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Background: Regression Testing
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<> o Test suite is very large
— At Facebook, ~10”4 tests run per change [1]

Develop New Code

[1] Machalica et al., “Predictive Test Selection”, ICSE SEIP 2019. 2



Test Scheduling
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Test Scheduling Example

Allocate these 3 tests on 2 machines
while minimize the running time:
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Test Scheduling Example

What about Price? C1: 0.004 cent (¢)/s, C2: 0.006 cent (¢)/s
Test Config 1 (C1) runtime ﬁ Config 2 (C2) run time ﬁ
tl 9 5
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t3 22 25
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(27s + 22s) * 0.004¢ = 0.196¢

(17s + 25s) * 0.006¢ = 0.252¢




Test Scheduling Example

What about Flaky tests?

Flaky test: the test can pass or
fail on the same code version
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Config 1 (C1) runtime ﬁ

Config 2 (C2) run time ﬁ
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[1] Silva, D., Gruber, M., Gokhale, S., Arteca, E., Turcotte, A., dAmorim, M,, ... & Bell, J. (2024). The effects of computational resources on flaky tests. IEEE Transactions on

Software Engineering

Some flaky tests are configuration-affeected!

[1]

What if consider the fail rate?
How to take it in to consideration?




Test Scheduling Example

What about Flaky tests?
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Test

Config 1 (C1) runtime ﬁ

Config 2 (C2) run time ﬁ

tl 9 5
t2 (flaky test) 18*1.25=22.5 12 *1.94 = 23.28
t3 22 25
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Model the flaky-failure rate into running time

Expected running time if rerun flaky test until it passes once (up to 10):
1

For the test with the failrate 0.5, we expect it to berun 1 + Z 0.5° = 1.94 times
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Test Scheduling Example

What if we use different configurations?

Test

Config 1 (C1) runtime ﬁ

Config 2 (C2) run time ﬁ
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Test Scheduling Example

What about Price?

C1: 0.004 cent (¢)/s, C2: 0.006 cent (¢)/s

Test Config 1 (C1) runtime ﬁ Config 2 (C2) run time ﬁ
tl 9 5
t2 (flaky test) 18 (fail rate: 0.2) 12 (fail rate: 0.5)
t3 22 25
[ 17s 5 19e 22s \
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17s *0.006¢ + 22s * 0.004¢ = 0.19¢ compared to 0.196¢ before



Heterogeneous Test Scheduling

Input
Project’s tests’ info (running attributes on each candidate configuration)

Number of machines needed

Output
A combination of machines with different configurations on which to run tests

An allocation scheme is a mapping of which tests to run on which machine
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Large search space of possible combinations of machines
configurations

C candidate machine configurations, M machines for solution: Close to C*M
possible combinations!

Hard to produce an optimal allocation on a given combination

For each test, there are M ways to allocate it. Close to M*T possible allocation
scheme on a given combination for T tests

11x



Approach: GASearch

e Randomly create a population of

Genetic Algorithm — Efficiently search machine configurations list
solutions (e.g., 50)

- Population Population ‘
' { Conf |
o solution — a sequence of .  conts ECHRDNICHHE)
configurations ——— | ;
e Calculate fitness of each solution in S |
population Population Population
: . g ™\ 4 ™\
e Create new solutions based on fitness Confi  Confs [{GORE7) Conf3 >l confs [Gonfz) Confs
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mutating offspring)
e Only create offspring using the fittest members of the population
e Evolve several generations until find optimal solution
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Approach: GASearch

Fitness-based greedy test allocation

e Fitness is calculated based on the allocation scheme (which machine a test should run on)

e Use a greedy algorithm to iteratively allocate each test on given machines
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Fitness: 12

Fitness = a*Time + (1-a)*Price
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12 different candidate machine ConfigID | # CPU | Mem (GB) | Price (USD/Hour)
configurations Cl 0.1 I 0.002548
Cc2 0.1 2 0003881

_ C3 0.25 2 0.005703

24 modules across 22 projects as C4 0.5 2 0.008739
: Cs 0.5 4 0.011406
baseline c6 I 4 0.017478
C7 | 8 0.022812

We run each test approximately 300 gg : ; gg?jggg
times on each configuration to collect C10 2 16 0.045624
; . Cl1 4 8 0.059244
running time. C12 4 16 0.069912
. . * Machine configurations from [1]. “# CPU” with non-
Projects are from Github, the number integer value means a core is shared across multiple

of tests goes from 14 to 6267 tasks [2]. 5
Hourly costs are specified on AWS FRAGATE [3]

[1] Silva, D., Gruber, M., Gokhale, S., Arteca, E., Turcotte, A., dAmorim, M., ... & Bell, J. (2024). The effects of computational resources on flaky tests. IEEE Transactions on Software Engineering.
[2] Runtime options with Memory, CPUs, and GPUs,” https://docs.docker.com/config/containers/resource constraints, 2024. 14
[3] “AWS Fargate,” https://aws.amazon.com/fargate, 2024.
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Github Baseline
Only use configuration of 2 CPUs and 8 GB RAM, same as GitHub Actions [4]

Smart Baseline "0MOGENEO“S BaSElilleS

Optimal homogeneous machines using fithness

’______~
\______

Random Baseline

Randomly choose heterogeneous machines

[4] “About GitHub-hosted runners,” https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners, 2024. 15



RQ1l. GASearch compared to baselines on single goal

RQ2. How does the weight factor affect GASearch

\
RQ3. What is the flaky-failure rate? I Please check
| our paper for
I
I
I

RQ4. Comparison against brute-force search?

|
l
|
| those details
|
I

RQ5. Effectiveness when using less test data?



The value shows the ratio of GAsearch result to the baseline result.

RQ1.Heterogeneous vs Homogeneous Machines

Optimizing for Price

Optimizing for Running Time

Baselines | Min. Max. Avg. Min. Max. Avg.
Github 0.04 0.84 0.45 0.33 1.00 0.91
Smart 0.54 1.00 0.84 0.85 1.00 0.99
Random 0.61 1.00 0.88 0.41 1.00 0.83

Finding: Heterogeneous generally performs better at optimizing price.
ASearch can find better solution for running time or price over the baselines._I




R0O2. Effect of Fitness Function Weight

Fitness = a*Time + (1-a)*Price

Tradeof f(Ag, Ag) = Timepara(Ac) " Price(Ag)

Timepara(Ap)  Price(Ap)
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Finding: GASearch’s improvement on tradeoff between the two factors is I
much better when balancing both within the fitness function. 18
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We propose scheduling tests using heterogeneous machines

We implement GASearch, a genetic algorithm approach to schedule tests
across heterogeneous machines

GASearch provides better running time and price, as well as better
trade-offs against baselines

Website: . ot-L
X
[

Contact: Hengchen Yuan hcyuan@utexas.edu |
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