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Abstract—When developers run tests after making code
changes, they may encounter test failures from flaky tests, which
are tests that can non-deterministically pass or fail on the same
version of code. Prior work has found “timing dependence” to
be a top cause of this non-determinism, i.e., tests may pass or fail
depending on the timing of asynchronous callbacks or different
thread interleavings that can occur when thread executions run
faster or slower relative to others. Similar to how one debugs and
fixes normal test failures, developers need to be able to reliably
reproduce flaky-test failures. However, many of these failures can
be extremely unlikely to occur (e.g., failing only once out of 10,000
runs in prior work), making it costly for developers to reproduce
the failures. We present FlakeRake, an automated approach
for reproducing timing-dependent (TD) flaky-test failures by
inserting well-placed sleep calls, which temporarily pauses one
thread or task and allows another to overtake it. When applied
to an existing dataset of known flaky-test failures, FlakeRake
is able to reproduce the exact same failure at least once for
136 failures, whereas simply rerunning each test 10,000 times
reproduces only 115 failures or rerunning the entire test suites
10,000 times reproduces only 127 failures. For each failure that
can be reproduced, we find that FlakeRake can reliably reproduce
(>50% of the time) 107 failures, while rerunning just the flaky
test or the entire test suite could not reliably reproduce any
failure. We also find that if a developer needs to reproduce a
failure six or more times, using FlakeRake (including the one-
time cost to search for sleep calls) takes less time to reproduce
that many failures than continually rerunning just the flaky test.
Lastly, we inspect the sleep locations that FlakeRake outputs and
provide insights for how one should cope with TD flaky tests.

I. INTRODUCTION

After a developer makes a change to their code, the

tests might fail, not because of any fault introduced in that

change but because of flakiness [1], [2] – the tests are non-

deterministic, and they can pass and fail regardless of any

change. Flaky tests are a growing interest in research literature,

with a wealth of new approaches [3]–[11] recently proposed

to detect which tests might be prone to flaky-test failures.

Meanwhile, reports from industry via blogs (e.g., Gradle [12],

This work was supported in part by NSF grant no. CCF-2100037 and CCF-
2145774.

Fitbit [13], Saucelabs [14], and Thoughtworks [15]) and re-

search papers (e.g., Apple [16], Ericsson [17], Facebook [18],

[19], Google [20]–[23], Huawei [24], Microsoft [25]–[28], and

Mozilla [29], [30]) highlight the difficulties that developers

face when dealing with flaky tests. One concern highlighted

in these reports is that, despite the increasing interest from

the research community to detect and root cause flaky tests,

simply detecting which tests might be flaky and root causing

the flakiness category can still be inadequate, i.e., although

a developer may know that a test is flaky and the category

of the flaky test (e.g., concurrency), the developer still may

not be able to recreate the environment (e.g., the particular

thread interleaving) to reproduce the flaky-test failure. More

specifically, several surveys [31]–[33] have found that the

reproduction of flaky-test failures to (1) debug and understand

the failures and (2) verify that any patches actually repair or

mitigate the flakiness is one of the most difficult challenges

related to flaky tests.

Given that modern continuous integration workflows may

execute a single test hundreds or thousands of times per

day, a flaky-test failure that rarely occurs (e.g., once in 1000

executions) will still fail at least once a day (resulting in a

failed build that incorrectly requires a developer’s attention)

and be a challenge for a developer to reproduce. Alshammari et

al. [5] studied flaky tests in 24 open-source projects, executing

each test suite 10,000 times and identifying 811 flaky tests.

We analyzed this dataset to determine how often each unique

failure (by stack trace) occurred, finding a total of 1,167 unique

failures, of which 737 (63%) occurred in fewer than 10 runs.

Reproducing infrequent flaky-test failures is often challeng-

ing, yet necessary. In fact, prior work [31] found that 77% of

developers often run flaky tests multiple times when debugging

a flaky-test failure to reproduce the failure, log different parts

of code, and vary the context in which the test is run. To help

detect and reproduce flaky-test failures, prior work [3], [4] has

proposed tools for detecting and reproducing failures caused

by test-order dependency (OD), by controlling the order of

test execution. Although OD is a prominent cause of flakiness
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and many tools [3], [4], [34]–[36] have been developed to help

with these flaky tests, it is not the most prominent cause of

flakiness. In fact, when we run a state-of-the-art OD tool [3]

on the projects in Alshammari et al.’s dataset [5], we find that

only 12% (96) of the projects’ 811 flaky tests are OD.

Prior work [1], [31] identified that one of the most promi-

nent causes of flakiness is timing-dependence (TD), i.e., tests

that depend on execution timing. Yet, there are no publicly

available tools to help reproduce TD-test failures.

To address this problem, we present FlakeRake, an auto-

mated approach for reproducing TD-test failures. FlakeRake

outputs configurations that a developer can use to run tests to

more reliably reproduce TD-test failures, debug them, and fix

them without needing to repeatedly rerun tests. We implement

FlakeRake for Java and evaluate its efficacy in reproducing

TD-test failures by applying it to the entire FlakeFlagger

dataset, consisting of 811 flaky tests and 1,167 unique test

failures. Compared to two state-of-the-practice baselines, we

find that FlakeRake is more effective at reproducing the

same failures (by matching stack traces) in the FlakeFlagger

dataset. We conducted repeated trials with each approach to

measure how reliably these failures were reproduced, finding

that FlakeRake can reproduce most failures in at least 50% of

the time. We evaluate FlakeRake’s execution time in a use-

case (e.g., a debugging session) where a developer needs to

reproduce a given flaky-test failure multiple times. While there

is a one-time cost to generate the configurations, reproducing

the flaky failure is fast afterwards (adding a delay of just a

few seconds per-test run). Specifically, we find that FlakeRake

is overall faster at reproducing a failure six or more times

compared to simply rerunning the test normally (as the test

does not reliably fail every time it is run normally).

We inspect the configurations that FlakeRake generates to

reproduce TD-test failures and find that certain code charac-

teristics are more likely to be associated with these failures.

Our findings can be used to help developers further optimize

tools to reproduce TD-test failures. We also study the flaky-test

failures that were never reproduced in any of our experiments,

finding several common root causes and yielding insights for

future research. To enable others to use FlakeRake, we make

the tool and our list of Java, timing-related APIs publicly

available, along with the results of our evaluations [37].

This paper makes the following main contributions:

Approach. We present FlakeRake, an automated approach for

finding failure-inducing configurations that reproduce TD-test

failures. We implement our approach for Java and make our

tool publicly available [37].

Evaluation. We evaluate FlakeRake on a dataset of flaky tests

and find that FlakeRake is able to reproduce more flaky-test

failures and reproduce them more reliably and faster compared

to two state-of-the-practice techniques.

Dataset. We make publicly available a dataset of categorized

TD flaky tests and how one can reliably reproduce the failures

of these tests. Our dataset includes the failures, how often they

occur, and the execution times of FlakeRake and the baseline

approaches [37].

1 @Test public void testCustomBufferSize() {

2 startSMTPServer(NO_SSL);

3 configure(...);

4 logger.error("hello");

5 waitUntilEmailIsSent();

6 MimeMultipart mp = verifyMultipart("..." + this.

getClass().getName() + " - " + msg);

7 }

8 MimeMultipart verifyMultipart(...) {

9 waitToReceiveEmails(1);

10 assertEquals(1, server.getMessages().length);

11 }

12 class SenderRunnable implements Runnable {

13 void run() { sendBuffer(...); } // sends e-mail

14 }

Fig. 1. Example TD test from SMTPAppender_GreenTest class in
the logback project [38].

II. BACKGROUND

Prior work on flaky tests [1], [28], [31] have identified

more than 10 causes for flaky tests, including dependency

on asynchronous code, test order, thread interleavings, system

time, etc. These pieces of work find that dependencies on

asynchronous code and specific thread interleavings are the

most prominent causes of flaky tests. We refer to all such

tests as timing-dependent (TD) tests.

Figure 1 shows an example of a TD test from the FlakeFlag-

ger dataset [5] that FlakeRake reliably reproduces. The goal of

the test is to check whether emails are properly sent when the

framework logs an error. testCustomBufferSize is flaky

because of an assertion failure inside verifyMultipart on

Line 10. The assertion checks whether the number of emails

sent is 1 or not. Depending on the result of an asynchronous

call, this test can fail with the message AssertionError:

expected:<1> but was:<0>. The assertion sometimes

fails because Line 4 logs an error and the configured email

server from lines 2 and 3 begins to send an email about

the error asynchronously in another thread, eventually calling

Line 13. Line 9 on the main thread then waits up to five

seconds for this other thread to send the email. If Line 13

takes longer than five seconds to finish, then the assertion on

Line 10 fails. Based on the complexity of the operations that

the test performs, it is possible for the test to take longer than

five seconds to send the email. Prior work [5] found that this

test failed only once in 10,000 test-suite runs. If a developer

tries to debug this flaky test, the developer may need to run

this test many times to reproduce the failure. When we run just

this test 10,000 times, we find that this test never fails. On the

other hand, FlakeRake can help reproduce the exact failure

(same stack trace) observed in prior work by automatically

suggesting the insertion of a sleep (a Thread.sleep call and

value to use) right before Line 13. This suggestion reproduces

the failure reliably (100% of the time in 10,000 runs).

III. FLAKERAKE

Figure 2 shows an overview of FlakeRake, an approach

to automatically reproduce TD flaky-test failures. At a high

level, FlakeRake takes as input a known flaky test, and it

outputs a configuration, which defines a set of locations along
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Fig. 2. Overview of FlakeRake’s approach to automatically generate scripts to reliably reproduce timing-dependent flaky-test failures. FlakeRake profiles a test’s
usage of timing-dependent (TD) APIs, and then searches for failure-inducing configurations of sleepyLines for that test. These failure-inducing configurations
are then confirmed, enabling reliable reproduction of flaky-test failures.

with a particular thread associated with each location where

inserting delays (sleeps) at these location/thread pairs should

reliably reproduce a specific TD failure. FlakeRake is meant

to be used to reproduce a failure after a test is detected to

be flaky. More details for when and how developers should

use FlakeRake is in Section V-A. To generate configurations,

FlakeRake has three main steps: Timing Dependent (TD) API

Execution Profiling, Configuration Search, and Confirmation.

A. TD API Execution Profiling

To reproduce TD flaky-test failures, FlakeRake inserts

delays around calls to APIs that are timing-dependent. In

general, TD APIs are those that implicitly affect timing-related

operations, such as methods that read the system clock or

acquire a lock (e.g., beginning of a Java synchronized block,

which permits only one thread to enter the block at a time).

We construct a list of TD APIs for Java applications by

collecting the API methods in the standard Java Development

Kit (JDK) that may affect timing of code executions, especially

across multiple threads or concurrent operations on data.

We first inspected all APIs in the java.util.concurrent

and java.nio packages. The former package contains a

collection of classes with APIs for thread concurrency, while

the latter contains a collection of classes with APIs for non-

blocking, asynchronous IO operations. We also inspected all

APIs that have the keywords “thread”, “lock”, “socket”, or

“time” in their API documentation from the following pack-

ages: java.io, java.lang, java.net, and javax.net.

Our intuition is that such APIs are likely to affect thread

executions or asynchronous services (e.g., network connec-

tions via sockets). In the end, we obtain 1955 APIs from

java.util.concurrent, 565 from java.nio, 17 from

java.net and javax.net, and 54 from other packages in the

JDK (e.g., System.currentTimeMillis). These methods

are the TD APIs we use. We further study the relevance of

these APIs in our evaluation (Section IV-D). We store the

list of TD APIs in a configuration file that developers can

change as needed, and make our list publicly available [37].

We use only methods from the JDK as the TD APIs because

any other methods from the tests, system-under-test, or third-

party library code that perform timing-related operations are

likely to eventually use these APIs from the standard JDK.

In its first phase, FlakeRake dynamically profiles the test’s

execution to find where it makes calls to any of the TD APIs.

FlakeRake dynamically instruments the code to track calls to

TD APIs, regardless of whether the calls are made directly

or indirectly (e.g., by an external dependency) by the test.

This step executes the test multiple times to record which

APIs get called. The instrumented executions produce a list

of sleepyLines – the list of candidate lines to sleep at. As

each TD API might be invoked in multiple threads, FlakeRake

also records a threadID for each sleepyLine. We compute a

stable identifier for the thread by generating a hash of the stack

trace at the location that spawned the thread, the number of

times that location has spawned a thread, and the threadID

that spawned the thread. FlakeRake gives the initial, “main”

thread the consistent identifier 0.

There may not always be the same consistent TD APIs

called during a test execution due to inherent non-determinism

of the execution. To mitigate the issues of non-determinism,

FlakeRake executes this profiling step multiple times and

aggregates the set of TD API calls made across all executions.

When we perform this profiling step 10 times on the flaky tests

in the FlakeFlagger dataset [5], we find that the first profiling

run already contributes 84% of the TD API calls that can be

found in 10 runs. By the fifth run, no TD APIs found by our

profiling were needed to reproduce the flaky-test failures in

the FlakeFlagger dataset. Therefore, we set and recommend

the default number of executions for this step to be five.

B. Configuration Search

While there are many possible TD API lines to sleep at to

reproduce a TD failure (sleepyLines), only a few of them may

be needed. FlakeRake explores these lines by repeatedly run-

ning the test under different configurations involving subsets of

the sleepyLines. Although FlakeRake’s process to repeatedly

run the test can have a high cost, this cost is per test and not

per failure, i.e., once FlakeRake produces a configuration, a

test’s TD failure can be trivially reproduced. Details on how

the efficiency of FlakeRake compares to other approaches is

in Section IV-C. If a test is found to fail under the initial

configuration consisting of all sleepyLines, FlakeRake notes

the stack trace of that failure, and it then attempts to minimize

the set of sleepyLines, with the goal of finding a simpler

configuration to reproduce that same failure. We implement

and evaluate two heuristic-based algorithms to partition the

set of sleepyLines into smaller sets:

One-by-one (OBO): For each identified sleepyLine, OBO pro-

duces a configuration for each line. For example, given sleep-

yLines and corresponding threadIDs (s1, t1), (s2, t1), (s3, t2),
OBO produces three configurations: < (s1, t1) >, <

(s2, t1) >, and < (s3, t2) >.
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1. Collect ground-
truth flaky CI failures

2a. Run tests with FlakeRake

2c. Run tests with Rerun-Repl 
& Isolated Rerun

3. Match 
Failures

RQ1 How many failures 
are reproduced?

RQ2 How reliably are 
failures reproduced?

RQ3 How long to 
reproduce failures?

RQ4 Characteristics of 
Configurations?

2b. Reproduce failures 
with FlakeRake

Fig. 3. Overview of evaluation methodology and research questions. Using a ground-truth list of flaky-test failures from the FlakeFlagger dataset, we use
FlakeRake to identify failure-inducing configurations, and confirm that those configurations reproduce each failure 100 times. As baselines, we run each test
with Isolated Rerun, and each test suite with Rerun-Repl. Each test failure is matched by stack trace, and we study the characteristics of each test and failure.

Bisection: Inspired by the bisection algorithm commonly used

in mathematics [39] and similar to binary search (except the

values need not be sorted), this algorithm identifies com-

binations of sleepyLines that could induce test failures by

repeatedly bisecting the sleepyLine values and then selecting

values under which the test outcome changes (i.e., changing

from non-failure-inducing to failure-inducing). For example,

given sleepyLines (s1, t1), (s2, t1), (s3, t2) in order of appear-

ance during execution, Bisection produces four configurations:

< (s1, t1), (s2, t1) >, < (s1, t1) >, < (s2, t1) >, and

< (s3, t2) >. FlakeRake’s bisection will not explore subsets

of configurations if the union of the sub-sets does not reliably

reproduce a failure. This algorithm does not try configurations

such as < (s1, t1), (s3, t2) > and < (s2, t1), (s3, t2) > to

minimize the cost of configuration search. Future work should

evaluate the trade-offs of OBO and bisection compared to

other algorithms like delta-debugging [40].

Ultimately, we find that OBO finds slightly fewer failures

than Bisection, while being only 2.4% faster than Bisection

(Section IV-A provides more details). Given OBO’s minimal

time savings, we set FlakeRake to use Bisection as the default

for our other experiments.

To determine whether a configuration is failure-inducing,

FlakeRake performs an exploratory check for each of the

configurations produced by the algorithms. For each sleepy-

Line in the configuration, FlakeRake injects a sleep call of

initSleepT ime for the corresponding threadID. The sleep

time at a sleepyLine is calculated as �initSleepT ime∗ (1
2
)i�,

where i is the number of times that specific sleepyLine had

previously suspended the corresponding threadID’s execution.

Intuitively, the more times the same sleepyLine is executed,

e.g., in a loop, the less we sleep at that location. To determine

the initSleepT ime, we performed a preliminary study where

we explored initSleepT ime values of 5, 10, and 15 seconds

on the FlakeFlagger dataset [5]. We find that initSleepT ime

set to 5 and 15 seconds reproduces the same number (136) of

failures from the FlakeFlagger dataset, while initSleepT ime

set to 10 seconds reproduces one more failure (137). As

initSleepT ime set to 5 seconds reproduces a similar amount

of failures as the other values and a lower initSleepT ime

means less time needed to search for configurations and

reproduce failures, we set the default initSleepT ime to be

5 seconds and use this value for our experiments.

C. Confirmation

For each failure-inducing configuration, FlakeRake reruns

the test five times, and outputs the configuration only if it

produced the same failure (i.e., same failure stack trace) at

least three times. We rerun five times because prior work [41]

found that rerunning a test five times is generally sufficient

to observe both passing and failing results from a flaky test

(Section IV-B shows our results rerunning 100 times).

FlakeRake might generate a failure-inducing configuration

that results in a test getting stuck, e.g., in a deadlock or

livelock. Similar to techniques used by mutation analysis tools,

such as PITest [42], FlakeRake sets a per-test timeout based

on the average run time of the test run normally, the total

amount of sleep added, and a constant offset. If applying

a configuration leads to the test execution time exceeding

the expected time, then FlakeRake discards the configuration.

FlakeRake can be configured to explore and confirm all

failures (as we evaluate in Section IV), or to confirm only

a specific failure that a developer is interested in debugging.

FlakeRake produces a reproduction script using the failure-

inducing configurations outputted by the previous steps. This

script includes (1) the failure, represented as the exception

message and stack trace, and (2) the failure-inducing config-

uration, represented as a set of sleepyLines and their corre-

sponding threadIDs for reproducing the specific failure. Flak-

eRake uses these scripts to dynamically apply the appropriate

sleeps when re-running the test. Alternatively, developers can

use the information to manually reproduce the failure.

IV. EVALUATION

Figure 3 shows a high-level overview of our evaluation

methodology and research questions. Our experimental design

takes as input a set of known flaky tests along with their re-

spective logs generated by Alshammari et al.’s experiments [5];

we refer to this dataset as the FlakeFlagger dataset. These logs

contain the failing exception and stack trace for each flaky-

test failure, which serves as the ground truth of flaky tests and

flaky-test failures that we aim to reproduce (Step 1 in Fig. 3).

Their dataset was constructed by executing each test suite as

developers would in a continuous integration environment –

repeatedly running the test suite by executing mvn test. We

run FlakeRake on each of the flaky tests (Step 2a) to output a

list of failures and the configurations to reproduce them. Then

we run each of the configurations 100 times to see whether

the failures can be reliably (>50%) reproduced (Step 2b).

We consider two standard baseline approaches for reproduc-

ing flaky-test failures: Rerun-Repl and Isolated Rerun (Step

2c). Rerun-Repl is an exact replication of Alshammari et

al.’s experiment [5], which invokes the entire test suite for

each project 10,000 times. To reduce the differences in our

replication, we use the same projects and scripts released by

Alshammari et al. Isolated Rerun runs each flaky test 10,000
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TABLE I
NUMBER OF FLAKY TESTS AND UNIQUE FAILURES DETECTED BY EACH APPROACH AND INTERSECTION OF THOSE FAILURES WITH RERUN FROM [5].

Unique failures are identified by stack trace. This table contains only the tests known to be flaky by Rerun from [5].

Flaky Tests & Failures by Technique

Rerun from [5] Rerun-Repl Isolated Rerun FlakeRake FlakeRake-OBO
Intersection of Failures

with Rerun from [5]

Project Tests Failures Tests Failures Tests Failures Tests Failures Tests Failures Rerun-Repl Iso. Rerun FlakeRake FlakeRake-OBO

activiti-activiti 32 32 15 15 6 6 28 95 28 72 15 6 24 24
Alluxio-alluxio 116 183 2 2 2 2 55 157 53 122 2 2 28 24
apache-ambari 52 53 0 0 0 0 1 3 1 3 0 0 2 2
apache-commons-exec 1 1 0 0 0 0 0 0 0 0 0 0 0 0
apache-hbase 145 250 42 42 72 121 89 165 73 91 13 14 15 6
apache-httpcore 22 22 5 5 2 2 16 22 16 17 5 2 4 1
apache-incubator-dubbo 19 21 8 8 1 3 6 29 6 27 0 0 0 0
doanduyhai-Achilles 4 4 2 2 2 2 0 0 0 0 2 2 0 0
elasticjob-elastic-job-lite 3 4 0 0 0 0 1 2 1 2 0 0 0 0
hector-client-hector 33 33 0 0 0 0 1 1 1 1 0 0 0 0
jknack-handlebars.java 1 1 1 1 1 1 1 1 1 1 1 1 1 1
joel-costigliola-assertj-core 1 1 0 0 0 0 0 0 0 0 0 0 0 0
kevinsawicki-http-request 18 18 18 18 0 0 0 0 1 1 18 0 0 0
ninjaframework-ninja 1 1 0 0 1 1 0 0 0 0 0 1 0 0
orbit-orbit 7 7 2 2 5 5 6 18 7 20 2 5 3 5
qos-ch-logback 22 23 2 2 2 2 16 22 16 22 2 2 12 12
spring-projects-spring-boot 163 287 0 0 30 31 5 24 6 14 0 24 0 1
square-okhttp 100 121 15 24 12 18 26 41 23 38 22 17 17 13
tootallnate-java-websocket 23 45 22 41 21 36 22 26 21 21 41 36 22 21
undertow-io-undertow 7 12 1 1 0 0 7 19 7 19 1 0 4 4
wildfly-wildfly 23 23 0 0 0 0 0 0 0 0 0 0 0 0
wro4j-wro4j 16 23 2 2 1 1 4 5 4 4 1 1 4 4
zxing-zxing 2 2 2 2 2 2 0 0 0 0 2 2 0 0

Total 811 1,167 139 167 160 233 284 630 265 475 127 115 136 118

times in isolation and most closely mirrors what is typically

done by developers when reproducing flaky-test failures.

The list of flaky-test failures found by each approach is

passed into a matching script (Step 3), which considers two

failures as matched if they have the exact same stack trace. We

set FlakeRake’s reproduction to require a failure be reproduced

at least three times, therefore we also set a similar goal for

the baseline approaches: an approach reproduces the failure if

it reports the failure at least three times. We use this failure

data to evaluate our research questions:

RQ1: How effective are FlakeRake, Rerun-Repl, and Isolated

Rerun at reproducing flaky-test failures at least three times?

RQ2: How reliably can FlakeRake, Rerun-Repl, and Isolated

Rerun reproduce flaky-test failures?

RQ3: How efficient are FlakeRake, Rerun-Repl, and Isolated

Rerun at reproducing flaky-test failures multiple times?

RQ4: What are the characteristics of the failure-inducing

configurations outputted by FlakeRake?

Dataset and Environment: We use the same FlakeFlagger

dataset from Alshammari et al. [5]. We conducted our ex-

periments using virtual machines, each running Ubuntu 20

and Oracle’s Java 1.8.0 301, with 16GB RAM and 4 virtual

CPU cores. We use this same environment to run all of our

experiments (Rerun-Repl, Isolated Rerun, and FlakeRake).

A. RQ1: Number of reproduced failures

Our first research question leads us to examine which known

flaky tests could be reproduced as flaky by each approach,

and how many unique failures we observe. Table I shows

the number of tests detected as flaky and the number of

unique failures detected by each approach. We find that the

distribution of failures can vary dramatically between projects.

That is, in some cases (e.g., activiti, commons-exec,

orbit, wildfly), the number of unique failures matched the

number of tests exactly: each flaky test always failed with

the same failure stack trace. However, in other cases (e.g.,

alluxio, hbase, spring-boot), some flaky tests fail with

many different stack traces.

Comparing the results from Rerun (Alshammari et al’s

data [5] - extracted from their Table 1 and supplemental data)

with Rerun-Repl and Isolated Rerun, we observe that approx-

imately 80% of the flaky tests from the FlakeFlagger dataset

could not be reproduced as flaky. Given the non-determinism

of flaky tests, it is understandably difficult to reliably repro-

duce them. Alshammari et al. conducted experiments several

years before ours, so although we use the same versions of the

same tests, SNAPSHOT versions of dependencies could have

changed, resulting in different behaviors.

Comparing FlakeRake with Bisection partition (columns

FlakeRake) and FlakeRake with OBO partition (columns

FlakeRake-OBO), we find that the default Bisection partition

was slightly more effective than the OBO partition. In total,

the two partition schemes could together reproduce failures

for 290 flaky tests. Overall, FlakeRake reproduced failures for

more tests than Rerun-Repl or Isolated Rerun (284 compared

to 139 and 160, respectively), and also reproduced more

unique failures (630 compared to 167 and 233, respectively).

FlakeRake’s performance per-project was quite consistent,

detecting at-least-as-many flaky tests as the baselines in 17

of the 23 projects.
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Fig. 4. Intersection of failures detected by each technique. Of the techniques
evaluated, FlakeRake was most successful at reproducing failures from the
original Rerun dataset (136 failures), compared to Rerun-Repl (127 failures)
and Isolated Rerun (115 failures).

TABLE II
TOP 4 CATEGORIES OF FAILURES BY DETECTION SOURCE

Detected By Category Number of Failures

Only Rerun

UnknownHostException 224
AssertionError 148
IOException 144
ArtifactResolutionException 104

Only FlakeRake

AssertionError 124
Timeout 117
IOException 113
ConcurrentUpdate 67

Rerun-Repl or
Isolated Rerun
(not
FlakeRake)

Address in use 60
IllegalArgumentException 34
TableNotFoundException 29
AssertionError 28

Not only does FlakeRake reproduce more flaky-test failures

than the alternative techniques, it also reproduces more of

the exact same failures that appeared in the FlakeFlagger

dataset [5]. Specifically, FlakeRake reproduced 136 failures,

while Rerun-Repl reproduced 127 and Isolated Rerun repro-

duced 115 failures. This result shows that, despite perturbing

the specified test behavior (by inserting sleeps), FlakeRake still

reproduces more of the same failures that were reported in the

original dataset than simply rerunning the tests normally.

Figure 4 is a four-way Venn diagram that shows the number

of failures that were matched between each of the four flaky-

test reproduction approaches that we presented in Table I.

To gain more insights into our results, we categorize each

of the failures in our dataset by the exception type, showing

the top four exception types in Table II (our supplementary

material contains the complete result). While some categories

are somewhat generic (e.g., “AssertionError”), others provide

more insights as to the failure cause, such as “Unknown-

HostException.” Through this analysis, we find that many

(472/787) of the failures from the FlakeFlagger dataset that

we could not reproduce are caused by transient network

or disk conditions (“UnknownHostException”, “IOException”

and “ArtifactResolutionException”). We also run a state-of-

the-art OD test detector, iDFlakies [43], on the entire dataset

with 100 random orders, identifying 96 OD tests in the

FlakeFlagger dataset (which cannot be detected by FlakeRake

or Isolated Rerun). Reproducing these non-TD failures is

outside the scope of this work.

Of the failures detected only by FlakeRake, roughly 24%

(117/481) were related to a test exceeding a timeout, which we

expect FlakeRake to be effective at reproducing, given that it

inserts sleeps. Other than generic “AssertionError”s, the largest

category of failures produced by Rerun-Repl or Isolated Rerun,

but not by FlakeRake are “Address in use” errors. These errors

occur when a test binds to a free network port but races with

the operating system that is working on releasing the port.

These errors are most common when using Isolated Rerun,

which repeatedly executes the same test in quick succession,

preventing cleanups common in other approaches.

Note that FlakeRake should be used to reproduce all flaky-

test failures even without knowing the test category, because

FlakeRake is quick to know if a test can be TD, i.e., FlakeRake

requires just one instrumented test run to know if a test

involves multiple threads or not. In our evaluation, we evaluate

FlakeRake on all flaky tests from the FlakeFlagger dataset,

without knowing whether a test is TD or not, and we still

find that FlakeRake reproduces more flaky-test failures than

any baseline. Future work can incorporate flaky-test category

predictions [44] to determine if a test is likely TD before even

using FlakeRake.

B. RQ2: Reliability of failure reproduction

Our RQ1 experiments find that there are 247 failures that ei-

ther FlakeRake or the baseline approaches (either Isolated Re-

run or Rerun-Repl) reproduced from the FlakeFlagger dataset.

To evaluate FlakeRake’s ability to create scripts that allow

developers to more reliably reproduce flaky-test failures, we

attempt to reproduce each unique failure (in the FlakeFlagger

dataset that we reproduced in RQ1) 100 times. Specifically, we

run FlakeRake and the baselines in their reproduction mode

100 times, and compare FlakeRake’s reproduction rate with

the reproduction rate of the best baseline for that failure.

For each configuration that FlakeRake’s exploration phase

reports as a likely candidate (failing at least three out of five

runs) for reproducing a specific flaky-test failure, we measure

what percentage of 100 runs can reproduce the same failure

(its reproduction rate). For failures that either Isolated Rerun

or Rerun-Repl reproduced in RQ1, we also run the corre-

sponding baseline approach 100 times and measure how often

the approach can reproduce that failure. This measure helps

estimate how effective FlakeRake and the baseline approaches

are for a developer aiming to repeatedly reproduce a flaky test

for debugging (e.g., logging different parts of code [31], fault

localization [45]) or validating patches.

Table III compares the reproduction rate of each failure for

FlakeRake and the baseline approaches: each cell shows the

number of failures that were reproduced by FlakeRake at the

rate specified in the left column and also reproduced by the

baseline approach at the rate specified in the top row. The table

shows that Isolated Rerun and Rerun-Repl are very ineffective

at reproducing failures, with most failures reproduced less

than 10% of the time and only a handful between 10-50% of

the time. More importantly, these baseline approaches cannot
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TABLE III
COMPARISON OF FAILURE REPRODUCTION RATES FOR FLAKERAKE

COMPARED TO THE BEST OF RERUN-REPL AND ISOLATED RERUN WHEN

ALL APPROACHES ATTEMPT TO REPRODUCE FAILURES 100 TIMES.
Rerun-Repl and Isolated Rerun had no failures with a rate greater than 50%.

Best of Rerun-Repl and Isolated Rerun

FlakeRake Repro 0 (0%, 10%] (10%, 25%] (25%, 50%] Total

0 25 61 23 5 114
(0%, 10%] 7 13 0 0 20
(10%, 25%] 1 2 0 0 3
(25%, 50%] 2 1 0 0 3
(50%, 75%] 3 5 0 0 8
(75%, 99%] 1 5 0 0 6
(99%, 100%] 35 52 4 2 93

Total 74 139 27 7 247

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

6

101

103

105

0 10 20 30 40 50
Desired Reproduction Count

N
or

m
al

iz
ed

 C
os

t (
L

og
 S

ca
le

)

Approach
● FlakeRake

FlakeRake (Offline)
Isolated Rerun
Rerun
Rerun Replication

Fig. 5. RQ3 Results: Average execution cost to reproduce a failure a varied
number of times with each approach. For each of the 28 failures detected
by all five approaches, we compute the time to reproduce each failure N

times, normalized to the time to execute that test in isolation once. After 6
reproductions, FlakeRake is faster than Isolated Rerun.

reproduce any failure >50% of the time. In contrast, of the 136

failures that FlakeRake reproduced (Table I), 107 (8+6+93)

of these failures are reliably reproduced >50% of the time.

In fact, many (93) of these failures are extremely reliably

reproduced – in over 99% of the 100 runs. We conclude that

FlakeRake can more reliably reproduce failures than state-of-

practice approaches, helping developers repeatedly reproduce

TD failures for debugging and fixing.

C. RQ3: Efficiency of reproducing failures multiple times

Reproducing a flaky-test failure multiple times is an integral

step to debugging the failure [31], [32]. As such, we aim to

understand the runtime cost needed to reproduce the same set

of failures multiple times for tests known to be flaky.

For each of the 28 failures reproduced by all three ap-

proaches (Fig. 4), we compute the expected amount of times a

developer needs to use that approach to reproduce the failure

at least N times, ranging N from 1 to 50. For FlakeRake,

this time is computed as the time to generate the reproduction

script (namely, to search for the failure-inducing configura-

tion), followed by the time needed to run with the failure-

inducing configuration enough times to reproduce the failure

at least N times. Note that running the reproduction script

involves using inserted delays, so each run is slower than when

run normally, but each run is also more likely at reproducing

a failure, requiring fewer runs to reproduce the same number

of failures. We also consider the runtime cost of “FlakeRake

(offline)”, which excludes the up-front time needed to generate

the reproduction script. Excluding the up-front time simulates

the use-case where FlakeRake is executed in the cloud before a

developer begins rerunning the test to observe the same failure

multiple times as part of debugging (i.e., the “offline” refers

to process of generating the reproduction script happening

offline, not on the critical path of developer debugging). For

the baseline approaches, we calculate the E(N), the expected

number of executions needed to witness N failures, as the ratio

of executions in which the approach reproduced that failure.

Then, the time is computed as the time needed to run the test

(or test suite, for Rerun-Repl), multiplied by E(N). For each

failure, we normalize the reproduction cost relative to the time

needed to run that test a single time (in isolation), showing the

normalized cost to reproduce each failure relative to how long

it would take to run that test a single time. This normalization

allows us to aggregate the time to reproduce some number of

failures in a single figure for all approaches.

Figure 5 shows the relation between the number of desired

reproduced failures and the normalized runtime cost to achieve

that many failures for each approach. We see that FlakeRake

(offline) is the fastest approach, regardless of the number of

reproductions needed, by excluding the one-time cost of gen-

erating a reproduction script while still reliably reproducing a

failure for each run.

If we disregard FlakeRake (offline), we see that using Iso-

lated Rerun would be the fastest approach if the developer only

needs to reproduce the failure fewer than six times. However, if

a developer needs more than six failure reproductions, FlakeR-

ake quickly surpasses Isolated Rerun in terms of performance,

as each additional failure can be reproduced very quickly (as

RQ2 showed, nearly every run with FlakeRake’s reproduction

script reproduces the failure). This finding suggests that if a

developer wishes to reproduce a failure fewer than six times,

it may be faster to just use Isolated Rerun, with the given

risk that Isolated Rerun is the least likely to reproduce the

failure at least once (reproducing 21 fewer failures in RQ1).

A recent study [46, Table 4] also found that developers run

tests an average of six times and a maximum of 32 times

when debugging normal test failures that fail deterministically.

Developers likely require a similar or even larger number of

times to observe a failure when debugging flaky-test failures.

As developers cannot know a priori how many times they

need to reproduce a failure before finalizing a patch, we

recommend a combination of Isolated Rerun and FlakeRake.

A developer can run FlakeRake in the background to generate

a reproduction script while using Isolated Rerun to reproduce

failures. If they still need to observe more failures for debug-

ging, and FlakeRake has generated the reproduction script,

the developer can switch to the reproduction script to more

reliably and efficiently reproduce failures going forward.

When comparing Rerun (blue line) with Rerun-Repl (pink
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TABLE IV
TOP FIVE TIMING-DEPENDENT (TD) APIS OCCURRING IN SLEEP

CONFIGURATIONS THAT INDUCED FAILURES MATCHING THE

FLAKEFLAGGER DATASET FAILURES. For each TD API, we show the
number and percentage of tests in which that API was called, unique

failures that the API reproduced, and failure-inducing configurations that
were a part of the failures that were reproduced.

Timing-Dependent API Tests (%) Failures (%) Configs. (%)

ExitSyncBlock 240 (85%) 492 (79%) 2706 (18%)
ExitSyncMethod 239 (85%) 436 (70%) 2368 (16%)
EnterSyncBlock 238 (85%) 478 (76%) 2648 (18%)
EnterSyncMethod 226 (80%) 426 (68%) 2276 (16%)
System.currentTimeMillis 219 (78%) 369 (59%) 2190 (15%)

TABLE V
TOP FIVE TIMING-DEPENDENT APIS THAT CAN BE USED TO INDUCE THE

SAME FAILURE, MATCHING THE FLAKEFLAGGER DATASET. For each pair
of TD APIs, we show the Pearson correlation coefficient R, indicating the
frequency with which two APIs co-occur. A score of 1 indicates that two

APIs can always be interchanged.

Timing-Dependent API Timing-Dependent API R

ByteBuffer.allocate ByteBuffer.array 1.00
EnterSyncBlock ExitSyncBlock .99
EnterSyncMethod ExitSyncMethod .99
Selector.wakeup Thread.currentThread .96
System.currentTimeMillis Thread.currentThread .93

line), Rerun-Repl is projected to be slower. On average, we

find tests failed more frequently in the FlakeFlagger dataset

than in our Rerun-Repl, suggesting that reproduction would be

faster using the environment that was used to build the dataset.

We conducted Rerun-Repl with 16GB RAM per VM, while

Alshammari et al. reported using 8GB RAM per VM [5]. We

leave it to future work to further study the impact of system

configurations on flaky-test failure reproduction [47].

D. RQ4: Characteristics of configurations

To better understand why FlakeRake is effective, we study

the characteristics of the failure-inducing configurations found

by FlakeRake that reproduced failures from the FlakeFlagger

dataset. We study the TD APIs methods (Section III-A) that

are a part of the failure-inducing configurations.

Overall, we find 270 unique TD APIs that appear in the

reported failure-inducing configurations. These 270 TD APIs

are used in a mean of 201 and a median of 75 failure-

inducing configurations. The most frequently occurring API is

ExitSyncBlock, which represents the exit of a synchronized

block, appearing in 2,706 or 18% of failure-inducing con-

figurations. Table IV shows the top five TD APIs that are

part of failure-inducing configurations. Our supplemental data

archive includes each of the failure-inducing configurations

that FlakeRake produced, in addition to a listing of the 270

unique TD APIs that appeared in those configurations [37].

Our results suggest that if developers are manually reproducing

TD flaky-test failures, inserting sleeps around APIs such as

ExitSyncBlock can help reproduce a failure in 85% of the

tests for which FlakeRake can reproduce a failure.

Of the 2,591 TD APIs in FlakeRake’s pre-configured list

(Section III-A), we find that only 394 TD APIs were used

in the tests we ran. Of these 394 TD APIs, we find that

there are 124 APIs that FlakeRake found, but these APIs

are not part of any minimal failure-inducing configuration.

Future work might study how FlakeRake’s results would be

affected if we remove the 2,197 unused TD APIs and the

124 used but unnecessary APIs, as doing so may simplify

FlakeRake’s search process. Overall, the number of unique

sleepyLines (call sites to TD APIs) invoked by any given

test is on average 76.33. Manually investigating all of those

call sites to understand whether they are related to a flaky-

test failure can be incredibly time consuming. FlakeRake

automates this process, generating minimized failure-inducing

configurations. Our findings suggest that developers looking

for a quick-fix before deploying FlakeRake might first try to

insert sleeps around some of the top TD APIs in Table IV,

such as ExitSyncBlock.

Beyond looking at statistics of individual TD APIs, we also

study how often two APIs occur together (i.e., they both can

independently reliably reproduce the same test failure). By

understanding which APIs occur together, developers or tools

can better prioritize which APIs to explore, depending on the

APIs that have been explored already. Table V shows the five

pairs of APIs from Table IV with the highest correlation score.

With a correlation of 1, we find that ByteBuffer.allocate and

ByteBuffer.array can always be interchanged — the same set

of test failures can be reproduced by sleeping at both or just

one of these API calls. Based on the failures observed and

description of these methods, we find that they tend to co-

occur in the same basic block. Hence, sleeping at one may

have comparable effects to sleeping at the other.

To better understand some of the less obviously correlated

pairs, we manually inspected the failures of one pair: Sys-

tem.currentTimeMillis and Thread.currentThread. We find that

these two APIs are a part of failure-inducing configurations

for 199 test failures. Of these 199 failures, we find that 53%

of these failures are because FlakeRake slept in a logging

framework (the LoggingEvent class from log4j [48]) used

by the test and code under test. These failures originate from

tests belonging to 14 different projects. When we further

inspect, we find that the failures are likely unrelated to these

APIs specifically, but the failures occur because the tests

expect logging to only take some limited amount of time.

This finding suggests that many flaky tests may be timing-

dependent because they depend on asynchronous code (e.g.,

logging events) unrelated to the test code or code under test.

In the future, we can optimize FlakeRake to look for certain

library dependencies instead of just a pre-configured list of

APIs found from searching in the standard JDK. Alternatively,

future work can consider how to automatically refine this list

for specific developers and their projects.

V. DISCUSSION AND THREATS TO VALIDITY

A. When and How to use FlakeRake

Many companies have management systems for dealing

with flaky tests [8], [28], [49], [50] (e.g., Microsoft uses

Flakes [28] to keep track of flaky tests), suppress their failures

during continuous integration, and report flaky-test failures to
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developers to be fixed later. When developers do have time

to debug and fix flaky tests, they need to first reproduce

the flaky-test failures, which is essential to debugging [31],

[45]. Based on our findings, we suggest that developers at-

tempting to reproduce flaky-test failures follow this workflow:

1) Determine if the test is TD or OD: run FlakeRake (to

detect TD failures) and OD detection tools (to detect OD

failures). Both of these tools are fully automated, and if they

succeed, will produce a script to deterministically reproduce

that failure. 2) As automated tools run in the background,

re-run the test in isolation roughly six times. Continue to use

isolated reruns until the test is sufficiently debugged and fixed.

Our reproduction attempts found that isolation is not very

effective at reproducing a failure even once (§IV-A), but when

it can reproduce failures, isolation is efficient at doing so for

a few failures (§IV-C). 3) If more failures are needed and the

automated tools have produced a reproduction script, switch

to the script to more reliably reproduce failures.

Our preliminary results suggest that FlakeRake can be

useful not only for reproducing a flaky-test failure, but also

for repairing flakiness. Specifically, prior work [17], [28] has

investigated the use of delay injection for reducing flakiness,

but the work often required rerunning tests many times to

identify the delays needed to reduce flakiness. FlakeRake can

be used to reduce the cost of prior work by having FlakeRake

insert delays to reliably reproduce flaky-test failures so that

prior work can more quickly derive the fix needed to reduce

flakiness. Once a fix is found, there is no need for FlakeRake

to insert delays anymore. We evaluate this idea by randomly

sampling one test from each module of each project in our

dataset for which FlakeRake could reproduce at least one fail-

ure. Our automated approach uses the flaky test reproduction

script to reliably cause the test to fail and, while using the

script, inserts a delay at each API call. We iteratively increase

the delays until either the test reliably passes (five out of five

trials), or we reach a maximum delay of 10 seconds.

Of the 20 tests that we examined, this prototype approach

suggested a patch for 12 tests. Our prototype was incompatible

with three of the tests and it could not find a patch in the

code under test or test code for the remaining five. We plan

to improve the compatibility of our prototype and expand

its reach into library code in the future. We inspected the

12 patches and observed cases with simple read-after-write

data races where one thread writes to an object while another

thread reads from it. If the first thread does not write to

the object within a certain timeframe, then another thread

throws a NullPointerException or an assertion failure. In

this scenario, FlakeRake finds the thread and location where

inserting delays during the writing of the object would cause

a failure to deterministically occur. The patch to reduce the

flakiness, then, is effectively the dual of the reproduction

script: inserting a delay before reading the object. We used

this information to create patches for 12 tests. The patch for

one test was closed without comments, the patch for another

test was merged, with developers saying “LGTM, thanks”, and

developers suggested changes for the patches of two other

tests. The results of our prototype showcases how FlakeRake

can help not only reproduce failures but also help future work

automatically repair TD flaky tests.

B. Threats to Validity

As FlakeRake modifies code, one important question to

consider is: does FlakeRake reproduce flaky-test failures that

developers care about? There are many ways to unpack

this question, and while perhaps the strongest evidence can

be provided by a user study, we focus our experiments

on reproducing flaky-test failures that prior work observed

without applying any specialized flaky-test detection strat-

egy. For example, the Shaker tool detects concurrency-related

flaky tests by executing tests while placing a very heavy

compute load on the CPU [9]. This approach might reveal

many flaky-test failures that occur in extreme environments,

which might over-approximate the set of flaky-test failures

that would be witnessed by developers running their tests in

a “normal” continuous integration environment. We carefully

design our evaluation to avoid such problems by matching

failure stack traces produced by reproducing flaky-test failures

from a previously-collected dataset. The instrumentation that

FlakeRake introduces for reproducing flaky-test failures may

hide some existing failures. As such, our results may be a

lower-bound on the number of reproducible flaky-test failures.

We were unable to find a dataset besides the FlakeFlagger

dataset [5] that has flaky tests detected in a “normal” running

scenario, along with the stack traces of each failure. While

it was initially concerning to find that we were unable to

reproduce many of the failures in the FlakeFlagger dataset,

our detailed analysis has demonstrated that those failures were

due to platform-related flakiness (e.g., DNS failures and disks

running out of space). This fact about the dataset is supported

by the publicly available failing test reports [51]. Future work

may apply FlakeRake to other projects beyond Java.

Our evaluation results could also be biased due to faults

in FlakeRake, or in the scripts that we wrote to collect and

process the results. We have mitigated these threats through

code review, with each component reviewed by an author of

this paper who did not author that component. In critical steps

of our analysis, we also employed differential testing, with

different authors implementing the same high-level analysis,

and then comparing the final outputs to ensure that analyses

were correctly implemented. To aid future research, we include

the code for FlakeRake, all of our intermediate and final

results, and our evaluation scripts in our data archive [37].

VI. RELATED WORK

Developer Reactions to Flaky Tests. Luo et al. [1], Eck et

al. [31], and Gruber and Fraser [52] performed studies to

better understand developers’ perceptions of flaky tests. They

found that “Concurrency” and “Async Wait” were among

the most common causes of flakiness, accounting for up to

roughly half of all flaky tests studied, and that flaky tests are

time-consuming to debug and repair, because reproducing the

failure can be difficult. Similarly, Habchi et al. [32] and Parry
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et al. [33] performed a study on the sources, impacts, and

mitigation strategies of flaky tests. They found that developers

strongly needed help root causing and reproducing flaky-test

failures. FlakeRake targets exactly this problem by helping

reproduce TD flaky-test failures. FlakeRake could also be ap-

plied as a program understanding aid in debugging and fixing.

Future work might continue on our prototype described in

Section V-A by studying how FlakeRake can help developers

understand, debug, and fix TD flaky-test failures.

Flaky Test Reproduction. Microsoft’s recent FlakeRepro work

aims to reliably reproduce TD flaky-test failures [53]. Whereas

FlakeRake uses lightweight heuristics to determine where

to insert delays, FlakeRepro uses backward slicing. When

FlakeRepro inserts a delay at a code location, all threads

execute that same delay, whereas FlakeRake associates a delay

to both a location and a specific thread. FlakeRepro is not pub-

licly available and only implemented for .NET applications,

and hence, we could not compare empirically to it. While

FlakeRepro was evaluated on 31 concurrency-related tests, we

evaluate FlakeRake on 811 flaky tests of unknown root causes,

and compare its performance to several state-of-the-practice

baseline approaches. Our evaluation also provides many useful

insights, e.g., the duration of delays inserted, the locations

where delays should be inserted, and the characteristics of

the failures that could and could not be reproduced. Other

tests might be flaky due to test-order dependencies, failing if

the order in which tests are run changes. iDFlakies automates

the process of identifying such dependencies and outputting

test orderings that induce (reliable) test failure [3]. We use

iDFlakies to filter out such order-dependent flaky tests, as

FlakeRake is not designed to reproduce their failures. In the

future, we may compare failures reproduced by FlakeRake

with failures induced by flaky-test simulation tools [54].

Flaky Test Detection. Some approaches aim to use machine

learning to classify tests as flaky based on some large training

set of known flaky tests [5], [8], [10], [11], [55]. The baseline

approach to detect flaky tests is to re-run them and to check

whether the outcome changes. Researchers have created tools

that modify the execution environment to make flaky failures

more likely to occur. For example, tools that aim to detect

OD tests modify the order in which tests are run, or perform

dataflow analysis to track data dependencies between tests [4],

[34], [36], [56]. FlakeScanner [57] induces flaky, user-interface

failures by scheduling non-deterministic (async) events such

that each test run explores different event execution orders.

FlakeRake may also be used to detect flaky tests by inserting

delays, and it additionally can also help identify the least

amount of additional sleep needed to more reliably reproduce

flaky-test failures. Shaker aims to detect flaky tests by running

many concurrent “stressor” tasks as tests are run [9]. Similarly,

Terragni et al. proposed to run tests under various resource

constraints [58]. FlakeRake differs from these approaches

in that it can reliably reproduce flaky-test failures without

changing the environment. Malm et al. [17] performed a study

on open-source concurrent programs, identifying the role that

delays play in avoiding flaky-test failures. Future work might

combine the two approaches: using FlakeRake to determine

locations to insert delays, and their work to improve the

robustness of the inserted delays.

Concurrency Bug Detection. “Controlled execution” is a

classical testing methodology for concurrent programs by

exploring different execution interleavings [59]. This approach

has been applied for detecting concurrency bugs in Java appli-

cations [60]–[64] by forcing context switches. In an approach

most comparable to FlakeRake, Eytani and Latvala applied

a minimization approach to select a minimal set of context

switches that reproduce a concurrency bug [65]. FlakeRake

builds on the core concept of controlled execution, differing

from prior work in that (1) we show the importance of in-

serting delays around TD APIs (discussed in Section IV-D) as

opposed to just synchronization primitives, and (2) FlakeRake

inserts timed sleeps, as opposed to prior work that aims to

reproduce data races by inserting calls to Thread.yield().

Prior studies on flaky tests [1], [28], [31] have studied how

often their failures indicate bugs in the test code, code under

test, etc. and found that between 27%-34% of flaky-test fixes

require changing non-test code. FlakeRake aims to reproduce

failures from TD flaky tests, regardless of the bug source, and

can therefore be helpful even in the presence of concurrency

bugs in code under test.

Event race detectors, such as EventRacer [66] and

CAFA [67], profile applications and analyze happens-before

relationships. Not all races can result in incorrect program

behavior, and hence, race detectors can be paired with a testing

system that reproduces the race and observes if the race is

harmful [68]. FlakeRake does not perform any happens-before

analysis to detect which events might race with each other,

instead it directly jumps to this testing-based approach to

identify races that result in flaky-test failures. We also could

not find a race detector for Java that scaled to the complexity of

the projects in our evaluation. Reproducing flaky-test failures

is fundamentally different from traditional concurrency bug

detection, as a flaky-test failure does not necessarily indicate

a concurrency bug in the system-under-test.

VII. CONCLUSION

We attempted to reproduce 1,167 flaky-test failures from

an existing dataset by re-running those tests 10,000 times.

We found that these approaches reproduce flaky-test failures

infrequently (typically occurring in fewer than 10% of execu-

tions), highlighting the difficulty developers face when they

attempt to debug and fix flaky tests. We introduced FlakeRake

to reliably reproduce timing-dependent flaky-test failures and

implemented it for Java applications. We found that FlakeRake

can reproduce more failures than the baseline approaches

and can reproduce failures more reliably. In the future, we

look forward to utilizing FlakeRake to fix flaky tests and

conducting user studies to understand the impact of FlakeRake

on debugging. Our supplemental data archive [37] contains

the source code for FlakeRake, a dataset of timing-dependent

flaky tests, and our experimental results.
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