
Test Scheduling Across Heterogeneous Machines

While Balancing Running Time, Price, and

Flakiness

Hengchen Yuan*, Jiefang Lin*, Wing Lam†, August Shi*

* The University of Texas at Austin

† George Mason University

Oct 10th, 2024 ICSME, Flagstaff, AZ, USA

CCF-2145774

CCF-2217696
CCF-2338287

Background: Regression Testing

Develop New Code

Version Control (SCM)

Commit changes

Fetch Changes

CI Server

Build

Testing
1

2

3

4

SLOW

● Test suite is very large

At Facebook, ~10^4 tests run per change [1]

2[1] Machalica et al., “Predictive Test Selection”, ICSE SEIP 2019.

Test Scheduling

3

Machine

Configurations?

Test Scheduling Example

Test Config 1 (C1) run time Config 2 (C2) run time

t1 9 5

t2 18 12

t3 22 25

Allocate these 3 tests on 2 machines

while minimize the running time:

C1 C1

t1 t2

9s 18s
27s 22s

t3

27s

C2 C2

t1 t2

5s 12s
17s 25s

t3

25s
4

C2 runs

faster!

Test Scheduling Example

What about Price? C1: 0.004 cent (¢)/s, C2: 0.006 cent (¢)/s

C1 C1

t1 t2

9s 18s
27s 22s

t3

(27s + 22s) * 0.004¢ = 0.196¢

C2 C2

t1 t2

5s 12s
17s 25s

t3

(17s + 25s) * 0.006¢ = 0.252¢
5

Test Config 1 (C1) run time Config 2 (C2) run time

t1 9 5

t2 18 12

t3 22 25

C1 is

cheaper!

Test Scheduling Example

What about Flaky tests?

What if consider the fail rate?

How to take it in to consideration?

Flaky test: the test can pass or

fail on the same code version

6

Test Config 1 (C1) run time Config 2 (C2) run time

t1 9 5

t2 (flaky test) 18 (fail rate: 0.2) 12 (fail rate: 0.5)

t3 22 25

Some flaky tests are configuration-affeected!

[1]

[1] Silva, D., Gruber, M., Gokhale, S., Arteca, E., Turcotte, A., d'Amorim, M., ... & Bell, J. (2024). The effects of computational resources on flaky tests. IEEE Transactions on

Software Engineering

Test Scheduling Example

What about Flaky tests?

Expected running time if rerun flaky test until it passes once (up to 10):

For the test with the failrate 0.5, we expect it to be run

Model the flaky-failure rate into running time

times

7

Test Config 1 (C1) run time Config 2 (C2) run time

t1 9 5

t2 (flaky test) 18 * 1.25 = 22.5 12 * 1.94 = 23.28

t3 22 25

Homogeneous

Test Scheduling Example

C2 C1

t1 t2

5s 12s
22s

t3

22s compared to 25s before

What if we use different configurations?

17s

8

Test Config 1 (C1) run time Config 2 (C2) run time

t1 9 5

t2 (flaky test) 18 (fail rate: 0.2) 12 (fail rate: 0.5)

t3 22 25

Test Scheduling Example

C2 C1

t1 t2

5s 12s
22s

t3

17s * 0.006¢ + 22s * 0.004¢ = 0.19¢ compared to 0.196¢ before

17s

What about Price?

9

Heterogeneous

Test Config 1 (C1) run time Config 2 (C2) run time

t1 9 5

t2 (flaky test) 18 (fail rate: 0.2) 12 (fail rate: 0.5)

t3 22 25

Heterogeneous

scheduling is both

cheaper and faster!

C1: 0.004 cent (¢)/s, C2: 0.006 cent (¢)/s

Heterogeneous Test Scheduling

Input

Project’s tests’ info (running attributes on each candidate configuration)

Number of machines needed

Output

A combination of machines with different configurations on which to run tests

An allocation scheme is a mapping of which tests to run on which machine

10

Challenge

Large search space of possible combinations of machines

configurations

C candidate machine configurations, M machines for solution: Close to C^M

possible combinations!

Hard to produce an optimal allocation on a given combination

For each test, there are M ways to allocate it. Close to M^T possible allocation

scheme on a given combination for T tests

11x

Approach: GASearch

Genetic Algorithm → Efficiently search machine configurations list

● Randomly create a population of

solutions (e.g., 50)

○ solution → a sequence of

configurations

● Calculate fitness of each solution in

population

● Create new solutions based on fitness

(e.g., Create offspring by recombining

some parts of parent's representation +

mutating offspring)

12

● Only create offspring using the fittest members of the population

● Evolve several generations until find optimal solution

Approach: GASearch

Fitness-based greedy test allocation

● Fitness is calculated based on the allocation scheme (which machine a test should run on)

● Use a greedy algorithm to iteratively allocate each test on given machines

test X

Fitness: 10 Fitness: 8 Fitness: 12

Fitness = α*Time + (1-α)*Price 13

Evaluation Setup

12 different candidate machine

configurations

* Machine configurations from [1]. “# CPU” with non-

integer value means a core is shared across multiple

tasks [2].

Hourly costs are specified on AWS FRAGATE [3]

24 modules across 22 projects as

baseline

We run each test approximately 300

times on each configuration to collect

running time.

Projects are from Github, the number
of tests goes from 14 to 6267

[1] Silva, D., Gruber, M., Gokhale, S., Arteca, E., Turcotte, A., d'Amorim, M., ... & Bell, J. (2024). The effects of computational resources on flaky tests. IEEE Transactions on Software Engineering.

[2] Runtime options with Memory, CPUs, and GPUs,” https://docs.docker.com/config/containers/resource constraints, 2024.

[3] “AWS Fargate,” https://aws.amazon.com/fargate, 2024.
14

Evaluation Setup - Baselines

Github Baseline

Only use configuration of 2 CPUs and 8 GB RAM, same as GitHub Actions [4]

Smart Baseline

Optimal homogeneous machines using fitness

HOMOGENEOUS Baselines

Random Baseline

Randomly choose heterogeneous machines

[4] “About GitHub-hosted runners,” https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners, 2024. 15

Evaluation - Research Question

RQ1. GASearch compared to baselines on single goal

RQ2. How does the weight factor affect GASearch

RQ3. What is the flaky-failure rate?

RQ4. Comparison against brute-force search?

RQ5. Effectiveness when using less test data?

Please check

our paper for

those details

16

RQ1. Heterogeneous vs Homogeneous Machines

Finding: Heterogeneous generally performs better at optimizing price.

GASearch can find better solution for running time or price over the baselines.

The value shows the ratio of GAsearch result to the baseline result.

17

Optimizing for Price Optimizing for Running Time

Baselines Min. Max. Avg. Min. Max. Avg.

Github 0.04 0.84 0.45 0.33 1.00 0.91

Smart 0.54 1.00 0.84 0.85 1.00 0.99

Random 0.61 1.00 0.88 0.41 1.00 0.83

RQ2. Effect of Fitness Function Weight

Finding: GASearch’s improvement on tradeoff between the two factors is

much better when balancing both within the fitness function.

Fitness = α*Time + (1-α)*Price

18

Conclusion

We propose scheduling tests using heterogeneous machines

We implement GASearch, a genetic algorithm approach to schedule tests

across heterogeneous machines

GASearch provides better running time and price, as well as better

trade-offs against baselines

Website:

Contact: Hengchen Yuan hcyuan@utexas.edu
19

	Slide 1: Test Scheduling Across Heterogeneous Machines While Balancing Running Time, Price, and Flakiness
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

