cation, a

predicate-based approach is used to test I-modules, but the previous approaches are extended in

several ways. Primarily, the predicates are measured at three di�erent levels; the disjunctive, con-

junctive, and the relational level. For convenience, it is assumed the predicates are in disjunctive

normal form (DNF). The primary intent is that each clause in each predicate is tested indepen-

dently.

14

At the disjunctive level, the predicates are in the form (A _ B _ C _ :::). These are tested by

holding all disjuncts but one False, and varying each one to be True in turn. That is, tests are

generated by �nding values that satisfy the following partial truth table:

A _ B _ C _ ...

T F F ...
F T F ...
F F T ...

...

These tests cases sample from the valid parts of the input space. In addition, the test engineer

may include combinations of two or more True disjuncts that are semantically meaningful. Be-

cause the program will be tested from the speci�cation, it is only necessary to generate test data

for the input parameters and state variables in the pre and postconditions.

At the conjunctive level, the predicates are in the form: (A ^ B ^ C ^ :::) and each clause is

tested in turn. First the entire expression is forced to be True by �nding values that cause each

clause to be True. Then invalid parts of the input space are sampled by holding all conjuncts but

one True, and varying each one to be False in turn. That is, tests are generated by �nding values

that satisfy the following partial truth table:

A ^ B ^ C ^ ...

T T T ...
F T T ...
T F T ...
T T F ...

...

Additionally, the test engineer may include combinations of two or more False conjuncts that

are semantically meaningful.

At the relational level, a limited form of domain analysis [WC80] is applied to the expressions.

This serves to test the boundaries of the relations. Assume that there are unary operators SUCC and

PRED de�ned for each linearly ordered type, which returns the successor and predecessor respectively

of a given value. These operators are provided in Ada for the built-in types. For example, SUCC

(X) is equivalent to X+1 for integer types. Then for each relational expression X rop Y, where X and

Y are arbitrary expressions and rop is some relational operator, replace the relational expression

by:

� X = Y

15

� X = SUCC (Y)

� X = PRED (Y)

and generate values to satisfy the predicates.

3.3 I-Module Level Example

Triang is a small program that has been widely used in the testing literature [ABD+79, CR83,

DLS78, RHC76]. Triang inputs three integers that represent the relative lengths of the sides of a

triangle and classi�es the triangle as equilateral, isosceles, scalene or illegal. SOFL speci�cations

for Triang are given in Figure 6.

Classi�cations = fEQUILATERAL, ISOSCELES, SCALENE, INVALIDg
Triang (S1, S2, S3 : integer) : Classi�cations

pre: S1>0 and S2>0 and S3>0;

post: S1=S2 and S2=S3 and S1=S3 implies Triang=EQUILATERAL and

S1+S2 � S3 or S1+S3 � S2 or S2+S3 � S1 implies Triang=INVALID and

S1=S2 or S2=S3 or S1=S3 implies Triang=ISOSCELES and

S16=S2 and S26=S3 and S1 6=S3 and
S1+S2 > S3 and S1+S3 > S2 and S2+S3 > S1 implies Triang = SCALENE

Figure 6: SOFL Speci�cations for Triang

If the preconditions are considered at the conjunctive level, all disjuncts but one must be held

True, and each one is varied to be False in turn. This is done by appending values to the sides of

the following partial truth table:

S1>0 ^ S2>0 ^ S3>0 S1 S2 S3

T T T 1 1 1
F T T 0 1 1
T F T 1 0 1
T T F 1 1 0

To generate values for the relational level, the relations are satis�ed separately, resulting in the

following table. This is a conjunctive clause, therefore the predicates that are not being considered

must be held constant at True, so as not to a�ect the value of the full predicate. For example, for

the �rst three rows of this table, where S1 is being considered, the values for S2 and S3 are held

constant at 1.

16

S1>0 ^ S2>0 ^ S3>0 S1 S2 S3

S1=0 0 1 1
S1=0+1 1 1 1
S1=0�1 �1 1 1

S2=0 1 0 1
S2=0+1 1 1 1
S2=0�1 1 �1 1

S3=0 1 1 0
S3=0+1 1 1 1
S3=0�1 1 1 �1

The postconditions are more complicated. There are four separate conditions, which represent

four possible cases. Only one condition can be true at a time, so for the purposes of testing, these

are disjunctive clauses. For convenience, these are labeled as follows:

A: S1=S2 and S2=S3 and S1=S3

B: S1+S2 � S3 or S1+S3 � S2 or S2+S3 � S1

C: S1=S2 or S2=S3 or S1=S3

D: S16=S2 and S26=S3 and S1 6=S3 and S1+S2 > S3 and S1+S3 > S2 and S2+S3 > S1

The disjunctive level tests are:

A _ B _ C _ D S1 S2 S3

T F F F 1 1 1
F T F F 1 1 2
F F T F 1 1 0
F F F T 2 3 4

At the conjunctive level, case A contains three clauses, so tests should be generated from it

by holding all conjuncts but one True, and varying each one to be False in turn. Unfortunately,

none of these conditions can be satis�ed; if S1=S2 and S2=S3, then by transitivity, S1=S3, so it is

impossible for only two of the three clauses to be True. This is illustrated in the following table.

From inspection, it is reasonable to relax the requirement, and allow two of the three clauses to be

False. This kind of reasoning is di�cult to introduce algorithmically, but the following scheme will

provide an adequate approximation. If holding one clause False leads to an infeasible constraint

system, the engineer can attempt to cause a second clause to be False. Of course, it is di�cult

to recognize whether a constraint system is infeasible. This problem is generally undecidable, but

heuristics have been developed that can �nd infeasibility in a large number of cases [OP97]. A

reasonable extension that handles this problem is to add one more test case at the conjunctive

level: require all conjuncts in the expression to be False. The bottom line in the table below

17

re
ects this extenstion.

S1=S2 ^ S2=S3 ^ S1=S3 S1 S2 S3

T T T 1 1 1
F T T infeasible
T F T infeasible
T T F infeasible

F F F 2 3 4

Case B again contains three disjunctive clauses. The resulting test cases are shown in the

following table.

S1+S2 � S3 _ S1+S3 � S2 _ S2+S3 � S1 S1 S2 S3

T F F 1 1 2
F T F 1 2 1
F F T 2 1 1

Case C contains three disjunctive clauses, so tests should be generated from it by holding all

disjuncts but one False, and varying each one to be True in turn. These test cases are shown in

the following table.

S1=S2 _ S2=S3 _ S1=S3 S1 S2 S3

T F F 1 1 0
F T F 1 0 1
F F T 0 1 1

Case D contains six conjunctive clauses, test cases for which are shown in the following table.

S16=S2 ^ S26=S3 ^ S16=S3 ^ S1+S2 > S3 ^ S1+S3 > S2 ^ S2+S3 > S1 S1 S2 S3

T T T T T T 3 4 5
T T T T T F 8 3 4
T T T T F T 3 8 4
T T T F T T 3 4 8
T T F T T T 3 4 3
T F T T T T 4 3 3
F T T T T T 3 3 4

At the predicate level, the postconditions have a total of 15 predicates. But most of them are

duplicated, particularly for the purposes of testing. For testing, the relational operator ignored, so,

for example, S1=S2 is equivalent to S1 6=S2. There are only six distinct predicates, and all of the

test case derivation tables for these predicates are not listed here. The total number of test cases

generated by this method is 68, 31 of which are unique. These test cases are listed in Appendix A.

18

3.3.1 Triang Mutation Coverage Results

As an initial evaluation of the speci�cation-based test generation technique, the quality of the

tests was measured using a coverage criterion. Mutation testing is considered one of the strongest

testing techniques, and is commonly used as a method for evaluating tests [WGS94, TFWC91,

Nta84, RZ89]. The test sets are evaluated on the basis of their mutation score, which is the ratio

of the number of mutants killed over the total number of mutants. Experience has shown that

mutation scores of over 90% are di�cult to achieve, and mutation scores of over 95% are very

di�cult.

The Mothra mutation system was used [DGK+88, DO91], and all mutants were generated for

an implementation of Triang. Mothra created 842 non-equivalent mutants, and the 31 test cases

killed 817 mutants, for a mutation score of 97.03%. Additionally, analysis of the relevant mutants

showed that the test data set is completely adequate for the extended branch coverage criterion

(also known as multiple condition coverage). While these numbers are only for one small program,

they are extremely encouraging, and lead us to hope that this kind of speci�cation-based test data

generation scheme can yield tests that do very well at structural code coverage.

4 Conclusions

This paper has introduced a new technique for generating test data from formal software speci�ca-

tions. Formal speci�cations represent a signi�cant opportunity for testing because they precisely

describe the functionality of the software in a form that can be easily manipulated by automated

means. This paper addresses the problem of developing formalizable, measurable criteria for gen-

erating test cases from speci�cations. A model for generating tests from SOFL speci�cations was

presented, and a case study of a software unit was presented. This case study was evaluated

using mutation analysis, and it was found that the technique can be very e�ective. This result

indicates that this technique can bene�t software developers who construct formal speci�cations

during development.

4.1 Future Work

Our immediate goal is to develop formal criteria for speci�cation-based test data generation. A

subsequent goal is to develop mechanical procedures to derive test cases from formal speci�cations;

long term goals include automated tool support to transform formal functional speci�cations into

e�ective test cases. A future goal is to build an automatic test data generation tool for this

technique. We also expect to provide more evidence of the e�ectiveness of this technique, and

19

attempt to apply it at the system level.

One disadvantage of the current technique is that the predicates must be assumed to be in

disjunctive normal form. While it is true that all predicates can be put into DNF, it is sometimes

not desirable to change the form of the speci�cations. The advantage of DNF is that the predicates

have a simple form, and the algorithms for satisfying them are relatively straightforward. We

are currently considering other representation forms that will allow tests to be generated without

modifying the form of the expressions.

5 Acknowledgments

We would like to thank Steve Miller and Paul Ammann for insightful discussions on this work. We

should also thank the Ministry of Education of Japan for funding this project under Joint Research

Grant-in-Aid for International Scienti�c Research FM-ISEE (08044167).

References

[AA92] N. Amla and P. Ammann. Using Z speci�cations in category partition testing. In
Proceedings of the Seventh Annual Conference on Computer Assurance (COMPASS
92), Gaithersburg MD, June 1992. IEEE Computer Society Press.

[ABD+79] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Muta-
tion analysis. Technical report GIT-ICS-79/08, School of Information and Computer
Science, Georgia Institute of Technology, Atlanta GA, September 1979.

[AG93] J. M. Atlee and J. Gannon. State-based model checking of event-driven system re-
quirements. IEEE Transactions on Software Engineering, 19(1):24{40, January 1993.

[AO94] P. Ammann and A. J. O�utt. Using formal methods to derive test frames in category-
partition testing. In Proceedings of the Ninth Annual Conference on Computer As-
surance (COMPASS 94), pages 69{80, Gaithersburg MD, June 1994. IEEE Computer
Society Press.

[BB96] M. Blackburn and R. Busser. T-VEC: A tool for developing critical systems. In
Proceedings of the 1996 Annual Conference on Computer Assurance (COMPASS 96),
pages 237{249, Gaithersburg MD, June 1996. IEEE Computer Society Press.

[BCFG86] L. Boug�e, N. Choquet, L. Fribourg, and M.-C. Gaudel. Test sets generation from
algebraic speci�cations using logic programming. The Journal of Systems and Software,
6(4):343{360, November 1986.

[Ber91] G. Bernot. Testing against formal speci�cations: A theoretical view. Technical report
LIENS-91-1, LIENS, D�epartment de Math�ematiques et d'Informatique, January 1991.

[BGM91] G. Bernot, M. C. Gaudel, and B. Marre. Software testing based on formal speci�cations:
A theory and a tool. Software Engineering Journal, 6(6):387{405, 1991.

20

[BHO89] M. Balcer, W. Hasling, and T. Ostrand. Automatic generation of test scripts from
formal test speci�cations. In Proceedings of the Third Symposium on Software Testing,
Analysis, and Veri�cation, pages 210{218, Key West Florida, December 1989. ACM
SIGSOFT 89.

[Bro87] F. B. Brooks. No silver bullet: Essence and accidents of software engineering. IEEE
Computer, 20(4):10{19, April 1987.

[Cho86] N. Choquet. Test data generation using a prolog with constraints. In Proceedings of the
Workshop on Software Testing, pages 51{60, Ban� Alberta, July 1986. IEEE Computer
Society Press.

[CR83] L. A. Clarke and D. J. Richardson. The application of error-sensitive testing strate-
gies to debugging. In Symposium on High-Level Debugging, pages 45{52. ACM SIG-
SOFT/SIGPLAN, March 1983.

[DeM78] Tom DeMarco. Structured Analysis and System Speci�cation. Yourdon Inc., New York,
1978.

[DF91] R. K. Doong and P. G. Frankl. Case studies on testing object-oriented programs. In
Proceedings of the Fourth Symposium on Software Testing, Analysis, and Veri�cation,
pages 165{177, Victoria, British Columbia, Canada, October 1991. IEEE Computer
Society Press.

[DF93] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from
model-based speci�cations. In Proceedings of FME '93: Industrial-Strength Formal
Methods, pages 268{284, Odense, Denmark, 1993. Springer-Verlag Lecture Notes in
Computer Science Volume 670.

[DGK+88] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. O�utt. An
extended overview of the Mothra software testing environment. In Proceedings of the
Second Workshop on Software Testing, Veri�cation, and Analysis, pages 142{151, Ban�
Alberta, July 1988. IEEE Computer Society Press.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. IEEE Computer, 11(4):34{41, April 1978.

[DO91] R. A. DeMillo and A. J. O�utt. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, 17(9):900{910, September 1991.

[GMH81] J. Gannon, P. McMullin, and R. Hamlet. Data-abstraction implementation, speci-
�cation, and testing. ACM Transactions on Programming Languages and Systems,
3(3):211{223, July 1981.

[Hay86] I. J. Hayes. Speci�cation directed module testing. IEEE Transactions on Software
Engineering, SE-12(1):124{133, January 1986.

[Hen80] K. Henninger. Speci�ying software requirements for complex systems: New techniques
and their applications. IEEE Transactions on Software Engineering, SE-6(1):2{12,
January 1980.

[Hie97] Robert M. Hierons. Testing from a Z speci�cation. The Journal of Software Testing,
Veri�cation, and Reliability, 7:19{33, 1997.

21

[HKL+95] M. Hlady, R. Kovacevic, J. J. Li, B. R. Pekilis, D. Prairie, T. Savor, R. E. Seviora,
D. Simser, and A. Vorobiev. An approach to automatic detection of software fail-
ures. In Proceedings of the IEEE 6th International Symposium on Software Reliability
Engineering (ISSRE), pages 314{323, Toulouse-France, October 1995.

[Jal92] P. Jalote. Speci�cation and testing of abstract data types. Computer Language,
17(1):75{82, 1992.

[Jon86] C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall, Englewood
Cli�s, NJ, 1986.

[Kem85] R. A. Kemmerer. Testing formal speci�cations to detect design errors. IEEE Transac-
tions on Software Engineering, SE-11(1):32{43, January 1985.

[Lay92] G. Laycock. Formal speci�cation and testing: A case study. The Journal of Software
Testing, Veri�cation, and Reliability, 2:7{23, 1992.

[LS95] Shaoying Liu and Yong Sun. Structured methodology + object-oriented methodology
+ formal methods: Methodology of SOFL. In Proceedings of First IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, pages 137{144, Ft.
Landerdale, Florida, U.S.A., November 1995. IEEE Computer Society.

[LS96] J. J. Li and R. E. Seviora. Automatic failure detection with conditional-belief supervi-
sors. In Proceedings of the IEEE 7th International Symposium on Software Reliability
Engineering (ISSRE 96), pages 4{13, White Plains, NY, October 1996.

[LSOHS98] Shaoying Liu, Yong Sun, A. J. O�utt, and Chris Ho-Stuart. SOFL: A formal en-
gineering methodology for industrial applications. IEEE Transactions on Software
Engineering, 24(1), January 1998. Special Issue on Formal Methods.

[LYZ94] Luqi, H. Yang, and X. Zhang. Constructing an automated testing oracle: An e�ort to
produce reliable software. In Proceedings of IEEE Conference on Computer Software
and Applications (COMPSAC), 1994.

[Nta84] S. C. Ntafos. An evaluation of required element testing strategies. In Proceedings of
the Seventh International Conference on Software Engineering, pages 250{256, Orlando
FL, March 1984. IEEE Computer Society.

[OB88] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and
generating functional tests. Communications of the ACM, 31(6):676{686, June 1988.

[OI95] A. J. O�utt and A. Irvine. Testing object-oriented software using the category-partition
method. In Proceedings of the Seventeenth International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS USA '95), pages 293{303, Santa
Barbara, CA, August 1995.

[OP97] A. J. O�utt and J. Pan. Detecting equivalent mutants and the feasible path problem.
The Journal of Software Testing, Veri�cation, and Reliability, 7(3):165{192, September
1997.

[OSW86] T. J. Ostrand, R. Sigal, and E. J. Weyuker. Design for a tool to manage speci�cation-
based testing. In Proceedings of the Workshop on Software Testing, pages 41{50, Ban�
Alberta, July 1986. IEEE Computer Society Press.

22

[RHC76] C. V. Ramamoorthy, S. F. Ho, and W. T. Chen. On the automated generation of pro-
gram test data. IEEE Transactions on Software Engineering, 2(4):293{300, December
1976.

[RZ89] J. Rowland and Y. Zuyuan. Experimental comparison of three system test strate-
gies preliminary report. In Proceedings of the Third Symposium on Software Testing,
Analysis, and Veri�cation, pages 141{149, Key West Florida, December 1989. ACM
SIGSOFT 89.

[SC93a] P. Stocks and D. Carrington. The ISDM case study: A dependency management
system (speci�cation-based testing). Technical report, The University of Queensland,
Department of Computer Science, 1993.

[SC93b] P. Stocks and D. Carrington. Test template framework: A speci�cation-based testing
case study. In Proceedings of the 1993 International Symposium on Software Testing,
and Analysis, pages 11{18, Cambridge MA, June 1993.

[SC93c] P. Stocks and D. Carrington. Test Templates: A Speci�cation-Based Testing Frame-
work. In Proceedings of the 15th International Conference on Software Engineering,
pages 405{414, Baltimore, MD, May 1993.

[SC96] P. Stocks and D. Carrington. A framework for speci�cation-based testing. IEEE
Transactions on Software Engineering, 22(11):777{793, November 1996.

[SCS97] H. Singh, M. Conrad, and S. Sadeghipour. Test case design based on Z and the
classi�cation-tree method. In Proceedings of the First International Conference on
Formal Engineering Methods, pages 81{90, Hiroshima, Japan, November 1997. IEEE
Computer Society.

[Spi89] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Publishing Company
Inc., 1989.

[TFWC91] P. Th�evenod-Fosse, H. Waeselynck, and Y. Crouzet. An experimental study on software
structural testing: Deterministic versus random input generation. In Fault-Tolerant
Computing: The Twenty-First International Symposium, pages 410{417, Montreal,
Canada, June 1991. IEEE Computer Society.

[TVK90] W. T. Tsai, D. Volovik, and T. F. Keefe. Automated test case generation for programs
speci�ed by relational algebra queries. IEEE Transactions on Software Engineering,
16(3), March 1990.

[WC80] L. J. White and E. I. Cohen. A domain strategy for computer program testing. IEEE
Transactions on Software Engineering, 6(3):247{257, May 1980.

[WGS94] E. Weyuker, T. Goradia, and A. Singh. Automatically generating test data from a
boolean speci�cation. IEEE Transactions on Software Engineering, 20(5):353{363,
May 1994.

23

A Appendix: Test Cases for Triang

S1 S2 S3
-1 1 1
0 1 1
1 -1 1
1 0 1
1 1 -1
1 1 0
1 1 1
1 1 2
1 1 3
1 2 1
1 2 3
1 3 1
1 3 2
2 1 1
2 2 3
2 3 2
2 3 4
2 3 5
2 3 6
2 4 3
2 5 3
2 6 3
3 1 1
3 1 2
3 2 2
3 2 4
3 4 2
4 2 3
4 3 2
5 2 3
6 2 3

24

