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Abstract—Automated regression testing is critical to effective
software development, but it suffers from flaky tests, i.e., tests
that can nondeterministically pass or fail when run on the
same version of code. Conceptually, a flaky test depends on a
component not controlled by the test, and the test’s outcome
depends on the state of the component. For example, a prominent
type of flaky tests is order-dependent (OD) tests, whose results
depend on the unspecified order in which they are run, as a result
of some other test “polluting” shared state. We propose the use
of dynamic invariants to help debug flaky tests. By capturing
the dynamic invariants that hold true during a passing run and
comparing them against those captured during a failing run, we
can isolate the reason for the flaky behavior.

To illustrate the potential of using dynamic invariants for this
task, we implement Takuan, a technique for debugging OD tests
by analyzing differences in dynamic invariants collected in the
passing and failing runs of OD tests. Invariants that hold true in
a passing order but not in a failing order can indicate the “clean”
value of the shared state that makes the test pass. To demonstrate
how these invariants can be used to debug and repair OD tests, we
develop automated approaches that use the invariants to search
for methods that can reset the shared state back to the “clean”
state. Takuan’s ability to analyze polluted external shared state
(e.g., in the file system) allows it to handle cases that prior work
cannot. We conduct a preliminary study of Takuan on existing
OD tests; Takuan provides an average runtime improvement of
88.1% over prior work while handling more OD tests.

I. INTRODUCTION

Automated regression testing helps ensure quality in soft-

ware, but real-world regression tests often include flaky tests,

i.e., tests that can pass and fail on the same version of code.

Flaky test failures mislead developers on the correctness of

their code changes, as their failures can occur regardless of

the changes. Companies have reported development problems

due to flaky tests [1]–[17]. A flaky test can both pass and fail

when it depends on some component (e.g., a file in the file

system) that the test does not control. Conceptually, the state

of this component when the test is passing is different from

its state when it is failing, and understanding these differences

can help developers debug and repair flaky tests.

We propose using dynamic invariants to track state differ-

ences between passing and failing executions. Dynamic invari-

ants are truths about data values (e.g., fields or method return

values) at specific program points (e.g., a method or class)

based on dynamic executions. Prior work Daikon [18] finds

likely dynamic invariants by executing code with different

inputs to observe what relations hold true across executions.

To help debug flaky tests, we aim to capture and compare

passing run invariants to failing run invariants. We are looking

for two sets of invariants for the same data source at the same

program point where one set holds true only during passing

runs while the other set holds true only during failing runs.

We refer to such invariants as problem invariants.

We implement Takuan [19], a tool that identifies problem

invariants for order-dependent (OD) flaky tests in Java projects.

OD tests are a prominent type of flaky tests whose pass/fail

results depend on the order in which they are run [20]–[24],

where the order is not controlled by the test. An OD test fails

when another test runs before and “pollutes” shared state that

the OD test depends upon. The passing and failing runs for

an OD test are tied to specific orders, so Takuan captures and

compares passing-run and failing-run dynamic invariants by

running these specific orders.

We evaluate Takuan on 13 OD tests from 13 projects.

Takuan generates correct problem invariants for six of the 13

tests. We further demonstrate how to use problem invariants

by developing an automated approach to discover or generate

cleaners that can be used to repair OD tests, successfully

finding cleaners for five of the six tests. Prior work [25]

that similarly searches for the information needed to repair

OD tests works only for three of the six OD tests, while

taking longer to execute. Our preliminary results indicate that

problem invariants can help debug and repair more OD tests

while being faster than prior work. The use of invariants

represents a promising direction towards a general solution

to debugging and fixing flaky tests.

II. TAKUAN APPROACH

In this section, we provide some background and related

work on OD tests and then explain how Takuan [19] generates

problem invariants for such tests.



A. Background and Related Work

Shi et al. [26] previously referred to a test as a polluter,

if that test “pollutes” the shared state and makes an OD test

fail. The corresponding OD test that fails is referred to as a

victim. The victim fails in an order where it runs after the

polluter; we refer to this order as the polluter-victim order,

representing the failing execution for the OD test. Meanwhile,

the victim passes in the order where it runs on its own, termed

the victim-only order, representing the passing execution for

the OD test. We classify the pollution caused by the polluter as

either: 1) internal pollution, where the polluted state is within

a test’s runtime environment, i.e., heap memory reached from

static field(s), or 2) external pollution, where the polluted state

is outside a test’s runtime environment, e.g., a polluted file or

database. Zhang et al. [23] previously found in their study on

96 OD tests that 39% of them were due to internal pollution.

In addition, Shi et al. [26] observed the presence of cleaners,

which are tests that, when run between a polluter and victim,

will “clean” the shared polluted state, thereby allowing the

victim to pass. Cleaners work by calling some cleaner methods

that directly clean the polluted state (e.g., setting a polluted

static field to the correct value).

Shi et al. developed iFixFlakies [26] to automatically repair

the two types of OD tests. iFixFlakies is guaranteed to repair

all brittles (tests that fail in isolation but pass when run with

some other test), though such tests represented only 10% of

OD tests in Shi et al.’s dataset. For the other type of tests

(victims), iFixFlakies requires that there is a cleaner in the

existing test suite, which may not always exist. Additionally,

iFixFlakies depends on randomized execution orderings of

the test suite to find cleaners, which can lead to suboptimal

variable performance. Li et al. later proposed ODRepair [25],

which generates cleaners by first searching for the static fields

that lead to internal pollution and then finding potential cleaner

methods of these fields statically using heuristics. ODRepair

uses a test generation technique, Randoop [27], to generate

cleaners. ODRepair could repair only 43% of the evaluated

OD tests, because it can handle only internal pollution.

Our analysis of differences to debug flaky tests is similar to

prior work that compared execution traces for flaky tests [13],

[28]–[30], neural networks [31], and failure explanation [32].

Unlike prior work, Takuan uses dynamic and problem invari-

ants from just one passing and one failing execution to output

information that can be used to debug and repair OD tests.

B. Problem Invariants for OD Tests

Intuitively, one can find the source of a victim’s pollution by

finding differences in the state of the passing and failing exe-

cutions, i.e., running in victim-only and polluter-victim orders,

respectively. We can model the state during the executions by

using dynamic invariants collected during each execution. A

dynamic invariant is an invariant observed to always hold true

during executions, expressed with values of the state captured

during executions. We develop Takuan to capture and compare

the dynamic invariants of passing and failing executions.

Fig. 1. Overview of the Takuan algorithm.

Figure 1 shows a high-level illustration of Takuan. First,

Takuan instruments the code to collect information about the

test passing and failing. We build this instrumentation using

Daikon [18], a tool for collecting likely dynamic invariants.

At every program point, Daikon can collect the properties

pertaining to the point’s relevant values. For example, at each

program point referencing a static field, Daikon captures the

value of that static field and outputs “statements” relating to

that field’s value, e.g., whether its dynamic type is null and

how its value compares to other fields. Takuan uses Daikon

to generate such statements related to static field values or

method return values. This process creates two invariant lists,

which we then diff: one for the passing victim-only run and

the other for the failing polluter-victim run.

For each program point executed in both the victim-only and

polluter-victim runs, Takuan first removes any invariants at that

point that are true in both executions, as such invariants did not

depend on the result of the test and cannot be used to determine

why the test is flaky. Next, Takuan groups invariants by their

source (the field or method return values), then removes any

groups with invariants originating from only the passing or

only the failing run. Each remaining group is referred to as

a problem invariant, which consists of a list of invariants

uniquely true only in the passing execution and a list of

invariants uniquely true only in the failing execution. Daikon

may generate multiple invariants for a particular program

point (e.g., [(a == m), (a != null)], where m is an

arbitrary variable) from a single program execution, but the

invariants should not overlap. After processing all groups,

Takuan sorts the problem invariants to bring those with the

largest combined lists of invariants to the top. Takuan then

reports the top problem invariants (we choose the top five for

our evaluation).

III. USING PROBLEM INVARIANTS

To demonstrate the use of Takuan’s problem invariants,

we develop new approaches for finding problem invariants to

debug or repair OD tests. We show the use of polluted static



1 def on_method_start(method, fields):

2 for field in fields:

3 start_vals[method+field.name] = field.value

4 def on_method_end(method, fields):

5 for field in fields:

6 start_val = start_vals[method+field.name]

7 if victim_invs_match(field.value)

8 and polluter_invs_match(start_val):

9 cleaners.add(method)

Fig. 2. Pseudocode for how Takuan detects static field cleaners.

1 @Test public void

2 createDirectoryManagerNoConstructor() {

3 DirectoryManagerFactory.dmClass

4 = TestDirectoryManager.class; /*...*/

5 }

6 @Test

7 public void createDefaultDirectoryManagerPath() {

8 Path path=Path.of(System.getProperty("user.dir"));

9 DirectoryManager dm = DirectoryManagerFactory

10 .createDirectoryManager(path, true); /*...*/

11 }

Fig. 3. Simplified polluter and victim test from Wikidata-Toolkit [33]

field problem invariants to discover existing cleaners and the

use of return value problem invariants to generate cleaners.

A. Cleaners from Polluted Static Field Problem Invariants

Given problem invariants related to static fields, we first

run the polluter and then the other tests under instrumentation

to collect more information. As shown in Figure 2, at the

start of every method execution (on_method_start), for

any static field referenced in the given problem invariants, we

record the field’s value into a map (Line 3). At the end of

every method execution (on_method_end), for any static

field referenced in the problem invariants, we detect a cleaner

if 1) the field’s value at method exit matches the invariants

seen only in the victim-only run, and 2) the field’s value at

the start of the method matches the invariants seen only in

the polluter-victim run (lines 7-8). This check ensures that the

current method correctly cleaned the invariant value. Unlike

iFixFlakies, which finds only cleaner tests that contain some

lines to clean the pollution, our process finds both cleaner tests

and the exact method that cleans the pollution.

Example. Figure 3 illustrates an example of internal pollution

from static fields in the Wikidata-Toolkit project [33]. The pol-

luter is createDirectoryManagerNoConstructor.

When the victim, createDefaultDirectoryManager-

Path, runs, it implicitly assumes the static field dmClass

is an instance of DirectoryManagerImpl. However, the

polluter changes dmClass to be an instance of Test-

DirectoryManager instead.

When run on this polluter-victim pair, Takuan outputs

the problem invariants shown in Figure 4. We observe that,

while the static field dmClass was always an instance of

DirectoryManagerImpl in the victim-only order (lines 5

and 6), this field can be an instance of TestDirectory-

Manager in the polluter-victim order. Our automated ap-

proach uses this problem invariant to identify both a cleaner

test and cleaner method that directly resets this shared state.

1 DirectoryManagerFactory:::OBJECT

2 pv> dmClass.getType() one of {

3 "DirectoryManagerFactoryTest$TestDirectoryManager",

4 "DirectoryManagerImpl" }

5 .v> dmClass dmClass.getType()

6 == "DirectoryManagerImpl"

Fig. 4. Problem invariants outputted by Takuan for the polluter-victim pair
in Figure 3. pv> shows the invariants for the polluter-victim run, while v>

shows the invariants for the victim-only run.

1 method_to_ret = {}

2 def on_method_enter(self, method, polutd_method):

3 method_to_ret[method] = self.call(polutd_method)

4 def on_method_exit(self, method, polutd_method):

5 exit_value = self.call(polutd_method)

6 if method_to_ret[method] != exit_value:

7 use_randoop_to_find_if_cleaner(method)

Fig. 5. Return value cleaner detection instrumentation.

ODRepair [25] does not generate a cleaner test (or method)

for this example, because the cleaner requires a user-defined

type. While iFixFlakies [26] finds a cleaner test for this

polluter-victim pair, our approach finds the same test 8.79x

faster in the average case and 13.49x faster in the best case.

B. Cleaners from Return Value Problem Invariants

When the problem invariant indicates a polluted return

value, i.e., a method returns different values between the

polluter-victim and victim-only runs, we call the method a

polluted method. We aim to find return value modifiers, which

are methods that can modify the return value of a polluted

method, to generate a cleaner test with these methods. To find

return value modifiers, we instrument each polluted method in

the given problem invariants by adding a call to the polluted

method at the start and end of any method in the polluted

method’s class as shown in Figure 5. Specifically, at the start

of every method execution (on_method_start), we record

what the return value of the polluted method is for the method

that is about to be executed (Line 3). At the end of every

method execution (on_method_end), we again record the

return value of the polluted method for the method that just

executed (Line 5) and check if the return value of a polluted

method changed from the start of the method (Line 6). If the

polluted method’s return value has changed, then we mark the

method that just executed as a return value modifier. After

collecting the return value modifiers, we use Randoop [27] to

generate potential cleaner tests, targeting those return value

modifiers. As ODRepair [25] generates potential cleaner tests

using static fields, which deals with only internal pollution

related OD tests, our approach can help deal with internal and

external pollution related OD tests that are affected by return

values of polluted methods.

Example. We illustrate using an artificial example repre-

senting standard database operations, shown in Figure 6.

The UserQuery class contains three methods to modify a

database: createUser, deleteUser, and countUsers.

The polluter, testCreateUser, creates a user account in

the database, asserting that the new number of users is 1.

The victim, testDeleteUser, creates and deletes a user



1 // UserQuery.createUser(String name): Add user

2 // UserQuery.deleteUser(String name): Delete user

3 // UserQuery.countUsers(): Count number of users

4 public class UserQueryTest {

5 @Test public void testCreateUser() { // polluter

6 UserQuery.createUser("BobPolluter");

7 assertEquals(UserQuery.countUsers(), 1);

8 }

9 @Test public void testDeleteUser() { // victim

10 UserQuery.createUser("AliceVictim");

11 UserQuery.deleteUser("AliceVictim");

12 assertEquals(UserQuery.countUsers(), 0);

13 }

14 }

Fig. 6. The UserQueryTest class.

1 com.example.UserQuery.countUsers():::EXIT

2 pv> return == 1

3 .v> return == 0

Fig. 7. Problem invariants outputted by Takuan for the polluter-victim pair
in Figure 6. pv> shows the invariants for the polluter-victim run, while v>

shows the invariants for the victim-only run.

account and then checks whether the number of accounts is

zero. The victim therefore implicitly assumes that the database

has no users before starting. However, the polluter breaks this

assumption by adding a user without clearing the table. This

database table is external to Java heap memory, meaning other

approaches, like ODRepair, that analyze only heap memory do

not work. Meanwhile, iFixFlakies cannot find cleaner tests,

simply because the test suite does not contain any. Figure 7

shows the output of running Takuan to find problem invariants

in this situation. It shows that the return value of the polluted

method, countUsers(), was always 0 in the victim-only

order, while it was always 1 in the polluter-victim order. We

then apply an automated test generation tool, Randoop [27], to

find return value modifiers that can repair the OD test. Takuan

finds that deleteUser is a return value modifier, and it can

change the polluted method, countUsers(), to return 0 in

the polluter-victim order, thereby allowing the victim to pass.

IV. PRELIMINARY RESULTS

We randomly selected one victim from each of the 22

projects used in Wei et al.’s prior work [34], [35]. Due to

compatibility issues with Daikon, we are unable to run five

victims. Three other victims had out of memory issues. Finally,

one victim comes from a project that no longer compiles.

Takuan detects at least one valid problem invariant for six

of the remaining 13 victims. To reduce Takuan’s performance

overhead, we configure it to instrument only the module in

which the victim is in. Our manual inspection finds that Takuan

may not detect valid problem invariants for all 13 victims, in

part because some victims’ pollution is in a different module

than the victim. For the six victims with problem invariants,

we then use Takuan to find cleaners for five of them, following

the approach in Section III-A.

Table I shows the preliminary results of using Takuan and

the automated cleaner finding approaches on our evaluation

OD tests. The “Takuan” column shows the average time

Takuan takes to generate invariants and find problem invariants

TABLE I
RUNTIME IN SECONDS WHEN FINDING CLEANERS ON A M1 MACBOOK

PRO WITH 16GB RAM AND 8 CORES.

Project Takuan Cleaner-F Total ODRepair Imp. %

http-request 10.1 2.4 12.6 107.9 88.4
marine-api 24.6 2.4 27.0 101.8 73.5
wikidata-toolkit 1.4 1.2 2.6 - -
cukes 8.9 1.2 10.1 - -
openpojo 2.0 9.0 10.9 107.5 89.8

Average 9.4 3.2 12.6 105.7 88.1

for a given victim and corresponding polluter. The “Cleaner-

F” column represents the time to find the cleaners given the

problem invariants, while “Total” shows the combined, total

time. The column “ODRepair” shows the average time for

ODRepair to run for each victim. The last column shows the

percentage improvement of Takuan’s runtime over ODRepair.

The average total runtime of Takuan is 12.6 seconds. The

average time to find the first cleaner using ODRepair is 105.7

seconds, giving Takuan an average performance improvement

of 88.1%. Takuan also resolves two additional OD tests that

ODRepair did not, due to the high time cost that ODRepair

needs and a deserialization issue with ODRepair.

V. CONCLUSION AND FUTURE WORK

We proposed Takuan [19] to help debug and repair OD

tests by identifying problem invariants. Our preliminary results

support our intuition that problem invariants can be used

to discover the source of pollution, regardless of whether it

is internal (e.g., static fields) or external (e.g., a database).

We also show how automated approaches can use problem

invariants to detect and create cleaners for OD tests, allowing

for automatic repair and an improved debugging experience.

We find that the limitations of Takuan include the perfor-

mance cost of dynamic invariant generation, project compati-

bility with Daikon, and the existence of noise in the output

of likely invariants. We plan to address these limitations

in future work by optimizing invariant generation, exploring

the use of other invariant generation tools or other types

of dynamic specifications, and utilizing different invariant

filtering strategies. Further, we believe the high-level ideas

behind Takuan are extensible to other categories of flaky tests,

beyond OD tests [20], [30], [36]–[38], as long as we can

extract information from passing and failing runs. Problem

invariants appear likely to be effective in addressing problems

of other flaky tests that have yet to receive as much attention

in the community. In future research, we plan to extend the

Takuan approach to work for additional types of flaky tests,

including extensions to other programming languages (e.g.

C++). Following these extensions, we plan to conduct a large-

scale evaluation of the technique as a basis for future work.
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