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Abstract—Nearly a decade of research in software engineering
has focused on automating mobile app testing to help engineers
in overcoming the unique challenges associated with the software
platform. Much of this work has come in the form of Automated
Input Generation tools (AIG tools) that dynamically explore app
screens. However, such tools have repeatedly been demonstrated
to achieve lower-than-expected code coverage — particularly on
sophisticated proprietary apps. Prior work has illustrated that a
primary cause of these coverage deficiencies is related to so-called
tarpits, or complex screens that are difficult to navigate.

In this paper, we take a critical step toward enabling AIG
tools to effectively navigate tarpits during app exploration
through a new form of automated semantic screen understanding.
That is, we introduce AURORA, a technique that learns from
the visual and textual patterns that exist in mobile app Uls
to automatically detect common screen designs and navigate
them accordingly. The key idea of AURORA is that there are
a finite number of mobile app screen designs, albeit with subtle
variations, such that the general patterns of different categories
of UI designs can be learned. As such, AURORA employs a multi-
modal, neural screen classifier that is able to recognize the most
common types of UI screen designs. After recognizing a given
screen, it then applies a set of flexible and generalizable heuristics
to properly navigate the screen. We evaluated AURORA both on a
set of 12 apps with known tarpits from prior work, and on a new
set of five of the most popular apps from the Google Play store.
Our results indicate that AURORA is able to effectively navigate
tarpit screens, outperforming prior approaches that avoid tarpits
by 19.6 % in terms of method coverage. Our analysis of the results
finds that the improvements can be attributed to AURORA’s Ul
design classification and heuristic navigation techniques.

I. INTRODUCTION

Mobile application development (or app development) is a
challenging endeavor. Developers working in this domain face
a variety of unique challenges that range from rapidly evolving
and fault-prone APIs [1], [2] to frequent user feedback [3] and
highly competitive app marketplaces [4]. As such, software
maintenance and testing techniques, which are critical to
ensuring software quality, are often overlooked due to pressure
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to deliver features in the face of these external factors [5].
As such, the research community has worked to provide a
range of automated techniques to help developers cope with
these challenges, spanning tools that support tasks from bug
management [6]-[16] to software evolution [17], [18].

In the past decade, an extremely popular area of work in
the software engineering research community has aimed to
automate software testing for mobile apps — more specifically,
GUlI-based testing. Given that mobile apps are GUI-centric in
nature, Ul testing is one of the most popular testing modalities
for ensuring the correctness of functionality. However, creating
UI tests manually is extremely time-consuming [5]. As such,
the research community has developed numerous Automated
Input Generation (AIG) tools that dynamically explore appli-
cations with the goals of exercising substantial portions of
app functionality, while simultaneously uncovering crashes
and other faults. These tools can be broadly grouped into
random-based [19]-[24], model-based [20], [22], [25]-[28],
and machine learning-based tools [29]-[31].

In controlled experimental settings, AIG tools often perform
well and achieve reasonably high code coverage. However, in
practice, these AIG tools are often prone to low effectiveness
in certain testing scenarios, particularly on sophisticated pro-
prietary apps [32]. One reason for this low effectiveness is
that many proprietary apps often contain complex screens that
are difficult for AIG tools to navigate, i.e., the semantics of
the screen require a precise order of actions to navigate and
bypass so that additional app states can be explored. Wang et
al. recently performed a study that empirically illustrated this
phenomena, wherein they observed different types of screens
that caused AIG tools to halt exploration progress [33]. The
authors of this recent study refer to such screens as Ul Explo-
ration Tarpits. In addition to demonstrating this phenomenon,
the authors also introduced a preliminary technique for dealing
with these tarpit screens, called VET. VET integrates with
existing AIG tools and uses a learn-from-mistake strategy that
first identifies exploration tarpits from runs of the AIG tool
and later disables these screens in future runs of the AIG tool.



The VET approach introduced by Wang et al. has two
major limitations. First, VET is inherently expensive to run
in practice, as it requires running an AIG tool twice, once
to detect potential tarpits and then again to explore the app
with the tarpits disabled. Second, VET does not assist with
navigating Ul tarpits, it simply disables them, meaning that
there will always be portions of an application’s state that
AIG tools enhanced with VET cannot explore. However,
navigating through Ul tarpits may be feasible (as suggested
by the results of the manual analysis performed by Wang et
al. [33]), exploration tarpits often fall into one of a limited
number of categories, even across different apps and AIG
tools. This finding suggests that there may be patterns that
can be exploited to explore these complex Ul tarpit screens.

Given the findings and current limitations of prior work,
in this paper, we propose a novel technique called AURORA,
that aims to effectively navigate tarpit screens during app
exploration using a new form of automated semantic screen
understanding. The key idea of AURORA is that there are
a finite number of Ul designs for screens that are likely to
represent tarpits, and hence, general design motifs that can be
learned will allow for the automated recognition and naviga-
tion of such screens. AURORA learns from both the visual
and textual patterns present in Ul screens to automatically
identify tarpit screens, through a component we call the screen
recognizer, and then navigates recognized screens using a set
of flexible heuristics, via the heuristic navigator component.

To better understand UI design categories and their rela-
tionship with exploration tarpits, we first studied Android app
screenshots and Ul hierarchies from the RICO dataset [30],
deriving a set of 21 mobile app UI Design Motifs, representing
coherent design patterns. During this process, multiple authors
jointly labeled a minimum of 60 screens exhibiting each of our
21 design motifs, for a dataset totaling 1369 UI screens. We
then proceeded to study the correlation between these general
categories of Ul designs and the tarpit screens as manifested
through the dataset of tarpits discovered by and published
alongside the VET tool [33]. We found that eight of our 21
design motifs were identified as tarpits in the VET dataset.

This analysis of the relationship between various categories
of UI designs and tarpits inspired our design of AURORA.
During the app exploration process of an AIG tool, AURORA
is able to detect when app exploration progress is hindered by
a tarpit, and will then automatically categorize the tarpit screen
into one of our identified categories using a neural screen
understanding approach that analyzes both the visual patterns
in a screenshot of the tarpit and the textual patterns on the UL
For example, AURORA’s screen recognizer can categorize a
given screen as a login screen if the screenshot and Ul contain
a username and a password EditText, and contain salient
visual patterns that indicate the typical structure of a login
screen, such as center-aligned text-box(es) and button(s).

AURORA’s screen recognizer is implemented using a multi-
modal deep learning model [34], which is initialized through
self-supervised learning on a set of 6000 app screenshots
extracted from an online search engine. It is then trained and
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tested on an 80-20 split of our labeled dataset of 1369 UI
images. Our evaluation finds that AURORA achieved 81.4%
classification accuracy. AURORA’s heuristic navigator imple-
ments eight input generation heuristics that aim to intelligently
generate sequenced input scenarios to navigate through typical
tarpit categories using a combination of neural text matching
via transformer-based language models, and dynamic analysis.

AURORA is designed to run alongside and enhance existing

AIG tools by quickly identifying and navigating through
identified exploration tarpits. As an AIG tool is exploring,
AURORA will periodically check if the exploration is stuck.
If the AIG tool appears to be stuck, AURORA will analyze
the current screen to determine if it is a tarpit. If it is, then
AURORA will pause the AIG tool and activate a corresponding
input generation heuristic to navigate the current screen. We
combine AURORA with a state-of-the-art AIG tool, APE [21],
and test on 17 popular Android apps. We find that AURORA
helps improve code coverage substantially, with an average
improvement of 11.0% over APE and 19.6% over VET on
two separate comparative analyses. Through a qualitative
analysis, we observe that these improvements arise due to
the effectiveness of AURORA’s screen recognizer and heuristic
navigation strategies — the latter of which exhibits an 88.8%
success rate in navigating through UI tarpit screens.

AURORA was developed in cooperation with Hangzhou

Dragon Testing Technology Co., Ltd. who is focused on build-
ing Al-enhanced software testing products, and customers of
the company include internationally recognized clients, such as
WeChat, a messenger app with over one billion monthly active
users. Dragon Testing has deployed a proprietary version of
AURORA, that closely mirrors the components and workflow
described in this paper, to its automated software testing prod-
uct offerings. In this context, AURORA has enabled automated
navigation of several types of tarpit screens for thousands
of automated test cases, including pop-ups and forms, that
had previously hindered the testing of app business logic for
Dragon Testing’s customers. This deployment of AURORA
further illustrates both its effectiveness and practicality.

In summary, this paper makes the following contributions:

o A Study identifying prevalent design motifs of Android
UI screens and the categories that constitute Ul explo-
ration tarpits.

o A Multi-modal Deep Learning-based Approach for
classifying a given Ul screen into the design motifs
identified in our study.

o Automated Heuristics that can be used to navigate
prevalent UI tarpits.

o A Framework implemented as AURORA [35], which can
be combined with automated input generation (AIG) tools
to automatically categorize screens and apply relevant
heuristics to help AIG tools bypass UI tarpits.

o« An Evaluation on the (1) accurateness of our deep
learning model at predicting Ul screen categories, (2) ef-
fectiveness of our heuristics at bypassing Ul tarpits, and
(3) code coverage improvements that AURORA can help
AIG tools achieve.
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Fig. 1: A visualization of the spatial properties of components
captured within Android UI hierarchy of the Imgur [36] app.
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o Artifacts made publicly available from this work, which
includes AURORA and our labeled dataset of UI cate-
gories, to help aid future research [35].

II. BACKGROUND
A. Mobile App Ul Hierarchies and Frameworks

A Ul Hierarchy represents the contents of an app Ul
rendered to the screen of a mobile device. Ul hierarchies are
comprised of UI elements that each exhibit several properties
(e.g., location, size, component type), wherein Ul elements
are arranged in a hierarchical fashion and children can inherit
design and logical properties from their parents. In Android,
the ViewServer generates and maintains runtime information
about app Uls, and can be queried using the uiautomator
framework, which extracts a representation of the UI hierarchy
in xml format. Figure 1 illustrates a visualization of the spatial
properties of components captured as output in uiautomator
xml files. Programmatically, Android screens are primarily
made up of constructs called Activities and Fragments, where
Activities typically represent a single logical screen and Frag-
ments represent smaller components of a screen, such as a
pop-up menu. For the purposes of discussion in this paper,
when we refer to a “Ul screen”, we are effectively referring
to a single Activity or Fragment that is rendered to the UI
screen, such as the “Settings Activity” illustrated in Figure 1.

UI hierarchies effectively capture information that is rele-
vant to the structure of a Ul screen, which we will illustrate
is important for learning abstract representations of Uls to aid
in AURORA’s screen classification capabilities. In addition to
UI hierarchies, screenshots can be easily captured from mobile
apps using the screencap utility built into the Android Debug
bridge (adb) framework. This captured UI information is often
used by AIG tools for decision-making and is especially
critical to model-based testing tools. As we describe later,
AURORA extracts runtime UI hierarchies and screenshots via
the uiautomator and adb frameworks, which are fed as input
to both AURORA’s screen recognizer and heuristic navigator.
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Fig. 2: Example of an Advertisement screen tarpit.

B. UI Exploration Tarpits and the VET Approach

Ul Exploration Tarpits (or Ul Tarpits) is a term coined by
Wang et al. [33], that describes a phenomenon that occurs
when an AIG tool explores a single Ul screen (i.e., Activity) for
an excessive amount of time, hindering the progress of the tool
in exploring undiscovered UI states of a given app. Figure 2
shows an example advertisement tarpit screen in the Merriam-
Webster app. Random actions on these screens typically cause
an AIG tool to get stuck — in this example, the advertisement
launches a WebView that can only be closed through a specific
series of actions.

To overcome issues with these screens, Wang et al. proposed
the VET tool [33] to detect and cope with UI exploration
tarpits. VET works in three stages: First, it runs the AIG tool
on the target app without any restriction and records the testing
process, yielding traces that record how the AIG tool has
interacted with the target app. Second, it analyzes the collected
traces against pre-defined low-level patterns that characterize
repetitions to discover potential exploration tarpits. A ranking
strategy is utilized to reduce false positives. Third, it reruns
the AIG tool on the target app with the discovered exploration
tarpits disabled, achieved through dynamically blocking the
entry points to the exploration tarpits or via restarting the
target app. Evaluation results show that VET can improve the
testing effectiveness of multiple Android AIG tools, and can
help improve bug detection capabilities.

Despite its advancements, VET has two major limiting
factors. First, VET must first run an AIG tool comprehensively
to identify and build a model of potential UI tarpits. This
requirement means that testing time for apps is often doubled
due to the need to run once to detect tarpits, and another time
to explore the app with tarpits disabled. Second, VET does
not facilitate navigating through tarpit screens, but instead,
simply disables tarpit screens. This limitation means that VET
is effectively incapable of exploring certain areas of an app that
were identified as tarpits. AURORA aims to overcome both of
these shortcomings by analyzing UI screens in real-time to
detect, classify, and navigate through tarpit screens using new
forms of automated neural UI screen understanding.

III. DERIVING MOBILE APP UI DESIGN MOTIFS

One of the key ideas underlying AURORA is that certain
designs for mobile app Ul screens are reused, with varying
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Fig. 3: A visualization of a UI Silhouette Screen.

degrees of change and variability, across applications such
that the structural and lexical patterns of these designs can be
automatically identified. In this paper, we refer to these pat-
terns as Ul Design Motifs. To better understand the types and
prevalence of Ul Design Motifs across Android applications,
we conducted a preliminary investigation to derive a set of
motifs that will serve as the focus of our AURORA approach.

A. Isolating Structural Screen Patterns with Silhouette Screens

To empirically derive a set of UI design motifs, we analyzed
a set of randomly sampled screens from the RICO dataset [30].
RICO is currently the largest dataset of Android app Ul screen-
shots and corresponding runtime Ul metadata, spanning over
66,000 UI screens collected from over 9,000 free Android apps
available on the Google Play Store. This screen information
was collected via a combination of automated UI exploration
and crowdsourced UI exploration on virtual Android devices.
The UI metadata for these screens was collected using the
uiautomator framework.

Given the sheer scale of this dataset, manually analyzing
even small portions of the dataset to discover Ul design
motifs would be a time-consuming proposition. Furthermore,
as observed by the authors of the RICO dataset, there likely
exist certain common UI patterns followed by a long tail
of unique or one-off UI screen designs. Given that our aim
is to identify and categorize common UI design patterns
into categories we term as motifs, we introduced lightweight
automation to facilitate the manual labeling process. As such,
we conducted an initial step of unsupervised, computer vision-
based clustering of screens into broad categories that exhibited
visual similarities.

Using “raw” screenshots to group together visually sim-
ilar UI screens for the purposes of deriving design motifs
presents certain challenges. First, two screens that share a
design motif (i.e., Settings Screen) may instantiate that screen
using a similar screen structure, but have widely varying
colors, fonts, and other stylistic properties. As such, clustering
screens according to raw image similarities is likely to be
greatly impacted by similarities in style. To focus our analysis
on structural Ul Design Motifs that occur across a diverse
set of apps, we developed a process to “abstract” raw Ul
screenshots, by stripping out stylistic information and creating
what we refer to as Silhouette Screens. Figure 3 illustrates
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this process. In essence, we divide all Ul components into
one of two categories: (i) textual components, and (ii) non-
textual components. We then draw textual components on a
black canvas as blue boxes and non-textual components as
green boxes, parsing the spatial component size and locations
from RICO’s uiautomator metadata that accompanies each
screenshot. This methodology allows us to effectively capture
each screen’s abstract structure, while ignoring the stylistic
variations different screens may exhibit. We discuss different
potential variations of Silhouette Screen creation in Section IV.

B. Structural Clustering of Ul Screens

After developing our process for creating Silhouette
Screens, we needed a reliable methodology to create a robust
representation of our Ul screens so that they could be clustered
according to their structural Ul features. While simple image
similarity measures could be used to accomplish this goal,
such measures often rely on handcrafted heuristics that may
not transfer well to UI screens. Furthermore, deep learning-
based computer vision techniques that incorporate convolu-
tional neural networks have been shown adept at learning
robust representations of image features [37], [38]. As such,
we implemented a 2D convolutional autoencoder, consisting
of 6 encoder and 7 decoder layers, and trained it on 32,338
UI screens collected by randomly sampling from 50% of the
RICO dataset. Generally speaking, an autoencoder is a neural
network that encodes an image into a high-dimensional vector
representation and then is trained to decode this representation
back into the original image, with differences between the
input and output being used by a loss function to update
model weights during the training process. We trained our
autoencoder model on a subset of RICO to avoid overfitting
and to improve the model’s generalization to handle a wider
range of real-world data. Through experimentation, we also
found that this amount of data was sufficient to train our
autoencoder to convergence.

We then applied a K-means clustering technique to 645
screens, roughly representing ~~1% of the RICO dataset sam-
pled from outside the autoencoder’s training set. Using the
elbow technique [39], we found 30 clusters to be optimal.

C. Manual Analysis and Derivation of Design Motifs

After this clustering procedure, three authors of this paper
manually analyzed each of the 30 clusters, refined the cate-
gorizations of screens, and then collectively provided labels
to the finalized clusters. This process proceeded as follows:
First, separate authors would look at a defined set of clusters
(i.e., five clusters), and they would examine each screen
in these clusters and re-cluster them or form new clusters
to better group screens that share a common structural UI
pattern. Two authors would examine these sets of clusters,
and then all three authors would meet to discuss the results
and come to an agreement on the newly formed clusters. This
process proceeded until all 30 clusters had been examined.
The end result of this process was a refined set of 21
clusters, representing Ul design motifs with the following
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labels: Advertisement, Calendar time and weather, Catalog,
Feed, Form, Home menu, List, Log-in, Map, Onboarding,
Player, Pop up, Product, Search, Settings, Splash, Terms
and conditions, Travel booking, Type message, Viewer, and
Web browser screens. We provide complete descriptions and
examples of these categorizations in our artifact [35].

D. Identifying Tarpit Screens and Motifs from the VET Dataset

The study conducted by Wang et al. [33] contains a dataset
of over 95,000 UI screens obtained from testing 16 different
industrial apps using different AIG tools, including APE [21],
Monkey [20], and WCTester [40]. These Ul screens are
organized into 127 test traces, with each trace comprising
a collection of screenshots and associated metadata derived
from a specific app-tool pairing. These traces include timing
information as well as the number of actions executed on
various Ul screens, allowing us to identify screens for which
the tools encounter obstacles that may represent tarpits.

To find examples of tarpit Ul screens, we perform a Ul
metadata comparison using the JSONComparison API [41]
on the uiautomator metadata included with each screenshot
from the VET traces. We set a minimum threshold of five
action repetitions and 10 seconds of elapsed time to consider
a screen as a tarpit in the context of the traces. Said differently,
we only consider a screen to be a tarpit if at least five con-
secutive actions were entered on the screen and the screen did
not change for at least 10 seconds. Applying these criteria to
the screens from the traces, we extract 238 screens that likely
represent UI tarpits. Upon further inspection of this dataset, we
observed that there were screens with fewer actions but very
large elapsed time. Therefore, we additionally include the top
200 screens on which the tools used in VET’s evaluation spent
the most time. In the end, we take the union of these two sets
which in total contains 348 tarpit screens.

E. Tarpit Screen Analysis

We aimed to better understand two aspects of the tarpit
screens from the VET dataset including: (i) reasons for
obstructed AIG tool navigation, and (ii) the labels of these
screens according to the design motifs we derived earlier. To
carry out this process, two authors of the paper independently
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analyzed each of the 348 tarpit screens and investigated the
two factors above. We present these findings below.

Reasons for AIG Tool Obstructions:

1) Inability to input relevant text in a designated field.

2) Difficulty locating specific components or series of components
for screen progression.

Failure to identify interactive elements on the screen.
Accidental engagement with advertisements, resulting in diffi-
culty exiting the web view screen.

Tool initiated closure of the application.

App unresponsiveness.

3)
4)

5)
6)

Tarpit Screen Design Motifs and Navigation Strategies:
Log-in: Input some predefined text and tap certain buttons.
Onboarding: Identify and interact with certain buttons.

Player: Perform sequential actions to access different screens.
Advertisement: Locate and tap the close button to exit.
Viewer: Tap on the screen to expose interactive elements or use
the back button for navigation.

Form: Input relevant text, interact with spinners and buttons.

e Web browser: Tap the back button or restart the app.

o Search: Input relevant text in search fields.

IV. THE AURORA APPROACH

In this section, we define the methodology of our Android
UI exploration tool, AURORA [35]. Our approach leverages
a multi-modal computer vision-based screen recognizer that
uses structural and lexical patterns in UI screens to detect
different Ul Design Motifs. When an AIG Tool encounters
a tarpit screen, AURORA classifies this screen using the
screen recognizer and then applies one of several pre-defined
navigation heuristics to navigate through the screen to un-
cover additional states of the application. An overview of the
approach is shown in Figure 4. We describe the components
of AURORA in detail in the following subsections.

A. Approach Workflow

AURORA [35] operates in conjunction with any AIG Tool
that extracts uiautomator metadata and screenshots as part
of its exploration process. The integrated AIG tool can be
random-based, model-based, or machine learning-based in
nature. During an AIG tool’s app exploration, we need a
mechanism to detect when the tool may be “stuck” in a
tarpit screen. We derived a suitable elapsed time to determine
whether a screen is a tarpit empirically through a small set
of experiments where we varied the “tarpit trigger” time from
10 seconds to 30 seconds in 5-second intervals, and inspected
the number of identified tarpits during a one-hour execution
of the APE [21] automated testing tool on the set of 16
apps from the VET dataset. Upon inspection of the identified
screens at each tarpit threshold level, we found that 10 seconds
allowed AURORA to detect the highest number of true tarpit
screens with a reasonably small number of false positives. As
such, AURORA polls the activity/window combination queried
from an Android emulator’s view-server every second — if
the activity/window combination remains the same after 10
seconds AURORA is triggered to bypass the potential tarpit.

Once a tarpit screen has been identified, a screenshot and
the corresponding uiautomator metadata for the screen



are saved, and then a Silhouette Screen is created to cap-
ture the structural patterns, and the EAST Optical Character
Recognition (OCR) technique [42] from the Google Cloud
Vision API [43] is used to extract text from the screen. The
uiautomator metadata, Silhouette Screen, and OCR data are
then converted to visual and textual embeddings and passed
to AURORA’s screen recognizer. This component generates a
ranked list of UI Design Motifs for the current screen.

Given the ranked set of potential UI Design Motifs for a
given screen, AURORA checks if the screen falls into one of the
eight Tarpit UI Design Motifs derived in Section III-E. If so,
then AURORA triggers the execution of a navigation heuristic
for that Design Motif, which performs a predefined set of UI
actions. To carry out the actions of a heuristic, AURORA uses
the SentenceBERT model [44] to determine where to input
predefined text and where to click. It is possible that a given
tarpit screen could be mis-classified or that a given heuristic
might fail. In these scenarios, if AURORA recognizes that it
has not navigated through a given Ul screen after the execution
of a heuristic, it then executes heuristics of the next rwo tarpit
categories from the ranked list of predicted UI Design Motifs.
Given that AURORA’s heuristics generate fewer actions per
given unit of time than many AIG Tools, it is necessary to limit
the number of heuristics executed on a given tarpit screen to
small, reasonable number (three). If no progress is made after
three heuristic execution attempts, the app is restarted.

B. UI Screen Recognizer

As part of our development of AURORA, we worked with
Dragon Testing to develop two different Ul screen classifiers.
The first classifier combines image embeddings learned from
a neural autoencoder, with lexical embeddings of screen text
from a large language model. These embeddings are con-
catenated and then passed into a classifier that predicts a
ranked list of screens. The second classifier uses a multi-modal
CLiP [34] model to encode images and text. We describe each
of these classifiers below. We explore these two classifiers
as they require very different numbers of parameters, with
the CLiP-based approach requiring a much larger number
of parameters than the Autoencoder-based approach. Given
that past research has suggested the exploration of machine
learning techniques of varying degrees of complexity when
applied to software data [45], we opted to explore both a
“simpler” and “more advanced” machine learning technique.
We present the results of an empirical comparison of these
two classifiers in Section V.

1) Autoencoder-based Ul Design Motif Classifier: The first
classifier that we constructed for AURORA uses both a visual
and textual classifier before combining the output of these
two techniques to produce a final ranked list of categorized
UI Design motifs for a given target screen.

For the visual classifier, we utilize the encoder portion
of our pre-trained autoencoder framework described in Sec-
tion III-B. The encoder transforms high-dimensional image
data into compact feature vectors. These feature vectors con-
tain essential information from the images while reducing
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their dimensionality. Leveraging these feature vectors, we
applied traditional machine learning models, such as Random
Forest, Multi-Layer Perceptron (MLP), and Naive Bayes to
conduct classification tasks on a set of labeled UI screens.
In our experiments, we found the Random-forest classifier
to achieve the highest accuracy. To derive a training set for
this approach, we had two authors label an additional 599
screenshots from the RICO dataset into our 12 Design Motif
categories, distributed as evenly as possible.

For the textual classifier, we use both the Ul metadata and
the OCR output from the UI screenshots and create a single
paragraph out of each Ul screen. To encode the text from the
UI metadata, we convert six different component attributes
for each component in the UI hierarchy into sentences. The
attributes that AURORA encodes are (i) component class,
(ii) ancestor class, (iii) label, (iv) position, (v) width, and
(vi) height. In cases where labels, which typically represent
text rendered to the screen, are missing in the Ul metadata,
we utilize OCR information using Google’s Tesseract OCR
engine [46] as an alternative source of data. We applied various
classifiers, including Naive Bayes, KNN, Random Forest, and
Multi-Layer Perceptron (MLP), in conjunction with a TF-IDF
vectorizer. The TF-IDF vectorizer combined with the MLP
classifier produced the highest accuracy. We utilized the same
training set of 599 screenshots for this textual classifier.

Finally, AURORA combines the output of these two clas-
sifiers together. It uses a combined probabilistic approach to
predict screen class by extracting 21 attributes from both the
visual and textual classifiers, each denoting a probability value
for a specific class. Subsequently, we utilize a Random Forest
classifier for prediction.

2) Transformer-based Ul Design Motif Classifier: AU-
RORA’s transformer-based approach uses CLiP (Contrastive
Language-Image Pre-Training) [34], a model known for its
ability to perform transfer learning on a wide array of
classification-based downstream tasks. The CLiP model works
by creating two separate embeddings for the image and the
provided text. It creates image embedding using a convolu-
tional neural network (CNN) based on the ResNet architec-
ture. For text embedding, it uses a transformer-based neural
network architecture similar to the GPT language model [47].



Additionally, for this classifier, we improved upon the concept
of Silhouette Screens we introduced earlier in the paper. That
is, our prior technique for deriving Silhouette Screens relied
solely on uiautomator metadata to create the Silhouette
Screen. However, as illustrated in Figure 5, there may be
certain textual elements that are not properly captured in the
UI metadata — for instance if the text is displayed through
an image or web view. As such, we use the Google Cloud
OCR Engine to detect text on the screen, relate it to the
spatial properties of components, and create more accurate UL
Silhouette Screens, as shown in the right-hand side of Figure 5.

To train the CLiP model, we conduct unsupervised pre-
training on a set of 6,000 UI screenshots that we crawl from
Google. These screens were collected by searching the terms
of each of our identified design motifs in conjunction with the
terms “mobile app screen” using Google image search, and
downloading the resulting UI screenshots until we had 6000
screens distributed across our design motif categories. We then
train and test CLiP using an 80-20 split of our new set of 1369
RICO images (expanding from the set of 599 used to train the
Autoencoder-based model) evenly distributed across our 21
Design Motif categories.

To encode the textual information, we use the CliP model
to extract textual embeddings from all the text displayed on a
given Ul screen as extracted by Google’s Cloud OCR engine.

C. Heuristics Design

Our heuristics are formulated through the analysis of tarpit
screens within the VET dataset. Considering the reasons for
getting stuck at the end of Section III-E, we created heuristics
in executable Python code. The heuristic code makes use of
the Python wrapper for Android Debug Bridge commands [48]
for sending commands to a virtual device on an Android
emulator. While looking for specific components or input
fields, it uses the SentenceBERT model [44] to match with
the closest on-screen component. To validate the functionality
and reliability of our executable heuristic code, we tested it
rigorously on three Android applications, ensuring that they
can execute without any operational issues or errors. AURORA
focuses on eight specific types of UI screens, as detailed in
Section III-E, for which it has developed specific heuristics
that are generalizable across various applications. We provide a
description of two of AURORA'’s heuristics below as examples,
and refer readers to our artifact for additional examples [35].

Form screen: Form screens usually contain multiple text
fields, spinner components, and one submit button. Random-
based tools often cannot go past these screens, as such screens
require relevant text input. AURORA can provide the necessary
knowledge for entering relevant input using its preset spread-
sheet values. The values represent predefined column headers
and associated data, which is static during application testing.
We use a SentenceBERT model [44] to match input fields
on UI screens with our preset spreadsheet values and input
the top match to the UI screen. This model is essential for
matching on-screen labels (e.g., “last name”) with the relevant
spreadsheet column names (e.g., “surname”), which we then
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TABLE I: Apps used for our evaluation. #DLs represents the
approximate number of downloads.

App name Version Category #DLs
AccuWeather 7.4.1 Weather 50m+
AllTrails 14.2.0 Travel & Local 10m+
AutoScout24 9.8.0 Auto & Vehicles 10m+
CarMax 2.56.1 Auto & Vehicles Sm+
Duolingo 3.75.1 Education 100m+
Flipboard 4.1.1 News & Magazines 500m+
Fox News 4.50.0 News & Magazines 10m+
KAYAK 176.2 Travel & Local 10m+
Merriam-Webster ~ 4.1.2 Books & Reference 10m+
Spotify 8.4.48 Music & Audio 100m+
TripAdvisor 25.6.1 Travel & Local 100m+
trivago 494 Travel & Local 10m+
Walmart 22.31 Shopping 50m+
Wattpad 6.82.0 Books & Reference 100m+
WEBTOON 243 Comics 10m+
wish 4.16.5 Shopping 100m+
YouTube 17.33.42  Video Player & Editor  1b+

take a value from. The SentenceBERT model can resolve
nuanced differences by capturing the semantic relationships
between the labels and the spreadsheet column names.

Player screen: Player screens usually have a play and
resume button and other smaller buttons. AIG tools can get
stuck in these screens, as the probability of hitting bigger
buttons (e.g., play and resume) are higher, which does not
necessarily result in a screen change. AURORA searches for
other buttons, such as the settings or share button using its
pre-defined heuristics and interacts with them. In this way, it
helps with moving on to a different screen, so AIG tools can
explore other parts of the application.

V. EVALUATION

To understand how well AURORA can explore a given app,
we ask the following research questions (RQs):

1) How well do AURORA’s Screen Classifiers function in
relation to a baseline?

2) How often do automated input generation tools get stuck,
and what kind of screens are more difficult to explore?

3) How much improvement does AURORA offer over APE,
Monkey, and VET regarding method coverage?

4) How often do the heuristics get executed successfully,
and how many additional methods can they cover?

5) How effective are the heuristics in navigating the intended
tarpit screens?

A. Evaluation Context

Datasets and Baselines: We evaluate the two AURORA
classifiers using the 1369 labeled RICO images derived as
part of our UI Design Motif study. We compare our classifiers
against Screen2Vec [49], which is a textual screen embedding
technique that can be used to classify Android screens using
a neural representation of Ul metadata. We evaluate the
performance of APE, Monkey, VET, and AURORA on an
emulator operating within the Android 6.0 environment. We
run AURORA in conjunction with APE as the exploration tool
due to its superior method coverage rate observed during the
VET experimentation conducted by Wang et al. [33]. Addi-
tionally, APE has demonstrated a remarkable capacity to attain



higher test coverage [21] compared to alternative tools, such
as Monkey [20] or STOAT [50]. Our experimental analysis
focuses on a carefully selected set of 12 apps derived from
the VET experiments. To ensure the validity of our findings,
we exclude 4 apps from the previous study due to their lack
of support on Android 6.0, which could potentially introduce
inconsistencies in the results. Additionally, we expand our
investigation to encompass five additional apps beyond the
scope of the original VET experiments, resulting in a total of
17 apps under examination, one more than the number of apps
assessed in the VET experiments [33].

The inclusion of the five additional apps is meant to help
assess the generalizability of our heuristic-based approach. The
additional five applications are AllTrails, CarMax, Fox News,
KAYAK, and Walmart. These supplementary apps are among
the most popular apps with over five million downloads each.
They are incorporated into the study to examine the broader
applicability and generalizability of our proposed method. We
also updated two apps (AutoScout24 and YouTube) to a newer
version than the one used in the VET paper because almost
all functionalities of those apps were disabled in the older
versions at the time of our experiments. Table I shows the
statistics of the apps we used for our evaluation.
Experimental Procedure: Our experiment starts by executing
Monkey and APE on 17 pre-selected apps. We run a single
instance of the emulator at a time to collect the app traces.
The emulator is allocated 2 GB of RAM and 2 GB of internal
storage space. To ensure the emulator remains responsive and
efficient, we avoid running more than three 1-hour traces
simultaneously. We conduct three 1-hour runs of Monkey and
APE. VET learns from its built-in tarpit identification process
from the APE runs and then adds three more 1-hour runs,
giving us a total of six 1-hour runs. AURORA is executed for
six 1-hour runs for each app. We compare the first three 1-hour
runs of AURORA with APE and Monkey and compare the total
six 1-hour runs with VET. Due to experiment costs, we do not
conduct six 1-hour runs for Monkey and APE, therefore we
present their comparison in a separate table. After each 1-hour
run, our automated script restarts and wipes the emulator’s
data, preventing the emulator memory from filling up due to
the screenshots taken during AURORA’s runtime.

Maetrics: For RQ;, we use the classic definitions of Precision,
Recall, Fl-score, and Accuracy for multi-class classification
problems. For RQs, we consider a screen to be a tarpit if a
tool gets stuck on the screen for more than 10 seconds, which
we felt appropriate given the high number of actions tools
like APE can generate. For RQ3, we use MiniTrace [51] to
calculate the method coverage of our selected industrial apps.
MiniTrace collects method coverage using the Android run-
time and does not require app instrumentation. As MiniTrace
requires Android 6.0 to run, we employ this Android version
for our evaluation. We measure coverage by calculating the
union of the method coverage over the set of three runs for
each tool, which we refer to as “set-union” method coverage.
We also calculate the area under the curve for our method
coverage. This measurement tells us how soon a tool can
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TABLE II: Performance of AURORA’s Motif Classifiers.

Precision Recall F1-Score Accuracy
RICO 0.717  0.686 0.690 0.689
Extended 0.830  0.812 0.809 0.813

TABLE III: Top 10 UI categories identified by AURORA in
real-time and their associated bypassing rates. Bolded rows
represent tarpit categories.

APE stopped % passed by AURORA

Search screen 633 93.7%
Settings screen 523 77.8%
Viewer screen 479 97.1%
Home menu screen 473 78.9%
Onboarding screen 444 90.3%
Pop up menu 418 99.5%
Web browser 357 100%
Catalog screen 342 85.4%
Player screen 312 81.7%
Log-in screen 294 90.1%
Average 275.1 88.8%

achieve more coverage. The formula we use is AUC
Z?zl % (Ri—1 + R;) - At, where n is the total number test
runs, R; is the method coverage at hour ¢, and At represents
the time interval for each one-hour test run.

B. RQI: Accuracy of Screen Classifiers?

As described in Section IV-B, AURORA was evaluated
with Autoencoder-based and CLiP-based models. We find that
AURORA’s Autoencoder-based model achieved ~60% accu-
racy, whereas Screen2Vec, our baseline, was able to achieve
an overall accuracy of only ~38%. We get an even more
sizeable increase in accuracy over our baseline with AURORA’s
CLiP-based models. Table II illustrates the classification ef-
fectiveness of AURORA’s CLiP-based models on the 1369
labeled RICO images. The RICO variant is the performance
without the unsupervised pre-training on the screens collected
from Google, whereas the Extended model does include this
process. Our results show that pre-training achieves an 81.3%
accuracy compared to the other model’s 68.9% accuracy.

C. RQ2: How often AIG Tools Get Stuck

Table IIT shows the top 10 categories of Ul screens consider-
ing the number of halts faced during the entire experimentation
run. Search screens represent the most prevalent tarpit with
633 halts, but AURORA managed to navigate through 93.7%
of these screens using its heuristic-based approach. AURORA
has an average of 88.8% passing rate across all tarpit screens.

Previously, in our analysis of the VET dataset, we have
identified certain categories that demonstrate characteristics
akin to tarpits. These categories are denoted with bolded font
in Table III. Notably, among the 8 UI classes previously
identified as tarpit screens, 6 of them prominently feature
within the top 10 UI screen categories. This observation
highlights the high potential for AURORA to improve AIG
tools as tarpit category screens frequently occur.

One tarpit category not in the top 10 is “Advertisements”,
which exhibited a relatively lower frequency in our experi-
ments. This finding is reasonable, considering our experiment



TABLE IV: Set union method coverage comparison. Bolded
cells represent the highest coverage for an app across all tools.

TABLE V: Set union method coverage of VET vs. AURORA.
Bolded cells represent the highest coverage between the tools.

Monkey  APE AURORA APEI1-AURORA2 App VET AU % inc  Comm. V ex (%) AU ex (%)

App Coverage  Coverage % inc  Coverage  %inc Coverage  %inc AccuWeather 23456 28929 233% 22105 1351 ( 4.5%) 6824 (22.5%)
QI“‘]CTL;Z‘{I?‘““ ;gg;]‘ i;fgg %23 égggi ]:jz;’" ﬁg;{g ]3;2Z alltrails 43765 68829 573% 43256 509 ( 0.7%) 25573 (36.9%)
AutoSeoat24 20763 0857 373% 38554 205 0136 3159 AutoScout24 41258 42953 4.1% 38478 2780 ( 6.1%) 4475 ( 9.8%)
CarMax 11002 11619 5.6% 17260 56.9% 17452 58.6% CarMax 12331 19725 60.0% 11876 455 ( 2.3%) 7849 (38.9%)
Duolingo 15328 14355 -6.3% 14805 -34% 14993 -22% Duolingo 14704 15628  63% 14291 413 ( 2.6%) 1337 ( 8.3%)
ilipbﬁard 2276% ;gg;i 2282 ;322 ?gig ;Lliggg ?22; Flipboard 11754 14705 25.1% 10830 924 (5.9%) 3875 (24.8%)
‘0X EWS V% 3 .4% 3.2% O/
SR EOER N M OBE SR MR me owo s e e oo escen
Merriam-Webster 7668 8621 12.4% 9112 18.8% 9175 19.7% 4 - 38 (3. -
Spotify 12510 19533 56.1% 28552 128.2% 27071 116.4% Merriam-Web 10547 9734 -7.7% 9328 1219 (11.1%) 406 ( 3.7%)
TripAdvisor 23390 30548 30.6% 27728 18.5% 30047 28.5% Spotify 19918 32111  612% 19555 363 ((1.1%) 12556 (38.7%)
t\;‘;vlago %gg igggg 43'(1)30 iggﬁ 6?;‘;’3 g(l)m 8;;3 TripAdvisor 32014 32200  0.6% 29973 2041 ( 6.0%) 2227 ( 6.5%)
‘almart 3 0% .20 27 :
WeT MR OER RD R 4% B BR wmw womu o on owm moim oo
WEBTOON 19310 27628 43.1% 20819 182% 27750 437% - : -
wish 7544 9175  21.6% 9192 21.8% 8450 12.0% Wattpad 24053 33192 38.0% 23176 877 ( 2.6%) 10016 (29.4%)
YouTube 32428 38372 18.3% 34738 1% 36030 11.1% WEBTOON 28059 31789 133% 20940 7119 (18.3%) 10849 (27.9%)
Average 282% 41.4% 33% wish 9923 10305  3.8% 8178 1745 (14.5%) 2127 (17.7%)

. . YouTube 41518 42466  23% 37993 3525 ( 77%) 4473 ( 9.7%)
uses an older version of Android, that may no longer support Average 19.6% 252888 21042 ( 6.3%) 75874 (19.6%)

certain ads for the applications [52] we evaluated. Similarly,
“Form” screens are not in the top 10 due to some apps no
longer allowing sign-ups on older Android versions.

D. RQ3: Method Coverage Improvement?

To evaluate the effectivness of AURORA, we compare the
total number of unique methods covered over its three 1-
hour runs to those of Monkey and APE. From Table IV, we
can see that AURORA gets an average of 41.4% increase in
coverage compared to Monkey. APE, on the other hand, gets
a 28.2% increase. If we combine a 1-hour APE run with 2-
hour AURORA runs (denoted as APE1-AURORA?2), we get the
best performance, a 43.8% increase from Monkey’s method
coverage. We also performed an experiment with two hours
of APE runs combined with one hour of AURORA. However,
the results were worse than just AURORA or the shown
combination. The reason for the difference in improvement is
likely due to the fact that APE1-AURORAZ2 best harnesses the
strengths of each technique. That is, APE is able to exercise
a large number of actions in a shorter period of time, whereas
AURORA can more effectively explore tarpits, but benefits
from the extra time budget to do so — due to its online
classification and heuristic execution.

We can see that Monkey performs better than all of the other
tools for the Duolingo app. In this app, the screens typically
only require taps and the Ul components cover large areas of
the screen. As Monkey works by generating random events
like taps or gestures without considering Ul layouts/metadata,
it has a higher action per second rate than APE or AURORA.
While Monkey often suffers from empty space tap issues on
other apps, it does not suffer this issue for Duolingo given
its large components, and the high action rate leads to higher
coverage. All in all, AURORA gets higher than APE in set
union coverage for 13 out of 17 apps, while APE1-AURORA?2
also gets higher coverage than APE for 13 apps.

Considering AURORA vs APE1-AURORA2, we see that
the latter is clearly ahead in set union method coverage and
area under the curve. This result indicates that, for a 3-hour
run, AURORA should be combined with APE to get the best
possible coverage.
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TABLE VI: Heuristics success rate across all apps.

App Passed Failed Total % Pass
AccuWeather 421 144 565 74.5%
AllTrails 308 35 343 89.8%
AutoScout24 420 36 456 92.1%
CarMax 275 18 293 93.9%
wish 242 21 263 92.0%
Duolingo 364 31 395 92.2%
Fox News 279 12 291 95.9%
YouTube 532 5 537 99.1%
KAYAK 251 39 290 86.6%
Merriam-Webster 438 31 469 93.4%
WEBTOON 219 68 287 76.3%
Spotify 278 40 318 87.4%
TripAdvisor 177 49 226 78.3%
trivago 330 53 383 86.2%
Walmart 320 32 352 90.9%
Flipboard 346 49 395 87.6%
Wattpad 301 30 331 90.9%
Total 5501 693 6194 88.8%

To run VET, we must first run three hours of APE, and then,
learning from the actions that end up in a stuck region, VET
prevents them from happening in its additional 3-hour run. To
make a fair comparison, we run AURORA for 6 hours. Table V
compares the set union methods and exclusive methods for
VET and AURORA. Considering coverage, AURORA gets an
average of 19.6% increase compared to VET. We can also
see that AURORA gets higher coverage for 16 out of 17 apps.
Considering orthogonality, AURORA provides an average of
19.6% exclusive methods compared to 6.3% from VET.

E. RQ4: Successful Heuristic Execution?

Table VI shows the success rate of our heuristics. Ranging
from 74.5% to 99.1% with an average of 88.8% of the exe-
cuted heuristics being successful. We consider our heuristics
successful when any of the heuristics from AURORA’s top 3
predictions are successful in changing the app screen.

If we compare actions per second, using AURORA will
generate fewer actions than not using AURORA, as it needs to
classify screens and run heuristics during runtime. However,
even with less actions generated, AURORA still achieves an
improvement in code coverage. This result suggests that at
tarpit screens, a properly curated heuristic is often better than
randomly clicking around to increase code coverage.
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Fig. 6: Confusion matrix of heuristics succeeding.

AURORA would likely offer similar improvements to sys-
tematic testing approaches, as they may also get “stuck” on
screens. However, the VET dataset, and identified tarpits, were
derived using random-based techniques, thus we oriented our
analysis toward these techniques as well. Future work should
explore AURORA s effect on other types of techniques.

E RQS5: Effectiveness of Individual Heuristics

The 88.8% success rate of heuristics shows us the collective
effectiveness of using a heuristic-based approach. To under-
stand the performance of each of these heuristics to effectively
navigate their respective Ul tarpit screens, we conducted an
analysis using AURORA’s post-run logs.

Our heuristic based approach works by iterating through
the top three predictions of a tarpit screen. AURORA runs the
heuristic designed for the initial predicted UI category, and
when it does not result in a change in the tarpit screen, it
proceeds to the subsequent predictions in a sequential manner.
Figure 6 shows the frequency with which various heuristics
successfully made changes to a predicted screen, presented
in a percentage format. The diagonal values refer to the
heuristic affecting changes being the one intended for the first
prediction. As the figure suggests, we find that AURORA was
able to navigate all the predicted screens using their intended
heuristics most of the time. Outside the diagonals, we can see
that player heuristics also successfully navigated a handful of
advertisement, feed, and viewer screens. This result is due
to player heuristic’s ability to find on-screen components and
resume random exploration on a different app screen.

VI. THREATS TO VALIDITY

Our initial study on design motifs involved manual effort
in classifying screens, identifying UI tarpits, and finding ways
to overcome them. Any manual process can include biases.
We limit the potential for bias by examining only a portion of
tarpit screens during heuristic construction and using semantic
text matching to make our heuristics generalizable.

Another threat to our work’s external validity is that we use
only Android 6.0. We utilize the MiniTrace mechanism for
collecting method coverage without needing code instrumen-
tation, and MiniTrace works with only Android 6.0.
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VII. RELATED WORK

Studies on Android Testing: Vasquez et al. [53] compiled
a body of knowledge that can help researchers focus on
new automated testing approaches tailored to developer needs.
Choudhary et al. [54] analyzed various modern test generation
tools in a systematic way and illustrated that, surprisingly, the
simpler Monkey tool surpassed more sophisticated tools in
terms of code coverage, ease of use, and fault detection.
Random-based Testing Tools: Random based testing ap-
proaches construct test cases in a pseudo-random manner from
the set of all possible program inputs [19]. Random-based
tools excel in adaptability, as they target the app under test
only on a per-screen basis. This technique was popularized
in the Android testing tool, Monkey [20], and was later
adapted by APE [21], Dynodroid [22], Intent Fuzzer [23], and
VANARSena [24].
Model-based Testing Tools: MonkeyLab [25] uses the GUI-
based models extracted from Android application execution
traces to generate usage scenarios. The results demonstrate
that MonkeyLab is able to generate effective and fully re-
playable scenarios. Moran et al. [25] studied the importance
of crashes during Android application testing. The authors
developed CrashScope, a tool that can automatically discover,
report, and reproduce crashes. They executed their tool on 61
Android apps and compared their tool with A3E, DynoDroid,
MobiGUITAR, Monkey, and Puma [20], [22], [55]-[57].
Dong et al. [28] proposed time-travel testing for Android,
which works to maximize exploration efficiency by resuming
to the most progressive states observed in the past. They
evaluated their approach against Sapienz [27] and Stoat [50]
and it outperformed them in coverage and crashes discovered.
Machine Learning-based Testing Tools: Li et al. [29] pro-
pose Humanoid, a testing tool that uses a combination of CNN
and Residual LSTM in their approach to generate automated
tests. They use the RICO dataset [30] and perform CNN on
the screenshots to predict action location on a given UI screen.
Residual LSTM is used to predict the type of action performed
- such as tap, long tap, swipe, etc. Q-testing [58] is an AIG
tool that uses reinforcement learning for input generation.
QTypist [59] is a tool designed to automate the generation
of input text for mobile applications by interacting with a
large language model. Compared to AURORA, which handles
various different UI exploration challenges, QTypist focuses
on only text-related challenges.

VIII. CONCLUSION

In this paper, we proposed AURORA, a framework that
runs alongside AIG tools and can categorize and navigate
around UI screens when an AIG tool is stuck using multimodal
techniques for neural screen understanding. Our evaluation il-
lustrates that AURORA can effectively recognize different types
of screens and effectively navigate around them, increasing the
effectiveness of AIG tools. To aid future research, we make
AURORA and our labeled dataset of Ul categories publicly
available [35].
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