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Abstract—Nearly a decade of research in software engineering
has focused on automating mobile app testing to help engineers
in overcoming the unique challenges associated with the software
platform. Much of this work has come in the form of Automated
Input Generation tools (AIG tools) that dynamically explore app
screens. However, such tools have repeatedly been demonstrated
to achieve lower-than-expected code coverage – particularly on
sophisticated proprietary apps. Prior work has illustrated that a
primary cause of these coverage deficiencies is related to so-called
tarpits, or complex screens that are difficult to navigate.

In this paper, we take a critical step toward enabling AIG
tools to effectively navigate tarpits during app exploration
through a new form of automated semantic screen understanding.
That is, we introduce AURORA, a technique that learns from
the visual and textual patterns that exist in mobile app UIs
to automatically detect common screen designs and navigate
them accordingly. The key idea of AURORA is that there are
a finite number of mobile app screen designs, albeit with subtle
variations, such that the general patterns of different categories
of UI designs can be learned. As such, AURORA employs a multi-
modal, neural screen classifier that is able to recognize the most
common types of UI screen designs. After recognizing a given
screen, it then applies a set of flexible and generalizable heuristics
to properly navigate the screen. We evaluated AURORA both on a
set of 12 apps with known tarpits from prior work, and on a new
set of five of the most popular apps from the Google Play store.
Our results indicate that AURORA is able to effectively navigate
tarpit screens, outperforming prior approaches that avoid tarpits
by 19.6% in terms of method coverage. Our analysis of the results
finds that the improvements can be attributed to AURORA’s UI
design classification and heuristic navigation techniques.

I. INTRODUCTION

Mobile application development (or app development) is a

challenging endeavor. Developers working in this domain face

a variety of unique challenges that range from rapidly evolving

and fault-prone APIs [1], [2] to frequent user feedback [3] and

highly competitive app marketplaces [4]. As such, software

maintenance and testing techniques, which are critical to

ensuring software quality, are often overlooked due to pressure
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to deliver features in the face of these external factors [5].

As such, the research community has worked to provide a

range of automated techniques to help developers cope with

these challenges, spanning tools that support tasks from bug

management [6]–[16] to software evolution [17], [18].

In the past decade, an extremely popular area of work in

the software engineering research community has aimed to

automate software testing for mobile apps – more specifically,

GUI-based testing. Given that mobile apps are GUI-centric in

nature, UI testing is one of the most popular testing modalities

for ensuring the correctness of functionality. However, creating

UI tests manually is extremely time-consuming [5]. As such,

the research community has developed numerous Automated

Input Generation (AIG) tools that dynamically explore appli-

cations with the goals of exercising substantial portions of

app functionality, while simultaneously uncovering crashes

and other faults. These tools can be broadly grouped into

random-based [19]–[24], model-based [20], [22], [25]–[28],

and machine learning-based tools [29]–[31].

In controlled experimental settings, AIG tools often perform

well and achieve reasonably high code coverage. However, in

practice, these AIG tools are often prone to low effectiveness

in certain testing scenarios, particularly on sophisticated pro-

prietary apps [32]. One reason for this low effectiveness is

that many proprietary apps often contain complex screens that

are difficult for AIG tools to navigate, i.e., the semantics of

the screen require a precise order of actions to navigate and

bypass so that additional app states can be explored. Wang et

al. recently performed a study that empirically illustrated this

phenomena, wherein they observed different types of screens

that caused AIG tools to halt exploration progress [33]. The

authors of this recent study refer to such screens as UI Explo-
ration Tarpits. In addition to demonstrating this phenomenon,

the authors also introduced a preliminary technique for dealing

with these tarpit screens, called VET. VET integrates with

existing AIG tools and uses a learn-from-mistake strategy that

first identifies exploration tarpits from runs of the AIG tool

and later disables these screens in future runs of the AIG tool.
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The VET approach introduced by Wang et al. has two

major limitations. First, VET is inherently expensive to run

in practice, as it requires running an AIG tool twice, once

to detect potential tarpits and then again to explore the app

with the tarpits disabled. Second, VET does not assist with

navigating UI tarpits, it simply disables them, meaning that

there will always be portions of an application’s state that

AIG tools enhanced with VET cannot explore. However,

navigating through UI tarpits may be feasible (as suggested

by the results of the manual analysis performed by Wang et

al. [33]), exploration tarpits often fall into one of a limited

number of categories, even across different apps and AIG

tools. This finding suggests that there may be patterns that

can be exploited to explore these complex UI tarpit screens.

Given the findings and current limitations of prior work,

in this paper, we propose a novel technique called AURORA,

that aims to effectively navigate tarpit screens during app

exploration using a new form of automated semantic screen

understanding. The key idea of AURORA is that there are

a finite number of UI designs for screens that are likely to

represent tarpits, and hence, general design motifs that can be

learned will allow for the automated recognition and naviga-

tion of such screens. AURORA learns from both the visual

and textual patterns present in UI screens to automatically

identify tarpit screens, through a component we call the screen
recognizer, and then navigates recognized screens using a set

of flexible heuristics, via the heuristic navigator component.

To better understand UI design categories and their rela-

tionship with exploration tarpits, we first studied Android app

screenshots and UI hierarchies from the RICO dataset [30],

deriving a set of 21 mobile app UI Design Motifs, representing

coherent design patterns. During this process, multiple authors

jointly labeled a minimum of 60 screens exhibiting each of our

21 design motifs, for a dataset totaling 1369 UI screens. We

then proceeded to study the correlation between these general

categories of UI designs and the tarpit screens as manifested

through the dataset of tarpits discovered by and published

alongside the VET tool [33]. We found that eight of our 21

design motifs were identified as tarpits in the VET dataset.

This analysis of the relationship between various categories

of UI designs and tarpits inspired our design of AURORA.

During the app exploration process of an AIG tool, AURORA

is able to detect when app exploration progress is hindered by

a tarpit, and will then automatically categorize the tarpit screen

into one of our identified categories using a neural screen

understanding approach that analyzes both the visual patterns

in a screenshot of the tarpit and the textual patterns on the UI.

For example, AURORA’s screen recognizer can categorize a

given screen as a login screen if the screenshot and UI contain

a username and a password EditText, and contain salient

visual patterns that indicate the typical structure of a login

screen, such as center-aligned text-box(es) and button(s).

AURORA’s screen recognizer is implemented using a multi-

modal deep learning model [34], which is initialized through

self-supervised learning on a set of 6000 app screenshots

extracted from an online search engine. It is then trained and

tested on an 80-20 split of our labeled dataset of 1369 UI

images. Our evaluation finds that AURORA achieved 81.4%

classification accuracy. AURORA’s heuristic navigator imple-

ments eight input generation heuristics that aim to intelligently

generate sequenced input scenarios to navigate through typical

tarpit categories using a combination of neural text matching

via transformer-based language models, and dynamic analysis.
AURORA is designed to run alongside and enhance existing

AIG tools by quickly identifying and navigating through

identified exploration tarpits. As an AIG tool is exploring,

AURORA will periodically check if the exploration is stuck.

If the AIG tool appears to be stuck, AURORA will analyze

the current screen to determine if it is a tarpit. If it is, then

AURORA will pause the AIG tool and activate a corresponding

input generation heuristic to navigate the current screen. We

combine AURORA with a state-of-the-art AIG tool, APE [21],

and test on 17 popular Android apps. We find that AURORA

helps improve code coverage substantially, with an average

improvement of 11.0% over APE and 19.6% over VET on

two separate comparative analyses. Through a qualitative

analysis, we observe that these improvements arise due to

the effectiveness of AURORA’s screen recognizer and heuristic

navigation strategies – the latter of which exhibits an 88.8%

success rate in navigating through UI tarpit screens.
AURORA was developed in cooperation with Hangzhou

Dragon Testing Technology Co., Ltd. who is focused on build-

ing AI-enhanced software testing products, and customers of

the company include internationally recognized clients, such as

WeChat, a messenger app with over one billion monthly active

users. Dragon Testing has deployed a proprietary version of

AURORA, that closely mirrors the components and workflow

described in this paper, to its automated software testing prod-

uct offerings. In this context, AURORA has enabled automated

navigation of several types of tarpit screens for thousands

of automated test cases, including pop-ups and forms, that

had previously hindered the testing of app business logic for

Dragon Testing’s customers. This deployment of AURORA

further illustrates both its effectiveness and practicality.
In summary, this paper makes the following contributions:

• A Study identifying prevalent design motifs of Android

UI screens and the categories that constitute UI explo-

ration tarpits.

• A Multi-modal Deep Learning-based Approach for

classifying a given UI screen into the design motifs

identified in our study.

• Automated Heuristics that can be used to navigate

prevalent UI tarpits.

• A Framework implemented as AURORA [35], which can

be combined with automated input generation (AIG) tools

to automatically categorize screens and apply relevant

heuristics to help AIG tools bypass UI tarpits.

• An Evaluation on the (1) accurateness of our deep

learning model at predicting UI screen categories, (2) ef-

fectiveness of our heuristics at bypassing UI tarpits, and

(3) code coverage improvements that AURORA can help

AIG tools achieve.
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(a) Imgur App Screenshot
(b) Visualization of Imgur App 

UI Hierarchy

Fig. 1: A visualization of the spatial properties of components

captured within Android UI hierarchy of the Imgur [36] app.

• Artifacts made publicly available from this work, which

includes AURORA and our labeled dataset of UI cate-

gories, to help aid future research [35].

II. BACKGROUND

A. Mobile App UI Hierarchies and Frameworks

A UI Hierarchy represents the contents of an app UI

rendered to the screen of a mobile device. UI hierarchies are

comprised of UI elements that each exhibit several properties

(e.g., location, size, component type), wherein UI elements

are arranged in a hierarchical fashion and children can inherit

design and logical properties from their parents. In Android,

the ViewServer generates and maintains runtime information

about app UIs, and can be queried using the uiautomator
framework, which extracts a representation of the UI hierarchy

in xml format. Figure 1 illustrates a visualization of the spatial

properties of components captured as output in uiautomator
xml files. Programmatically, Android screens are primarily

made up of constructs called Activities and Fragments, where

Activities typically represent a single logical screen and Frag-

ments represent smaller components of a screen, such as a

pop-up menu. For the purposes of discussion in this paper,

when we refer to a “UI screen”, we are effectively referring

to a single Activity or Fragment that is rendered to the UI

screen, such as the “Settings Activity” illustrated in Figure 1.

UI hierarchies effectively capture information that is rele-

vant to the structure of a UI screen, which we will illustrate

is important for learning abstract representations of UIs to aid

in AURORA’s screen classification capabilities. In addition to

UI hierarchies, screenshots can be easily captured from mobile

apps using the screencap utility built into the Android Debug

bridge (adb) framework. This captured UI information is often

used by AIG tools for decision-making and is especially

critical to model-based testing tools. As we describe later,

AURORA extracts runtime UI hierarchies and screenshots via

the uiautomator and adb frameworks, which are fed as input

to both AURORA’s screen recognizer and heuristic navigator.

Random action Closing the Ad

Fig. 2: Example of an Advertisement screen tarpit.

B. UI Exploration Tarpits and the VET Approach
UI Exploration Tarpits (or UI Tarpits) is a term coined by

Wang et al. [33], that describes a phenomenon that occurs

when an AIG tool explores a single UI screen (i.e., Activity) for

an excessive amount of time, hindering the progress of the tool

in exploring undiscovered UI states of a given app. Figure 2

shows an example advertisement tarpit screen in the Merriam-

Webster app. Random actions on these screens typically cause

an AIG tool to get stuck – in this example, the advertisement

launches a WebView that can only be closed through a specific

series of actions.
To overcome issues with these screens, Wang et al. proposed

the VET tool [33] to detect and cope with UI exploration

tarpits. VET works in three stages: First, it runs the AIG tool

on the target app without any restriction and records the testing

process, yielding traces that record how the AIG tool has

interacted with the target app. Second, it analyzes the collected

traces against pre-defined low-level patterns that characterize

repetitions to discover potential exploration tarpits. A ranking

strategy is utilized to reduce false positives. Third, it reruns

the AIG tool on the target app with the discovered exploration

tarpits disabled, achieved through dynamically blocking the

entry points to the exploration tarpits or via restarting the

target app. Evaluation results show that VET can improve the

testing effectiveness of multiple Android AIG tools, and can

help improve bug detection capabilities.
Despite its advancements, VET has two major limiting

factors. First, VET must first run an AIG tool comprehensively
to identify and build a model of potential UI tarpits. This

requirement means that testing time for apps is often doubled
due to the need to run once to detect tarpits, and another time

to explore the app with tarpits disabled. Second, VET does

not facilitate navigating through tarpit screens, but instead,

simply disables tarpit screens. This limitation means that VET

is effectively incapable of exploring certain areas of an app that

were identified as tarpits. AURORA aims to overcome both of

these shortcomings by analyzing UI screens in real-time to

detect, classify, and navigate through tarpit screens using new

forms of automated neural UI screen understanding.

III. DERIVING MOBILE APP UI DESIGN MOTIFS

One of the key ideas underlying AURORA is that certain

designs for mobile app UI screens are reused, with varying
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(a) Original App screenshot (b) Screenshot "Silhouette"

Fig. 3: A visualization of a UI Silhouette Screen.

degrees of change and variability, across applications such

that the structural and lexical patterns of these designs can be

automatically identified. In this paper, we refer to these pat-

terns as UI Design Motifs. To better understand the types and

prevalence of UI Design Motifs across Android applications,

we conducted a preliminary investigation to derive a set of

motifs that will serve as the focus of our AURORA approach.

A. Isolating Structural Screen Patterns with Silhouette Screens

To empirically derive a set of UI design motifs, we analyzed

a set of randomly sampled screens from the RICO dataset [30].

RICO is currently the largest dataset of Android app UI screen-

shots and corresponding runtime UI metadata, spanning over

66,000 UI screens collected from over 9,000 free Android apps

available on the Google Play Store. This screen information

was collected via a combination of automated UI exploration

and crowdsourced UI exploration on virtual Android devices.

The UI metadata for these screens was collected using the

uiautomator framework.

Given the sheer scale of this dataset, manually analyzing

even small portions of the dataset to discover UI design

motifs would be a time-consuming proposition. Furthermore,

as observed by the authors of the RICO dataset, there likely

exist certain common UI patterns followed by a long tail

of unique or one-off UI screen designs. Given that our aim

is to identify and categorize common UI design patterns

into categories we term as motifs, we introduced lightweight

automation to facilitate the manual labeling process. As such,

we conducted an initial step of unsupervised, computer vision-

based clustering of screens into broad categories that exhibited

visual similarities.

Using “raw” screenshots to group together visually sim-

ilar UI screens for the purposes of deriving design motifs

presents certain challenges. First, two screens that share a

design motif (i.e., Settings Screen) may instantiate that screen

using a similar screen structure, but have widely varying

colors, fonts, and other stylistic properties. As such, clustering

screens according to raw image similarities is likely to be

greatly impacted by similarities in style. To focus our analysis

on structural UI Design Motifs that occur across a diverse

set of apps, we developed a process to “abstract” raw UI

screenshots, by stripping out stylistic information and creating

what we refer to as Silhouette Screens. Figure 3 illustrates

this process. In essence, we divide all UI components into

one of two categories: (i) textual components, and (ii) non-

textual components. We then draw textual components on a

black canvas as blue boxes and non-textual components as

green boxes, parsing the spatial component size and locations

from RICO’s uiautomator metadata that accompanies each

screenshot. This methodology allows us to effectively capture

each screen’s abstract structure, while ignoring the stylistic

variations different screens may exhibit. We discuss different

potential variations of Silhouette Screen creation in Section IV.

B. Structural Clustering of UI Screens

After developing our process for creating Silhouette

Screens, we needed a reliable methodology to create a robust

representation of our UI screens so that they could be clustered

according to their structural UI features. While simple image

similarity measures could be used to accomplish this goal,

such measures often rely on handcrafted heuristics that may

not transfer well to UI screens. Furthermore, deep learning-

based computer vision techniques that incorporate convolu-

tional neural networks have been shown adept at learning

robust representations of image features [37], [38]. As such,

we implemented a 2D convolutional autoencoder, consisting

of 6 encoder and 7 decoder layers, and trained it on 32,338

UI screens collected by randomly sampling from 50% of the

RICO dataset. Generally speaking, an autoencoder is a neural

network that encodes an image into a high-dimensional vector

representation and then is trained to decode this representation

back into the original image, with differences between the

input and output being used by a loss function to update

model weights during the training process. We trained our

autoencoder model on a subset of RICO to avoid overfitting

and to improve the model’s generalization to handle a wider

range of real-world data. Through experimentation, we also

found that this amount of data was sufficient to train our

autoencoder to convergence.

We then applied a K-means clustering technique to 645

screens, roughly representing ≈1% of the RICO dataset sam-

pled from outside the autoencoder’s training set. Using the

elbow technique [39], we found 30 clusters to be optimal.

C. Manual Analysis and Derivation of Design Motifs

After this clustering procedure, three authors of this paper

manually analyzed each of the 30 clusters, refined the cate-

gorizations of screens, and then collectively provided labels

to the finalized clusters. This process proceeded as follows:

First, separate authors would look at a defined set of clusters

(i.e., five clusters), and they would examine each screen

in these clusters and re-cluster them or form new clusters

to better group screens that share a common structural UI

pattern. Two authors would examine these sets of clusters,

and then all three authors would meet to discuss the results

and come to an agreement on the newly formed clusters. This

process proceeded until all 30 clusters had been examined.

The end result of this process was a refined set of 21

clusters, representing UI design motifs with the following
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Fig. 4: Overview of AURORA’s workflow.

labels: Advertisement, Calendar time and weather, Catalog,

Feed, Form, Home menu, List, Log-in, Map, Onboarding,

Player, Pop up, Product, Search, Settings, Splash, Terms
and conditions, Travel booking, Type message, Viewer, and

Web browser screens. We provide complete descriptions and

examples of these categorizations in our artifact [35].

D. Identifying Tarpit Screens and Motifs from the VET Dataset

The study conducted by Wang et al. [33] contains a dataset

of over 95,000 UI screens obtained from testing 16 different

industrial apps using different AIG tools, including APE [21],

Monkey [20], and WCTester [40]. These UI screens are

organized into 127 test traces, with each trace comprising

a collection of screenshots and associated metadata derived

from a specific app-tool pairing. These traces include timing

information as well as the number of actions executed on

various UI screens, allowing us to identify screens for which

the tools encounter obstacles that may represent tarpits.

To find examples of tarpit UI screens, we perform a UI

metadata comparison using the JSONComparison API [41]

on the uiautomator metadata included with each screenshot

from the VET traces. We set a minimum threshold of five

action repetitions and 10 seconds of elapsed time to consider

a screen as a tarpit in the context of the traces. Said differently,

we only consider a screen to be a tarpit if at least five con-

secutive actions were entered on the screen and the screen did

not change for at least 10 seconds. Applying these criteria to

the screens from the traces, we extract 238 screens that likely

represent UI tarpits. Upon further inspection of this dataset, we

observed that there were screens with fewer actions but very

large elapsed time. Therefore, we additionally include the top

200 screens on which the tools used in VET’s evaluation spent

the most time. In the end, we take the union of these two sets

which in total contains 348 tarpit screens.

E. Tarpit Screen Analysis

We aimed to better understand two aspects of the tarpit

screens from the VET dataset including: (i) reasons for

obstructed AIG tool navigation, and (ii) the labels of these

screens according to the design motifs we derived earlier. To

carry out this process, two authors of the paper independently

analyzed each of the 348 tarpit screens and investigated the

two factors above. We present these findings below.

Reasons for AIG Tool Obstructions:
1) Inability to input relevant text in a designated field.
2) Difficulty locating specific components or series of components

for screen progression.
3) Failure to identify interactive elements on the screen.
4) Accidental engagement with advertisements, resulting in diffi-

culty exiting the web view screen.
5) Tool initiated closure of the application.
6) App unresponsiveness.

Tarpit Screen Design Motifs and Navigation Strategies:
• Log-in: Input some predefined text and tap certain buttons.
• Onboarding: Identify and interact with certain buttons.
• Player: Perform sequential actions to access different screens.
• Advertisement: Locate and tap the close button to exit.
• Viewer: Tap on the screen to expose interactive elements or use

the back button for navigation.
• Form: Input relevant text, interact with spinners and buttons.
• Web browser: Tap the back button or restart the app.
• Search: Input relevant text in search fields.

IV. THE AURORA APPROACH

In this section, we define the methodology of our Android

UI exploration tool, AURORA [35]. Our approach leverages

a multi-modal computer vision-based screen recognizer that

uses structural and lexical patterns in UI screens to detect

different UI Design Motifs. When an AIG Tool encounters

a tarpit screen, AURORA classifies this screen using the

screen recognizer and then applies one of several pre-defined

navigation heuristics to navigate through the screen to un-

cover additional states of the application. An overview of the

approach is shown in Figure 4. We describe the components

of AURORA in detail in the following subsections.

A. Approach Workflow

AURORA [35] operates in conjunction with any AIG Tool

that extracts uiautomator metadata and screenshots as part

of its exploration process. The integrated AIG tool can be

random-based, model-based, or machine learning-based in

nature. During an AIG tool’s app exploration, we need a

mechanism to detect when the tool may be “stuck” in a

tarpit screen. We derived a suitable elapsed time to determine

whether a screen is a tarpit empirically through a small set

of experiments where we varied the “tarpit trigger” time from

10 seconds to 30 seconds in 5-second intervals, and inspected

the number of identified tarpits during a one-hour execution

of the APE [21] automated testing tool on the set of 16

apps from the VET dataset. Upon inspection of the identified

screens at each tarpit threshold level, we found that 10 seconds

allowed AURORA to detect the highest number of true tarpit

screens with a reasonably small number of false positives. As

such, AURORA polls the activity/window combination queried

from an Android emulator’s view-server every second — if

the activity/window combination remains the same after 10

seconds AURORA is triggered to bypass the potential tarpit.

Once a tarpit screen has been identified, a screenshot and

the corresponding uiautomator metadata for the screen
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are saved, and then a Silhouette Screen is created to cap-

ture the structural patterns, and the EAST Optical Character

Recognition (OCR) technique [42] from the Google Cloud

Vision API [43] is used to extract text from the screen. The

uiautomator metadata, Silhouette Screen, and OCR data are

then converted to visual and textual embeddings and passed

to AURORA’s screen recognizer. This component generates a

ranked list of UI Design Motifs for the current screen.

Given the ranked set of potential UI Design Motifs for a

given screen, AURORA checks if the screen falls into one of the

eight Tarpit UI Design Motifs derived in Section III-E. If so,

then AURORA triggers the execution of a navigation heuristic
for that Design Motif, which performs a predefined set of UI

actions. To carry out the actions of a heuristic, AURORA uses

the SentenceBERT model [44] to determine where to input

predefined text and where to click. It is possible that a given

tarpit screen could be mis-classified or that a given heuristic

might fail. In these scenarios, if AURORA recognizes that it

has not navigated through a given UI screen after the execution

of a heuristic, it then executes heuristics of the next two tarpit

categories from the ranked list of predicted UI Design Motifs.

Given that AURORA’s heuristics generate fewer actions per

given unit of time than many AIG Tools, it is necessary to limit

the number of heuristics executed on a given tarpit screen to

small, reasonable number (three). If no progress is made after

three heuristic execution attempts, the app is restarted.

B. UI Screen Recognizer

As part of our development of AURORA, we worked with

Dragon Testing to develop two different UI screen classifiers.

The first classifier combines image embeddings learned from

a neural autoencoder, with lexical embeddings of screen text

from a large language model. These embeddings are con-

catenated and then passed into a classifier that predicts a

ranked list of screens. The second classifier uses a multi-modal

CLiP [34] model to encode images and text. We describe each

of these classifiers below. We explore these two classifiers

as they require very different numbers of parameters, with

the CLiP-based approach requiring a much larger number

of parameters than the Autoencoder-based approach. Given

that past research has suggested the exploration of machine

learning techniques of varying degrees of complexity when

applied to software data [45], we opted to explore both a

“simpler” and “more advanced” machine learning technique.

We present the results of an empirical comparison of these

two classifiers in Section V.

1) Autoencoder-based UI Design Motif Classifier: The first

classifier that we constructed for AURORA uses both a visual

and textual classifier before combining the output of these

two techniques to produce a final ranked list of categorized

UI Design motifs for a given target screen.

For the visual classifier, we utilize the encoder portion

of our pre-trained autoencoder framework described in Sec-

tion III-B. The encoder transforms high-dimensional image

data into compact feature vectors. These feature vectors con-

tain essential information from the images while reducing

Silhouette from metadata Silhouette from screenshot

Original screenshot

Fig. 5: Comparing Silhouette Screens - blue color represents

text and green color represents non-text components.

their dimensionality. Leveraging these feature vectors, we

applied traditional machine learning models, such as Random

Forest, Multi-Layer Perceptron (MLP), and Naive Bayes to

conduct classification tasks on a set of labeled UI screens.

In our experiments, we found the Random-forest classifier

to achieve the highest accuracy. To derive a training set for

this approach, we had two authors label an additional 599

screenshots from the RICO dataset into our 12 Design Motif

categories, distributed as evenly as possible.
For the textual classifier, we use both the UI metadata and

the OCR output from the UI screenshots and create a single

paragraph out of each UI screen. To encode the text from the

UI metadata, we convert six different component attributes

for each component in the UI hierarchy into sentences. The

attributes that AURORA encodes are (i) component class,

(ii) ancestor class, (iii) label, (iv) position, (v) width, and

(vi) height. In cases where labels, which typically represent

text rendered to the screen, are missing in the UI metadata,

we utilize OCR information using Google’s Tesseract OCR

engine [46] as an alternative source of data. We applied various

classifiers, including Naive Bayes, KNN, Random Forest, and

Multi-Layer Perceptron (MLP), in conjunction with a TF-IDF

vectorizer. The TF-IDF vectorizer combined with the MLP

classifier produced the highest accuracy. We utilized the same

training set of 599 screenshots for this textual classifier.
Finally, AURORA combines the output of these two clas-

sifiers together. It uses a combined probabilistic approach to

predict screen class by extracting 21 attributes from both the

visual and textual classifiers, each denoting a probability value

for a specific class. Subsequently, we utilize a Random Forest

classifier for prediction.
2) Transformer-based UI Design Motif Classifier: AU-

RORA’s transformer-based approach uses CLiP (Contrastive

Language-Image Pre-Training) [34], a model known for its

ability to perform transfer learning on a wide array of

classification-based downstream tasks. The CLiP model works

by creating two separate embeddings for the image and the

provided text. It creates image embedding using a convolu-

tional neural network (CNN) based on the ResNet architec-

ture. For text embedding, it uses a transformer-based neural

network architecture similar to the GPT language model [47].
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Additionally, for this classifier, we improved upon the concept

of Silhouette Screens we introduced earlier in the paper. That

is, our prior technique for deriving Silhouette Screens relied

solely on uiautomator metadata to create the Silhouette

Screen. However, as illustrated in Figure 5, there may be

certain textual elements that are not properly captured in the

UI metadata – for instance if the text is displayed through

an image or web view. As such, we use the Google Cloud

OCR Engine to detect text on the screen, relate it to the

spatial properties of components, and create more accurate UI

Silhouette Screens, as shown in the right-hand side of Figure 5.

To train the CLiP model, we conduct unsupervised pre-

training on a set of 6,000 UI screenshots that we crawl from

Google. These screens were collected by searching the terms

of each of our identified design motifs in conjunction with the

terms “mobile app screen” using Google image search, and

downloading the resulting UI screenshots until we had 6000

screens distributed across our design motif categories. We then

train and test CLiP using an 80-20 split of our new set of 1369

RICO images (expanding from the set of 599 used to train the

Autoencoder-based model) evenly distributed across our 21

Design Motif categories.

To encode the textual information, we use the CliP model

to extract textual embeddings from all the text displayed on a

given UI screen as extracted by Google’s Cloud OCR engine.

C. Heuristics Design

Our heuristics are formulated through the analysis of tarpit

screens within the VET dataset. Considering the reasons for

getting stuck at the end of Section III-E, we created heuristics

in executable Python code. The heuristic code makes use of

the Python wrapper for Android Debug Bridge commands [48]

for sending commands to a virtual device on an Android

emulator. While looking for specific components or input

fields, it uses the SentenceBERT model [44] to match with

the closest on-screen component. To validate the functionality

and reliability of our executable heuristic code, we tested it

rigorously on three Android applications, ensuring that they

can execute without any operational issues or errors. AURORA

focuses on eight specific types of UI screens, as detailed in

Section III-E, for which it has developed specific heuristics

that are generalizable across various applications. We provide a

description of two of AURORA’s heuristics below as examples,

and refer readers to our artifact for additional examples [35].

Form screen: Form screens usually contain multiple text

fields, spinner components, and one submit button. Random-

based tools often cannot go past these screens, as such screens

require relevant text input. AURORA can provide the necessary

knowledge for entering relevant input using its preset spread-

sheet values. The values represent predefined column headers

and associated data, which is static during application testing.

We use a SentenceBERT model [44] to match input fields

on UI screens with our preset spreadsheet values and input

the top match to the UI screen. This model is essential for

matching on-screen labels (e.g., “last name”) with the relevant

spreadsheet column names (e.g., “surname”), which we then

TABLE I: Apps used for our evaluation. #DLs represents the

approximate number of downloads.

App name Version Category #DLs
AccuWeather 7.4.1 Weather 50m+
AllTrails 14.2.0 Travel & Local 10m+
AutoScout24 9.8.0 Auto & Vehicles 10m+
CarMax 2.56.1 Auto & Vehicles 5m+
Duolingo 3.75.1 Education 100m+
Flipboard 4.1.1 News & Magazines 500m+
Fox News 4.50.0 News & Magazines 10m+
KAYAK 176.2 Travel & Local 10m+
Merriam-Webster 4.1.2 Books & Reference 10m+
Spotify 8.4.48 Music & Audio 100m+
TripAdvisor 25.6.1 Travel & Local 100m+
trivago 4.9.4 Travel & Local 10m+
Walmart 22.31 Shopping 50m+
Wattpad 6.82.0 Books & Reference 100m+
WEBTOON 2.4.3 Comics 10m+
wish 4.16.5 Shopping 100m+
YouTube 17.33.42 Video Player & Editor 1b+

take a value from. The SentenceBERT model can resolve

nuanced differences by capturing the semantic relationships

between the labels and the spreadsheet column names.

Player screen: Player screens usually have a play and

resume button and other smaller buttons. AIG tools can get

stuck in these screens, as the probability of hitting bigger

buttons (e.g., play and resume) are higher, which does not

necessarily result in a screen change. AURORA searches for

other buttons, such as the settings or share button using its

pre-defined heuristics and interacts with them. In this way, it

helps with moving on to a different screen, so AIG tools can

explore other parts of the application.

V. EVALUATION

To understand how well AURORA can explore a given app,

we ask the following research questions (RQs):

1) How well do AURORA’s Screen Classifiers function in

relation to a baseline?

2) How often do automated input generation tools get stuck,

and what kind of screens are more difficult to explore?

3) How much improvement does AURORA offer over APE,

Monkey, and VET regarding method coverage?

4) How often do the heuristics get executed successfully,

and how many additional methods can they cover?

5) How effective are the heuristics in navigating the intended

tarpit screens?

A. Evaluation Context

Datasets and Baselines: We evaluate the two AURORA

classifiers using the 1369 labeled RICO images derived as

part of our UI Design Motif study. We compare our classifiers

against Screen2Vec [49], which is a textual screen embedding

technique that can be used to classify Android screens using

a neural representation of UI metadata. We evaluate the

performance of APE, Monkey, VET, and AURORA on an

emulator operating within the Android 6.0 environment. We

run AURORA in conjunction with APE as the exploration tool

due to its superior method coverage rate observed during the

VET experimentation conducted by Wang et al. [33]. Addi-

tionally, APE has demonstrated a remarkable capacity to attain
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higher test coverage [21] compared to alternative tools, such

as Monkey [20] or STOAT [50]. Our experimental analysis

focuses on a carefully selected set of 12 apps derived from

the VET experiments. To ensure the validity of our findings,

we exclude 4 apps from the previous study due to their lack

of support on Android 6.0, which could potentially introduce

inconsistencies in the results. Additionally, we expand our

investigation to encompass five additional apps beyond the

scope of the original VET experiments, resulting in a total of

17 apps under examination, one more than the number of apps

assessed in the VET experiments [33].

The inclusion of the five additional apps is meant to help

assess the generalizability of our heuristic-based approach. The

additional five applications are AllTrails, CarMax, Fox News,

KAYAK, and Walmart. These supplementary apps are among

the most popular apps with over five million downloads each.

They are incorporated into the study to examine the broader

applicability and generalizability of our proposed method. We

also updated two apps (AutoScout24 and YouTube) to a newer

version than the one used in the VET paper because almost

all functionalities of those apps were disabled in the older

versions at the time of our experiments. Table I shows the

statistics of the apps we used for our evaluation.

Experimental Procedure: Our experiment starts by executing

Monkey and APE on 17 pre-selected apps. We run a single

instance of the emulator at a time to collect the app traces.

The emulator is allocated 2 GB of RAM and 2 GB of internal

storage space. To ensure the emulator remains responsive and

efficient, we avoid running more than three 1-hour traces

simultaneously. We conduct three 1-hour runs of Monkey and

APE. VET learns from its built-in tarpit identification process

from the APE runs and then adds three more 1-hour runs,

giving us a total of six 1-hour runs. AURORA is executed for

six 1-hour runs for each app. We compare the first three 1-hour

runs of AURORA with APE and Monkey and compare the total

six 1-hour runs with VET. Due to experiment costs, we do not

conduct six 1-hour runs for Monkey and APE, therefore we

present their comparison in a separate table. After each 1-hour

run, our automated script restarts and wipes the emulator’s

data, preventing the emulator memory from filling up due to

the screenshots taken during AURORA’s runtime.

Metrics: For RQ1, we use the classic definitions of Precision,

Recall, F1-score, and Accuracy for multi-class classification

problems. For RQ2, we consider a screen to be a tarpit if a

tool gets stuck on the screen for more than 10 seconds, which

we felt appropriate given the high number of actions tools

like APE can generate. For RQ3, we use MiniTrace [51] to

calculate the method coverage of our selected industrial apps.

MiniTrace collects method coverage using the Android run-

time and does not require app instrumentation. As MiniTrace

requires Android 6.0 to run, we employ this Android version

for our evaluation. We measure coverage by calculating the

union of the method coverage over the set of three runs for

each tool, which we refer to as “set-union” method coverage.

We also calculate the area under the curve for our method

coverage. This measurement tells us how soon a tool can

TABLE II: Performance of AURORA’s Motif Classifiers.

Precision Recall F1-Score Accuracy

RICO 0.717 0.686 0.690 0.689
Extended 0.830 0.812 0.809 0.813

TABLE III: Top 10 UI categories identified by AURORA in

real-time and their associated bypassing rates. Bolded rows

represent tarpit categories.

APE stopped % passed by AURORA

Search screen 633 93.7%
Settings screen 523 77.8%
Viewer screen 479 97.1%
Home menu screen 473 78.9%
Onboarding screen 444 90.3%
Pop up menu 418 99.5%
Web browser 357 100%
Catalog screen 342 85.4%
Player screen 312 81.7%
Log-in screen 294 90.1%

Average 275.1 88.8%

achieve more coverage. The formula we use is AUC =∑n
i=1

1
2 (Ri−1 +Ri) · Δt, where n is the total number test

runs, Ri is the method coverage at hour i, and Δt represents

the time interval for each one-hour test run.

B. RQ1: Accuracy of Screen Classifiers?
As described in Section IV-B, AURORA was evaluated

with Autoencoder-based and CLiP-based models. We find that

AURORA’s Autoencoder-based model achieved ≈60% accu-

racy, whereas Screen2Vec, our baseline, was able to achieve

an overall accuracy of only ≈38%. We get an even more

sizeable increase in accuracy over our baseline with AURORA’s

CLiP-based models. Table II illustrates the classification ef-

fectiveness of AURORA’s CLiP-based models on the 1369

labeled RICO images. The RICO variant is the performance

without the unsupervised pre-training on the screens collected

from Google, whereas the Extended model does include this

process. Our results show that pre-training achieves an 81.3%

accuracy compared to the other model’s 68.9% accuracy.

C. RQ2: How often AIG Tools Get Stuck
Table III shows the top 10 categories of UI screens consider-

ing the number of halts faced during the entire experimentation

run. Search screens represent the most prevalent tarpit with

633 halts, but AURORA managed to navigate through 93.7%

of these screens using its heuristic-based approach. AURORA

has an average of 88.8% passing rate across all tarpit screens.
Previously, in our analysis of the VET dataset, we have

identified certain categories that demonstrate characteristics

akin to tarpits. These categories are denoted with bolded font

in Table III. Notably, among the 8 UI classes previously

identified as tarpit screens, 6 of them prominently feature

within the top 10 UI screen categories. This observation

highlights the high potential for AURORA to improve AIG

tools as tarpit category screens frequently occur.
One tarpit category not in the top 10 is “Advertisements”,

which exhibited a relatively lower frequency in our experi-

ments. This finding is reasonable, considering our experiment
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TABLE IV: Set union method coverage comparison. Bolded

cells represent the highest coverage for an app across all tools.
Monkey APE AURORA APE1-AURORA2

App Coverage Coverage % inc Coverage %inc Coverage %inc
AccuWeather 16711 21264 27.2% 22641 35.5% 22714 35.9%
AllTrails 28691 43132 50.3% 67231 134.3% 59548 107.5%
AutoScout24 29763 40857 37.3% 38554 29.5% 39136 31.5%
CarMax 11002 11619 5.6% 17260 56.9% 17452 58.6%
Duolingo 15328 14355 -6.3% 14805 -3.4% 14993 -2.2%
Flipboard 8652 10646 23.0% 13345 54.2% 13569 56.8%
Fox News 27705 29924 8.0% 30574 10.4% 31375 13.2%
KAYAK 44593 55688 24.9% 57555 29.1% 59327 33.0%
Merriam-Webster 7668 8621 12.4% 9112 18.8% 9175 19.7%
Spotify 12510 19533 56.1% 28552 128.2% 27071 116.4%
TripAdvisor 23390 30548 30.6% 27728 18.5% 30047 28.5%
trivago 19296 20096 4.1% 20393 5.7% 20343 5.4%
Walmart 27322 40435 48.0% 44041 61.2% 51149 87.2%
Wattpad 13324 23426 75.8% 23648 77.5% 24690 85.3%
WEBTOON 19310 27628 43.1% 22819 18.2% 27750 43.7%
wish 7544 9175 21.6% 9192 21.8% 8450 12.0%
YouTube 32428 38372 18.3% 34738 7.1% 36030 11.1%
Average 28.2% 41.4% 43.8%

uses an older version of Android, that may no longer support

certain ads for the applications [52] we evaluated. Similarly,

“Form” screens are not in the top 10 due to some apps no

longer allowing sign-ups on older Android versions.

D. RQ3: Method Coverage Improvement?

To evaluate the effectivness of AURORA, we compare the

total number of unique methods covered over its three 1-

hour runs to those of Monkey and APE. From Table IV, we

can see that AURORA gets an average of 41.4% increase in

coverage compared to Monkey. APE, on the other hand, gets

a 28.2% increase. If we combine a 1-hour APE run with 2-

hour AURORA runs (denoted as APE1-AURORA2), we get the

best performance, a 43.8% increase from Monkey’s method

coverage. We also performed an experiment with two hours

of APE runs combined with one hour of AURORA. However,

the results were worse than just AURORA or the shown

combination. The reason for the difference in improvement is

likely due to the fact that APE1-AURORA2 best harnesses the

strengths of each technique. That is, APE is able to exercise

a large number of actions in a shorter period of time, whereas

AURORA can more effectively explore tarpits, but benefits

from the extra time budget to do so – due to its online

classification and heuristic execution.

We can see that Monkey performs better than all of the other

tools for the Duolingo app. In this app, the screens typically

only require taps and the UI components cover large areas of

the screen. As Monkey works by generating random events

like taps or gestures without considering UI layouts/metadata,

it has a higher action per second rate than APE or AURORA.

While Monkey often suffers from empty space tap issues on

other apps, it does not suffer this issue for Duolingo given

its large components, and the high action rate leads to higher

coverage. All in all, AURORA gets higher than APE in set

union coverage for 13 out of 17 apps, while APE1-AURORA2

also gets higher coverage than APE for 13 apps.

Considering AURORA vs APE1-AURORA2, we see that

the latter is clearly ahead in set union method coverage and

area under the curve. This result indicates that, for a 3-hour

run, AURORA should be combined with APE to get the best

possible coverage.

TABLE V: Set union method coverage of VET vs. AURORA.

Bolded cells represent the highest coverage between the tools.
App VET AU % inc Comm. V ex (%) AU ex (%)
AccuWeather 23456 28929 23.3% 22105 1351 ( 4.5%) 6824 (22.5%)

alltrails 43765 68829 57.3% 43256 509 ( 0.7%) 25573 (36.9%)

AutoScout24 41258 42953 4.1% 38478 2780 ( 6.1%) 4475 ( 9.8%)

CarMax 12331 19725 60.0% 11876 455 ( 2.3%) 7849 (38.9%)

Duolingo 14704 15628 6.3% 14291 413 ( 2.6%) 1337 ( 8.3%)

Flipboard 11754 14705 25.1% 10830 924 ( 5.9%) 3875 (24.8%)

Fox News 31140 31586 1.4% 29601 1539 ( 4.6%) 1985 ( 6.0%)

KAYAK 57641 77567 34.6% 55103 2538 ( 3.2%) 22464 (28.0%)

Merriam-Web 10547 9734 -7.7% 9328 1219 (11.1%) 406 ( 3.7%)

Spotify 19918 32111 61.2% 19555 363 ( 1.1%) 12556 (38.7%)

TripAdvisor 32014 32200 0.6% 29973 2041 ( 6.0%) 2227 ( 6.5%)

trivago 20265 20944 3.4% 20032 233 ( 1.1%) 912 ( 4.3%)

Walmart 43334 46232 6.7% 35194 8140 (15.0%) 11038 (20.3%)

Wattpad 24053 33192 38.0% 23176 877 ( 2.6%) 10016 (29.4%)

WEBTOON 28059 31789 13.3% 20940 7119 (18.3%) 10849 (27.9%)

wish 9923 10305 3.8% 8178 1745 (14.5%) 2127 (17.7%)

YouTube 41518 42466 2.3% 37993 3525 ( 7.7%) 4473 ( 9.7%)

Average 19.6% 25288.8 2104.2 ( 6.3%) 7587.4 (19.6%)

TABLE VI: Heuristics success rate across all apps.

App Passed Failed Total % Pass
AccuWeather 421 144 565 74.5%
AllTrails 308 35 343 89.8%
AutoScout24 420 36 456 92.1%
CarMax 275 18 293 93.9%
wish 242 21 263 92.0%
Duolingo 364 31 395 92.2%
Fox News 279 12 291 95.9%
YouTube 532 5 537 99.1%
KAYAK 251 39 290 86.6%
Merriam-Webster 438 31 469 93.4%
WEBTOON 219 68 287 76.3%
Spotify 278 40 318 87.4%
TripAdvisor 177 49 226 78.3%
trivago 330 53 383 86.2%
Walmart 320 32 352 90.9%
Flipboard 346 49 395 87.6%
Wattpad 301 30 331 90.9%
Total 5501 693 6194 88.8%

To run VET, we must first run three hours of APE, and then,

learning from the actions that end up in a stuck region, VET

prevents them from happening in its additional 3-hour run. To

make a fair comparison, we run AURORA for 6 hours. Table V

compares the set union methods and exclusive methods for

VET and AURORA. Considering coverage, AURORA gets an

average of 19.6% increase compared to VET. We can also

see that AURORA gets higher coverage for 16 out of 17 apps.

Considering orthogonality, AURORA provides an average of

19.6% exclusive methods compared to 6.3% from VET.

E. RQ4: Successful Heuristic Execution?

Table VI shows the success rate of our heuristics. Ranging

from 74.5% to 99.1% with an average of 88.8% of the exe-

cuted heuristics being successful. We consider our heuristics

successful when any of the heuristics from AURORA’s top 3

predictions are successful in changing the app screen.

If we compare actions per second, using AURORA will

generate fewer actions than not using AURORA, as it needs to

classify screens and run heuristics during runtime. However,

even with less actions generated, AURORA still achieves an

improvement in code coverage. This result suggests that at

tarpit screens, a properly curated heuristic is often better than

randomly clicking around to increase code coverage.
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Fig. 6: Confusion matrix of heuristics succeeding.

AURORA would likely offer similar improvements to sys-

tematic testing approaches, as they may also get “stuck” on

screens. However, the VET dataset, and identified tarpits, were

derived using random-based techniques, thus we oriented our

analysis toward these techniques as well. Future work should

explore AURORA ’s effect on other types of techniques.

F. RQ5: Effectiveness of Individual Heuristics
The 88.8% success rate of heuristics shows us the collective

effectiveness of using a heuristic-based approach. To under-

stand the performance of each of these heuristics to effectively

navigate their respective UI tarpit screens, we conducted an

analysis using AURORA’s post-run logs.
Our heuristic based approach works by iterating through

the top three predictions of a tarpit screen. AURORA runs the

heuristic designed for the initial predicted UI category, and

when it does not result in a change in the tarpit screen, it

proceeds to the subsequent predictions in a sequential manner.

Figure 6 shows the frequency with which various heuristics

successfully made changes to a predicted screen, presented

in a percentage format. The diagonal values refer to the

heuristic affecting changes being the one intended for the first

prediction. As the figure suggests, we find that AURORA was

able to navigate all the predicted screens using their intended

heuristics most of the time. Outside the diagonals, we can see

that player heuristics also successfully navigated a handful of

advertisement, feed, and viewer screens. This result is due

to player heuristic’s ability to find on-screen components and

resume random exploration on a different app screen.

VI. THREATS TO VALIDITY

Our initial study on design motifs involved manual effort

in classifying screens, identifying UI tarpits, and finding ways

to overcome them. Any manual process can include biases.

We limit the potential for bias by examining only a portion of

tarpit screens during heuristic construction and using semantic

text matching to make our heuristics generalizable.
Another threat to our work’s external validity is that we use

only Android 6.0. We utilize the MiniTrace mechanism for

collecting method coverage without needing code instrumen-

tation, and MiniTrace works with only Android 6.0.

VII. RELATED WORK

Studies on Android Testing: Vásquez et al. [53] compiled

a body of knowledge that can help researchers focus on

new automated testing approaches tailored to developer needs.

Choudhary et al. [54] analyzed various modern test generation

tools in a systematic way and illustrated that, surprisingly, the

simpler Monkey tool surpassed more sophisticated tools in

terms of code coverage, ease of use, and fault detection.

Random-based Testing Tools: Random based testing ap-

proaches construct test cases in a pseudo-random manner from

the set of all possible program inputs [19]. Random-based

tools excel in adaptability, as they target the app under test

only on a per-screen basis. This technique was popularized

in the Android testing tool, Monkey [20], and was later

adapted by APE [21], Dynodroid [22], Intent Fuzzer [23], and

VANARSena [24].

Model-based Testing Tools: MonkeyLab [25] uses the GUI-

based models extracted from Android application execution

traces to generate usage scenarios. The results demonstrate

that MonkeyLab is able to generate effective and fully re-

playable scenarios. Moran et al. [25] studied the importance

of crashes during Android application testing. The authors

developed CrashScope, a tool that can automatically discover,

report, and reproduce crashes. They executed their tool on 61

Android apps and compared their tool with A3E, DynoDroid,

MobiGUITAR, Monkey, and Puma [20], [22], [55]–[57].

Dong et al. [28] proposed time-travel testing for Android,

which works to maximize exploration efficiency by resuming

to the most progressive states observed in the past. They

evaluated their approach against Sapienz [27] and Stoat [50]

and it outperformed them in coverage and crashes discovered.

Machine Learning-based Testing Tools: Li et al. [29] pro-

pose Humanoid, a testing tool that uses a combination of CNN

and Residual LSTM in their approach to generate automated

tests. They use the RICO dataset [30] and perform CNN on

the screenshots to predict action location on a given UI screen.

Residual LSTM is used to predict the type of action performed

- such as tap, long tap, swipe, etc. Q-testing [58] is an AIG

tool that uses reinforcement learning for input generation.

QTypist [59] is a tool designed to automate the generation

of input text for mobile applications by interacting with a

large language model. Compared to AURORA, which handles

various different UI exploration challenges, QTypist focuses

on only text-related challenges.

VIII. CONCLUSION

In this paper, we proposed AURORA, a framework that

runs alongside AIG tools and can categorize and navigate

around UI screens when an AIG tool is stuck using multimodal

techniques for neural screen understanding. Our evaluation il-

lustrates that AURORA can effectively recognize different types

of screens and effectively navigate around them, increasing the

effectiveness of AIG tools. To aid future research, we make

AURORA and our labeled dataset of UI categories publicly

available [35].
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