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Abstract—Automated regression testing is critical to effective
software development, but it suffers from flaky tests, i.e., tests
that can nondeterministically pass or fail when run on the
same version of code. Conceptually, a flaky test depends on a
component not controlled by the test, and the test’s outcome
depends on the state of the component. For example, a prominent
type of flaky tests is order-dependent (OD) tests, whose results
depend on the unspecified order in which they are run, as a result
of some other test “polluting” shared state. We propose the use
of dynamic invariants to help debug flaky tests. By capturing
the dynamic invariants that hold true during a passing run and
comparing them against those captured during a failing run, we
can isolate the reason for the flaky behavior.

To illustrate the potential of using dynamic invariants for this
task, we implement Takuan, a technique for debugging OD tests
by analyzing differences in dynamic invariants collected in the
passing and failing runs of OD tests. Invariants that hold true in
a passing order but not in a failing order can indicate the “clean”
value of the shared state that makes the test pass. To demonstrate
how these invariants can be used to debug and repair OD tests, we
develop automated approaches that use the invariants to search
for methods that can reset the shared state back to the ‘“clean”
state. Takuan’s ability to analyze polluted external shared state
(e.g., in the file system) allows it to handle cases that prior work
cannot. We conduct a preliminary study of Takuan on existing
OD tests; Takuan provides an average runtime improvement of
88.1% over prior work while handling more OD tests.

I. INTRODUCTION

Automated regression testing helps ensure quality in soft-
ware, but real-world regression tests often include flaky tests,
i.e., tests that can pass and fail on the same version of code.
Flaky test failures mislead developers on the correctness of
their code changes, as their failures can occur regardless of
the changes. Companies have reported development problems
due to flaky tests [1]-[17]. A flaky test can both pass and fail
when it depends on some component (e.g., a file in the file
system) that the test does not control. Conceptually, the state
of this component when the test is passing is different from
its state when it is failing, and understanding these differences
can help developers debug and repair flaky tests.

We propose using dynamic invariants to track state differ-
ences between passing and failing executions. Dynamic invari-

ants are truths about data values (e.g., fields or method return
values) at specific program points (e.g., a method or class)
based on dynamic executions. Prior work Daikon [18] finds
likely dynamic invariants by executing code with different
inputs to observe what relations hold true across executions.

To help debug flaky tests, we aim to capture and compare
passing run invariants to failing run invariants. We are looking
for two sets of invariants for the same data source at the same
program point where one set holds true only during passing
runs while the other set holds true only during failing runs.
We refer to such invariants as problem invariants.

We implement Takuan [19], a tool that identifies problem
invariants for order-dependent (OD) flaky tests in Java projects.
OD tests are a prominent type of flaky tests whose pass/fail
results depend on the order in which they are run [20]-[24],
where the order is not controlled by the test. An OD test fails
when another test runs before and “pollutes” shared state that
the OD test depends upon. The passing and failing runs for
an OD test are tied to specific orders, so Takuan captures and
compares passing-run and failing-run dynamic invariants by
running these specific orders.

We evaluate Takuan on 13 OD tests from 13 projects.
Takuan generates correct problem invariants for six of the 13
tests. We further demonstrate how to use problem invariants
by developing an automated approach to discover or generate
cleaners that can be used to repair OD tests, successfully
finding cleaners for five of the six tests. Prior work [25]
that similarly searches for the information needed to repair
OD tests works only for three of the six OD tests, while
taking longer to execute. Our preliminary results indicate that
problem invariants can help debug and repair more OD tests
while being faster than prior work. The use of invariants
represents a promising direction towards a general solution
to debugging and fixing flaky tests.

II. TAKUAN APPROACH

In this section, we provide some background and related
work on OD tests and then explain how Takuan [19] generates
problem invariants for such tests.



A. Background and Related Work

Shi et al. [26] previously referred to a test as a polluter,
if that test “pollutes” the shared state and makes an OD test
fail. The corresponding OD test that fails is referred to as a
victim. The victim fails in an order where it runs after the
polluter; we refer to this order as the polluter-victim order,
representing the failing execution for the OD test. Meanwhile,
the victim passes in the order where it runs on its own, termed
the victim-only order, representing the passing execution for
the OD test. We classify the pollution caused by the polluter as
either: 1) internal pollution, where the polluted state is within
a test’s runtime environment, i.e., heap memory reached from
static field(s), or 2) external pollution, where the polluted state
is outside a test’s runtime environment, e.g., a polluted file or
database. Zhang et al. [23] previously found in their study on
96 OD tests that 39% of them were due to internal pollution.

In addition, Shi et al. [26] observed the presence of cleaners,
which are tests that, when run between a polluter and victim,
will “clean” the shared polluted state, thereby allowing the
victim to pass. Cleaners work by calling some cleaner methods
that directly clean the polluted state (e.g., setting a polluted
static field to the correct value).

Shi et al. developed iFixFlakies [26] to automatically repair
the two types of OD tests. iFixFlakies is guaranteed to repair
all brittles (tests that fail in isolation but pass when run with
some other test), though such tests represented only 10% of
OD tests in Shi et al.’s dataset. For the other type of tests
(victims), iFixFlakies requires that there is a cleaner in the
existing test suite, which may not always exist. Additionally,
iFixFlakies depends on randomized execution orderings of
the test suite to find cleaners, which can lead to suboptimal
variable performance. Li et al. later proposed ODRepair [25],
which generates cleaners by first searching for the static fields
that lead to internal pollution and then finding potential cleaner
methods of these fields statically using heuristics. ODRepair
uses a test generation technique, Randoop [27], to generate
cleaners. ODRepair could repair only 43% of the evaluated
OD tests, because it can handle only internal pollution.

Our analysis of differences to debug flaky tests is similar to
prior work that compared execution traces for flaky tests [13],
[28]-[30], neural networks [31], and failure explanation [32].
Unlike prior work, Takuan uses dynamic and problem invari-
ants from just one passing and one failing execution to output
information that can be used to debug and repair OD tests.

B. Problem Invariants for OD Tests

Intuitively, one can find the source of a victim’s pollution by
finding differences in the state of the passing and failing exe-
cutions, i.e., running in victim-only and polluter-victim orders,
respectively. We can model the state during the executions by
using dynamic invariants collected during each execution. A
dynamic invariant is an invariant observed to always hold true
during executions, expressed with values of the state captured
during executions. We develop Takuan to capture and compare
the dynamic invariants of passing and failing executions.
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Fig. 1. Overview of the Takuan algorithm.

Figure 1 shows a high-level illustration of Takuan. First,
Takuan instruments the code to collect information about the
test passing and failing. We build this instrumentation using
Daikon [18], a tool for collecting likely dynamic invariants.
At every program point, Daikon can collect the properties
pertaining to the point’s relevant values. For example, at each
program point referencing a static field, Daikon captures the
value of that static field and outputs “statements” relating to
that field’s value, e.g., whether its dynamic type is null and
how its value compares to other fields. Takuan uses Daikon
to generate such statements related to static field values or
method return values. This process creates two invariant lists,
which we then diff: one for the passing victim-only run and
the other for the failing polluter-victim run.

For each program point executed in both the victim-only and
polluter-victim runs, Takuan first removes any invariants at that
point that are true in both executions, as such invariants did not
depend on the result of the test and cannot be used to determine
why the test is flaky. Next, Takuan groups invariants by their
source (the field or method return values), then removes any
groups with invariants originating from only the passing or
only the failing run. Each remaining group is referred to as
a problem invariant, which consists of a list of invariants
uniquely true only in the passing execution and a list of
invariants uniquely true only in the failing execution. Daikon
may generate multiple invariants for a particular program
point (e.g., [ (a == m), (a != null)], where m is an
arbitrary variable) from a single program execution, but the
invariants should not overlap. After processing all groups,
Takuan sorts the problem invariants to bring those with the
largest combined lists of invariants to the top. Takuan then
reports the top problem invariants (we choose the top five for
our evaluation).

III. USING PROBLEM INVARIANTS

To demonstrate the use of Takuan’s problem invariants,
we develop new approaches for finding problem invariants to
debug or repair OD tests. We show the use of polluted static



1 def on_method_start (method,
for field in fields:

start_vals[method+field.name] =

1+ def on_method_end (method, fields):

5 for field in fields:

6 start_val = start_vals[method+field.name]
if victim_invs_match (field.value)

8 and polluter_invs_match (start_val):

9 cleaners.add (method)

fields) :

field.value

Fig. 2. Pseudocode for how Takuan detects static field cleaners.

1 @Test public void
» createDirectoryManagerNoConstructor () {
DirectoryManagerFactory.dmClass

4 = TestDirectoryManager.class; /*...%/

5}

6 @Test

7public void createDefaultDirectoryManagerPath() {

8 Path path=Path.of (System.getProperty ("user.dir"));
9 DirectoryManager dm = DirectoryManagerFactory

10 .createDirectoryManager (path, true); /=«
i}

Fig. 3. Simplified polluter and victim test from Wikidata-Toolkit [33]

field problem invariants to discover existing cleaners and the
use of return value problem invariants to generate cleaners.

A. Cleaners from Polluted Static Field Problem Invariants

Given problem invariants related to static fields, we first

run the polluter and then the other tests under instrumentation
to collect more information. As shown in Figure 2, at the
start of every method execution (on_method_start), for
any static field referenced in the given problem invariants, we
record the field’s value into a map (Line 3). At the end of
every method execution (on_method_end), for any static
field referenced in the problem invariants, we detect a cleaner
if 1) the field’s value at method exit matches the invariants
seen only in the victim-only run, and 2) the field’s value at
the start of the method matches the invariants seen only in
the polluter-victim run (lines 7-8). This check ensures that the
current method correctly cleaned the invariant value. Unlike
iFixFlakies, which finds only cleaner tests that contain some
lines to clean the pollution, our process finds both cleaner tests
and the exact method that cleans the pollution.
Example. Figure 3 illustrates an example of internal pollution
from static fields in the Wikidata-Toolkit project [33]. The pol-
luter is createDirectoryManagerNoConstructor.
When the victim, createDefaultDirectoryManager—
Path, runs, it implicitly assumes the static field dmClass
is an instance of DirectoryManagerImpl. However, the
polluter changes dmClass to be an instance of Test-—
DirectoryManager instead.

When run on this polluter-victim pair, Takuan outputs
the problem invariants shown in Figure 4. We observe that,
while the static field dmClass was always an instance of
DirectoryManagerImpl in the victim-only order (lines 5
and 6), this field can be an instance of TestDirectory-
Manager in the polluter-victim order. Our automated ap-
proach uses this problem invariant to identify both a cleaner
test and cleaner method that directly resets this shared state.

4
5

6

2

4
5

6

DirectoryManagerFactory:: :0OBJECT
pv> dmClass.getType () one of {
"DirectoryManagerFactoryTest$TestDirectoryManager",
"DirectoryManagerImpl" }
.v> dmClass dmClass.getType ()
== "DirectoryManagerImpl"

Fig. 4. Problem invariants outputted by Takuan for the polluter-victim pair
in Figure 3. pv> shows the invariants for the polluter-victim run, while v>
shows the invariants for the victim-only run.

method_to_ret = {}
def on_method_enter(self, method, polutd_method):
method_to_ret [method] = self.call (polutd_method)
def on_method_exit (self, method, polutd_method):
exit_value = self.call (polutd_method)
if method_to_ret[method] != exit_value:
use_randoop_to_find_if_cleaner (method)

Fig. 5. Return value cleaner detection instrumentation.

ODRepair [25] does not generate a cleaner test (or method)
for this example, because the cleaner requires a user-defined
type. While iFixFlakies [26] finds a cleaner test for this
polluter-victim pair, our approach finds the same test 8.79x
faster in the average case and 13.49x faster in the best case.

B. Cleaners from Return Value Problem Invariants

When the problem invariant indicates a polluted return
value, i.e., a method returns different values between the
polluter-victim and victim-only runs, we call the method a
polluted method. We aim to find return value modifiers, which
are methods that can modify the return value of a polluted
method, to generate a cleaner test with these methods. To find
return value modifiers, we instrument each polluted method in
the given problem invariants by adding a call to the polluted
method at the start and end of any method in the polluted
method’s class as shown in Figure 5. Specifically, at the start
of every method execution (on_method_start), we record
what the return value of the polluted method is for the method
that is about to be executed (Line 3). At the end of every
method execution (on_method_end), we again record the
return value of the polluted method for the method that just
executed (Line 5) and check if the return value of a polluted
method changed from the start of the method (Line 6). If the
polluted method’s return value has changed, then we mark the
method that just executed as a return value modifier. After
collecting the return value modifiers, we use Randoop [27] to
generate potential cleaner tests, targeting those return value
modifiers. As ODRepair [25] generates potential cleaner tests
using static fields, which deals with only internal pollution
related OD tests, our approach can help deal with internal and
external pollution related OD tests that are affected by return
values of polluted methods.

Example. We illustrate using an artificial example repre-
senting standard database operations, shown in Figure 6.
The UserQuery class contains three methods to modify a
database: createUser, deleteUser, and countUsers.
The polluter, testCreateUser, creates a user account in
the database, asserting that the new number of users is 1.
The victim, testDeleteUser, creates and deletes a user
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4public class UserQueryTest {

5 @Test public void testCreateUser () {

6 UserQuery.createUser ("BobPolluter");
assertEquals (UserQuery.countUsers (), 1);

8 }

9 @Test public void testDeleteUser() { // victim

10 UserQuery.createUser ("AliceVictim");

1 UserQuery.deleteUser ("AliceVictim");

12 assertEquals (UserQuery.countUsers (),

o >

/ UserQuery.countU Count number of

/ /

0);

Fig. 6. The UserQueryTest class.
com.example.UserQuery.countUsers () :: :EXIT
pv> return == 1
.v> return ==

Fig. 7. Problem invariants outputted by Takuan for the polluter-victim pair
in Figure 6. pv> shows the invariants for the polluter-victim run, while v>
shows the invariants for the victim-only run.

account and then checks whether the number of accounts is
zero. The victim therefore implicitly assumes that the database
has no users before starting. However, the polluter breaks this
assumption by adding a user without clearing the table. This
database table is external to Java heap memory, meaning other
approaches, like ODRepair, that analyze only heap memory do
not work. Meanwhile, iFixFlakies cannot find cleaner tests,
simply because the test suite does not contain any. Figure 7
shows the output of running Takuan to find problem invariants
in this situation. It shows that the return value of the polluted
method, countUsers (), was always 0 in the victim-only
order, while it was always 1 in the polluter-victim order. We
then apply an automated test generation tool, Randoop [27], to
find return value modifiers that can repair the OD test. Takuan
finds that deleteUser is a return value modifier, and it can
change the polluted method, countUsers (), to return O in
the polluter-victim order, thereby allowing the victim to pass.

IV. PRELIMINARY RESULTS

We randomly selected one victim from each of the 22
projects used in Wei et al.’s prior work [34], [35]. Due to
compatibility issues with Daikon, we are unable to run five
victims. Three other victims had out of memory issues. Finally,
one victim comes from a project that no longer compiles.
Takuan detects at least one valid problem invariant for six
of the remaining 13 victims. To reduce Takuan’s performance
overhead, we configure it to instrument only the module in
which the victim is in. Our manual inspection finds that Takuan
may not detect valid problem invariants for all 13 victims, in
part because some victims’ pollution is in a different module
than the victim. For the six victims with problem invariants,
we then use Takuan to find cleaners for five of them, following
the approach in Section III-A.

Table I shows the preliminary results of using Takuan and
the automated cleaner finding approaches on our evaluation
OD tests. The “Takuan” column shows the average time
Takuan takes to generate invariants and find problem invariants

TABLE I
RUNTIME IN SECONDS WHEN FINDING CLEANERS ON A M1 MACBOOK
PRO WITH 16GB RAM AND 8 CORES.

Project Takuan Cleaner-F  Total | ODRepair | Imp. %
http-request 10.1 24 12.6 107.9 88.4
marine-api 24.6 24 27.0 101.8 73.5
wikidata-toolkit 1.4 1.2 2.6 - -
cukes 8.9 1.2 10.1 - -
openpojo 2.0 9.0 10.9 107.5 89.8
Average 94 3.2 12.6 105.7 88.1

for a given victim and corresponding polluter. The “Cleaner-
F” column represents the time to find the cleaners given the
problem invariants, while “Total” shows the combined, total
time. The column “ODRepair” shows the average time for
ODRepair to run for each victim. The last column shows the
percentage improvement of Takuan’s runtime over ODRepair.

The average total runtime of Takuan is 12.6 seconds. The
average time to find the first cleaner using ODRepair is 105.7
seconds, giving Takuan an average performance improvement
of 88.1%. Takuan also resolves two additional OD tests that
ODRepair did not, due to the high time cost that ODRepair
needs and a deserialization issue with ODRepair.

V. CONCLUSION AND FUTURE WORK

We proposed Takuan [19] to help debug and repair OD
tests by identifying problem invariants. Our preliminary results
support our intuition that problem invariants can be used
to discover the source of pollution, regardless of whether it
is internal (e.g., static fields) or external (e.g., a database).
We also show how automated approaches can use problem
invariants to detect and create cleaners for OD tests, allowing
for automatic repair and an improved debugging experience.

We find that the limitations of Takuan include the perfor-
mance cost of dynamic invariant generation, project compati-
bility with Daikon, and the existence of noise in the output
of likely invariants. We plan to address these limitations
in future work by optimizing invariant generation, exploring
the use of other invariant generation tools or other types
of dynamic specifications, and utilizing different invariant
filtering strategies. Further, we believe the high-level ideas
behind Takuan are extensible to other categories of flaky tests,
beyond OD tests [20], [30], [36]-[38], as long as we can
extract information from passing and failing runs. Problem
invariants appear likely to be effective in addressing problems
of other flaky tests that have yet to receive as much attention
in the community. In future research, we plan to extend the
Takuan approach to work for additional types of flaky tests,
including extensions to other programming languages (e.g.
C++). Following these extensions, we plan to conduct a large-
scale evaluation of the technique as a basis for future work.
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