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Abstract—One major challenge of regression testing are flaky
tests, i.e., tests that may pass in one run but fail in another
run for the same version of code. One prominent category of
flaky tests is order-dependent (OD) flaky tests, which can pass
or fail depending on the order in which the tests are run. To
help developers debug and fix OD tests, prior work attempts
to automatically find OD-relevant tests, which are tests that
determine whether an OD test passes or fails, depending on
whether the OD-relevant tests run before or after the OD test.
Prior work found OD-relevant tests by running different tests
before the OD test, without considering each test’s likelihood of
being OD-relevant tests.

We propose RankF to rank tests in order of likelihood of being
OD-relevant tests, finding the first OD-relevant test for a given
OD test more quickly. We propose two ranking approaches, each
requiring different information. Our first approach, RankFL,
relies on training a large-language model to analyze test code.
Our second approach, RankFO , relies on analyzing prior test-
order execution information. We evaluate our approaches on 155
OD tests across 24 open-source projects. We compare RankF
against baselines from prior work, where we find that RankF
finds the first OD-relevant test for an OD test faster than the
best baseline; depending on the type of OD-relevant test, RankF
takes 9.4 to 14.1 seconds on median, compared to the baseline’s
34.2 to 118.5 seconds on median.

I. INTRODUCTION

Software developers rely on regression testing, the process
of rerunning tests after every code change, to check that
code changes do not introduce faults [1]. However, regression
testing suffers from the presence of flaky tests, which are tests
that can pass and fail for the same version of code [2]. A
flaky-test failure after a change can mislead developers into
thinking they introduced a fault in their changes when instead
the test could have failed even without those changes. Several
studies [2]–[4] found various reasons for flaky tests, with
one prominent reason being test-order dependency. Order-
dependent flaky tests (OD tests) are tests that can pass or fail
due to the order in which the tests are run. OD test failures
occur when tests depend on some global state, such as static
variables, the file system, databases, network, etc. [5], that
other tests modify. Developers cannot always enforce a specific
test-order in which the OD tests pass, especially if they rely
on regression testing techniques, such as test prioritization,
selection, and parallelization, which purposefully reorder or
run subsets of tests to speed up regression testing [1, 6].

To repair OD tests, recent prior work [7, 8] relies on OD-
relevant tests, i.e., the tests that modify the global state that the
OD test depends on. Finding OD-relevant tests has three main
purposes: (1) enable the use of automatic repair techniques [7,
9], (2) enable the use of mitigation techniques [6], and (3) help
developers debug and reproduce OD-test failures. Shi et al. [7]
proposed the use of delta-debugging [10] to find OD-relevant
tests. Follow-up work [11]–[13] proposed finding OD-relevant
tests by running pairs of tests one-by-one (OBO), where each
test is paired before the OD test. Both approaches can be costly
as they rerun tests many times.

We propose RankF, a means to rank tests based on their
likelihood to be OD-relevant tests for a given OD test. The
goal is to rank true OD-relevant tests higher than non-OD-
relevant tests, so fewer tests need to be run before finding an
OD-relevant test. We propose two different approaches.

Our first approach, RankFL, analyzes only the test-method
body, i.e., the code directly under a test method, to compute
likelihood. RankFL fine-tunes a pre-trained large-language
model (LLM), BigBird [14], to take as input the test-method
bodies of a potential OD-relevant test and the OD test to
then output a score indicating the likelihood of the potential
test being an actual OD-relevant test for the OD test. We
train the model on a large dataset of known OD tests and
their corresponding OD-relevant tests [12, 15]. While prior
work used LLMs to predict which tests are flaky [16], none
has explored using LLMs to predict OD-relevant tests, which
requires analyzing the relationship between two or more tests.

Our second approach, RankFO, analyzes the test results
of previous test-order execution information to compute the
likelihood of each test being OD-relevant tests. Developers
may already have several different test-orders that they ran
before, either as part of regression testing, where tests were
run in different test-orders in the past [17], or as part of an OD
test detection process that runs tests in different test-orders to
search for existing OD tests [5,18]–[20]. RankFO uses several
heuristics to compute likelihood scores for each test based on
how often each one appears before the OD test in the passing
test-orders and failing test-orders as well as how far away each
test is from the OD test in these test-orders.

Both RankFL and RankFO have the same goal of ranking
tests based on likelihood of being OD-relevant tests. However,
the approaches represent different use scenarios. RankFO is



useful if developers already have some results from different
test-orders. If developers do not have such information, they
can use RankFL, which operates just on test code.

We evaluate RankFL and RankFO on a dataset of known
OD tests from prior work [12]. This dataset contains OD tests
along with the corresponding OD-relevant tests for each OD
test. In total, there are 155 OD tests from 34 modules across 24
open-source projects in this dataset, and we use it to measure
how highly each approach ranks a true OD-relevant test. To
evaluate efficiency in an actual use scenario, we measure how
long the approaches take to both rank tests and then run them
in a ranked order to confirm finding a true OD-relevant test. We
compare against prior baselines for finding OD-relevant tests,
OBO [11]–[13], and delta-debugging [7]. For the majority of
our subjects, either RankFL or RankFO is faster than all of
the baselines at finding OD-relevant tests – achieving a range
of median times, depending on type of OD-relevant test, from
9.4 to 14.1 seconds, compared to the 34.2 to 118.5 seconds
achieved by the baselines.

We make the following contributions in this paper:
• We propose two new approaches for ranking tests based

on their likelihood of being OD-relevant tests for an OD
test: (1) RankFL uses an LLM to rank tests based on test
code, and (2) RankFO analyzes test results from different
test-orders to rank tests based on their positions relative
to a given OD test in those test-orders. Developers can
find OD-relevant tests faster using these rankings.

• Our evaluation shows our approaches are faster at finding
OD-relevant tests than prior baselines. Our implementa-
tions, scripts, and data are publicly available [21].

II. BACKGROUND

An order-dependent flaky test (OD test) is a flaky test whose
outcome depends on the test-order in which it is run [2,5,18].
We refer to a test-order in which the OD test passes as a
passing test-order and a test-order in which it fails as a failing
test-order. The reason that an OD test fails in a failing test-
order is because it shares some global state with some other
test, where that other test either (1) runs before the OD test in
the failing test-order and “pollutes” the shared state, leading
to the OD test to fail when run afterwards, or (2) runs after
the OD test in the failing test-order and is not setting up a
shared state required by the OD test to pass. Shi et al. provided
names for these different types of OD tests as well as their
corresponding OD-relevant tests [7]. An OD test that passes
when run on its own but fails when run after some other test is
a victim; the test that “pollutes” the shared state in the failing
test-order of a victim is a polluter. An OD test that fails when
run on its own is a brittle. A brittle fails when run on its
own because it relies on some other test to set up its initial
state; this other test is a state-setter, and a brittle will pass
when run after it. Finally, Shi et al. found that, for the case
of victims and polluters, there are other tests in the test suite
that can actually reset the shared state when these other tests
are run after the polluter but before the victim, resulting in the
victim passing. These other tests are referred to as cleaners

for a polluter-victim pair. Shi et al. relied on these cleaners
to automatically repair victims [7]. We collectively refer to
polluters, state-setters, and cleaners as OD-relevant tests.

Shi et al. previously proposed iFixFlakies [7], which can
find OD-relevant tests. Given a victim/brittle and a fail-
ing/passing test-order for the test, respectively, iFixFlakies
identifies a polluter/state-setter for the OD test, respectively,
via delta-debugging [10] the tests that come before the OD
test in the test-order. (An OD test may need more than one
other test to run before the OD test for it to fail/pass, but
Shi et al. found this scenario to be very rare [7].) Lam et al.
later proposed detecting OD-relevant tests in a simpler way
by running each test one-by-one with the OD test to check
whether the OD test’s outcome changes [11]. This one-by-one
search is also effective for finding cleaners for a given polluter-
victim pair, by running each test in-between the polluter and
victim; iFixFlakies also uses this one-by-one strategy to find
cleaners [7]. Both delta-debugging and the one-by-one search
depend on the given test-orders, potentially running for a long
time depending on where the OD-relevant tests are within the
test-orders. Our evaluation shows these approaches often run
many (irrelevant) tests before finding any OD-relevant test.

A. Example

Figures 1 and 2 illustrate simplified versions of an
example brittle OD test, and its state-setter OD-relevant test,
respectively. The brittle, testDubboProtocolWithMina,
and state-setter, testRpcFilter, are from the
apache/dubbo project [22], which has over 40000
stars on GitHub and is an easy-to-use Web and RPC
framework that provides multiple language implementations
for different services (e.g., communication, security).

The brittle fails because it explicitly specifies the server is
mina in its URL at Line 3, which tells the code to use the
mina server for communication. Both the brittle and state-
setter have a protocol (sets up a DemoService to be
accessed over the network) and proxy (handles calls to the
network) variable, which are separate class instances. Using
these variables, Line 3 exports the service and initiates the
server (based on the URL and configuration). We find that this
method call performs various server initialization logic, includ-
ing for the mina server, when no server information is speci-
fied in the URL. However, as Line 3 contains the server infor-
mation in addParameter(Constants.SERVER_KEY,
“mina”), the code skips the mina server initialization and
directly tries to use the server. If the mina server is not already
initiated, skipping initialization results in an exception.

When state-setter testRpcFilter runs before this brit-
tle, we find that protocol.export is called without spec-
ifying any server at Line 12, which initializes various servers,
including mina. Once this state-setter starts the mina server,
the brittle passes when run afterwards.

Finding this state-setter among all tests can be time-
consuming, as there are 65 total tests in the test suite. For
example, we can use the one-by-one strategy [11]–[13] by
running each test before the brittle to see which one makes



1 public void testDubboProtocolWithMina() {
2 DemoService service = new DemoServiceImpl();
3 protocol.export(proxy.getInvoker(service, ...,

URL.valueOf("dubbo://127.0.0.1:9010/").
addParameter(Constants.SERVER_KEY, "mina")));

4 ...
5 }

Fig. 1: Example brittle from the DubboProtocolTest
class in the module dubbo-rpc/dubbo-rpc-dubbo of
the apache/dubbo project [22].

10 public void testRpcFilter() {
11 DemoService service = new DemoServiceImpl();
12 protocol.export(proxy.getInvoker(service, ...,

URL.valueOf("dubbo://127.0.0.1:9010/")));
13 ...
14 }

Fig. 2: Example of a state-setter for the brittle in Figure 1.
testRpcFilter is from the RpcFilterTest class and
the same module and project as the brittle.

the brittle pass. In our experiments, we can find the state-
setter after running 15.5 tests (averaged from using the tests
positioned before the brittle in 10 different passing test-orders).
On the other hand, if we first rank the tests based on likelihood
of being OD-relevant tests, such as by leveraging a LLM
(Section III-A), we can find the state-setter after running
only 6.5 tests, on average. If we instead rank tests based on
analyzing test outcomes from a large number of test-orders
(Section III-B), we can find the state-setter after running only
1.0 test, on average. Developers can spend less time to find
OD-relevant tests by first ranking tests and then running them
in the ranked order, taking, on average, 23.5 and 1.9 seconds
using the LLM and test-order-analysis approach, respectively.
Meanwhile, the one-by-one baseline takes 60.9 seconds, on
average, while the delta-debugging baseline proposed by Shi et
al. [7] takes 419.0 seconds, on average.

III. RANKING OD-RELEVANT TESTS

Given a known OD test, the goal is to rank the set of other
tests in terms of their likelihood of being an OD-relevant test
for the given OD test. First, we determine the type of OD test,
which according to Shi et al. [7], we can determine whether an
OD test is a victim or brittle by running it by itself (Section II).
In the case of a victim, we search for a polluter. For a brittle,
we search for a state-setter. For a victim and a found polluter
for that victim, we search for a cleaner corresponding to the
given victim/polluter pair.

We propose two different approaches, RankFL and RankFO,
for computing the likelihood of tests as OD-relevant tests, each
one relying on different information. For a given OD test, each
approach ranks all other tests as candidate OD-relevant tests,
giving each one a score representing its likelihood. Then, we
iterate through each candidate OD-relevant test according to
the ranking to confirm whether the test is a true OD-relevant
test for the given OD test. To confirm, we run just the candidate
test along with the OD test. If the OD test is a victim, we

Fig. 3: Overview architectural diagram of RankFL training.

run the candidate before the victim to see whether the victim
fails. If the OD test is a brittle, we run the candidate before the
brittle to see whether the brittle passes. In the case of searching
for cleaners, we require both a victim and polluter, and we
run the candidate in-between the polluter and victim to see
whether the victim passes, which normally fails when run right
after the polluter. The search stops once the process confirms
a candidate test to be a true OD-relevant test. Prior work
found that finding just one OD-relevant test is often enough
to debug or repair an OD test [7]. This search becomes more
efficient when the ranking is better (i.e., the real OD-relevant
tests are ranked earlier), as fewer tests need to be run before
the confirmation of a true OD-relevant test. Note that an OD-
relevant test can also be an OD test, but this situation is rare
– only one such reported case in prior work [7]. If there is a
test that is both a victim and polluter, then we will find the
polluters for this test as a victim, then separately find it later as
a polluter for another victim. (We carry out a similar process
for brittles and state-setters.)

A. RankFL

RankFL leverages a large language model (LLM) to com-
pute likelihood scores for OD-relevant tests. Given an OD
test, a user can use RankFL to compute a likelihood score for
each of the other tests to be an OD-relevant test. We build
separate models for scoring polluters for victims, state-setters
for brittles, and cleaners for victim/polluter pairs.

To train a model, we use a training dataset of labeled tuples
of tests. Each tuple consists of either a victim, brittle, or
victim/polluter pair, depending on the type of OD test the
model is specialized for, along with some other tests in the test
suite. The tuple has a positive label if the other test is a true
OD-relevant test for the victim, brittle, or victim/polluter pair,
and negative otherwise. Figure 3 shows the training process
for creating a RankFL model.

1) BigBird: We use BigBird-roberta-base [23] as the pre-
trained LLM that we fine-tune and build the model from.
BigBird was constructed based on the Transformer neural
architecture [24], with a focus on understanding long se-
quences and can process a large number of tokens, especially
in comparison to other LLMs [25]. Processing many tokens is
especially important for our problem, as we need to analyze
the code from multiple tests, as opposed to just a single test
that is used for other similar LLM-based tasks [16, 26, 27].

2) Extracting Features from Test Code: For a given OD
test (or polluter-victim pair), we obtain all of its candidate
tests and use each one to form a tuple with the given OD test.
For each candidate and OD test, we use srcML [28] to extract



the signature of the test method and the test method body. We
also eliminate any code comments from the method body.

We provide each tuple (consisting of the signature and
body of a candidate test and OD test/polluter-victim pair)
with a positive or negative label to the model for training.
We utilize BigBird’s built-in tokenizer that uses SentencePiece
with Byte-Pair Encoding (BPE) [29] to create a sequence
of tokens representing this aggregated code. We also utilize
batch_encode_plus [30] from the tokenizer to encode
the token sequences into numerical representations (token ID
and attention mask) in a batch, outputting a vector of numbers,
where each number represents a token.

While BigBird can process at most 4096 tokens, setting it
to always process this many tokens can introduce unnecessary
token padding and memory usage that negatively impacts the
model’s performance. In our evaluation dataset, over 99% of
the tuples have fewer than 2048 tokens. Hence, we set the
maximum token length to 2048. Similar to prior work, if the
number of tokens is over this limit, we truncate [16, 26].

3) Fine-Tuning Models: We fine-tune the BigBird model
to distinguish between positive and negative-labeled tuples
from the dataset. As BigBird is a large model, fine-tuning
all of its layers is computationally expensive. Therefore, we
freeze the first five layers (lower-level), meaning their weights
remain unchanged during training, and fine-tune the remaining
seven layers of the model [31]. The output of each BigBird
model is a vector of length 768. We feed this new vector
as an input to a dense layer that outputs a vector of length
256, which we found to be the most effective based on some
preliminary experiments. We send this 256-length vector to a
prediction head, which leads to an output layer of two neurons.
We use ReLu [32] as an activation function for each neuron.
We add dropout layers of 0.4 to eliminate some neurons
randomly from the network during the training phase to avoid
overfitting [33]. We use the softmax function [34] to convert
the output layer’s logits into the probability of a positive or
negative label based on the results of the output layer. Finally,
we use the AdamW optimizer [35] for parameter optimization
and NLLLoss (Negative Log Likelihood Loss) [36] to compute
the loss from predicted log-probabilities. The result of this
training is a model that, given token representations of a
tuple of tests, outputs two scores: positive class score and
negative class score, reflecting the likelihood of a positive and
negative label, respectively. Section III-C further details how
these scores are used.

We fine-tune the pre-trained model for 30 epochs to enhance
the model’s performance. Given all the tuples from a training
set (with a balanced set of both positive and negative labeled
tuples), we randomly set aside 10% of them for validation. For
each epoch, we evaluate the model’s validation loss. After each
epoch, if the model achieves the lowest validation loss, we
proceed to update the weights of the model for the next epoch
using this current optimal model’s weights. Additionally, we
utilize early stopping, which is configured to halt training
if there is no improvement after 10 consecutive epochs, to
mitigate overfitting. We ultimately produce the best model

with the minimum validation loss among the epochs [37]. To
preserve determinism in our results, we set the seed for the
random number generator during testing and inference [21].
We find that our model provides deterministic outputs when
we run inference with it on the same input 100 times.

B. RankFO

RankFO leverages execution information of tests in different
test-orders to compute scores for likely OD-relevant tests.
Given an OD test and the execution result of the test suite
in different test-orders, RankFO outputs a likelihood score for
each test being an OD-relevant test for the given OD test.

If the OD test is a victim, then a polluter must be one
of the tests that run before the victim in a failing test-
order. Conversely, if the OD test is a brittle, then a state-
setter must be one of the tests that run before the brittle in
a passing test-order. Intuitively, the more often we see the
same tests that come before the victim/brittle in a failing test-
order/passing test-order, respectively, the more likely that test
is the polluter/state-setter for the victim/brittle, respectively.
Similar to RankFL, RankFO also computes two scores for
each test: the positive class score for the likelihood to be an
OD-relevant test and negative class score for the likelihood
to not be an OD-relevant test. RankFO computes these scores
based on occurrence of each test and the position of each test
when the OD test is passing and failing. For example, for a
victim, depending on whether it is failing or passing in a given
test-order, we increment the appropriate score, i.e., positive
class scores for failing test-order and negative class scores for
passing test-order. The more test-orders processed, the more
confident RankFO is that the scores reflect the likelihood of
tests being true OD-relevant tests for the OD test. We propose
five different heuristics for scoring tests:
Plus One (+1): This heuristic gives a score of +1 for each
test before an OD test in a given test-order. The intuition is
that a test that frequently appears before a victim/brittle when
the OD test is failing/passing, respectively, is more likely to
be an OD-relevant test than a test that never appeared before
the OD test (e.g., if a particular test is always running before
a victim when it fails, then this test is likely a polluter).
#Methods (#M): This heuristic uses the number of tests
before an OD test (ot) in a test-order to give a score
of 1/indexOf(ot) to each test before an OD test, where
indexOf returns the index of a specific test in a given test-
order. The intuition is that when a victim/brittle fails/passes,
respectively, the test-orders where the number of tests before
the OD test is small should have more weight on the likelihood
of the tests being OD-relevant tests than test-orders in which
there were more tests before the OD test.
Distance (D): This heuristic takes the distance between a given
test (gt) and the OD test (ot) in a test-order, and gives a score
of 1/(indexOf(ot) − indexOf(gt)) to the given test. The
intuition is that tests closer to the OD test is more likely to
be an OD-relevant test.
Combined (+1, D): This heuristic uses Plus One to give scores
to the tests and uses Distance to break ties.



Fig. 4: Example of RankFO Combined (+1, D) heuristic.

Combined (#M, D): This heuristic uses #Methods to give
scores to the tests and uses Distance to break ties.

After the positive/negative class scores are calculated,
RankFL and RankFO use the scores to rank tests. Section III-C
describes in detail how these scores are used. Regardless of
how they are used, it is possible for the scores to tie (i.e., be the
same for multiple tests). The intuition for the two Combined
heuristics is to combat the problem where the use of scores
from the #Methods and Plus One heuristics results in tests with
tied scores, especially when the number of test-orders given
to RankFO is small. We only consider these two Combined
heuristics because Combined heuristics where Distance is first
will rarely result in the same scores, unlike #Methods and Plus
One, which updates the score of every test the same amount
in each test-order. We also do not consider combining the two
#Methods and Plus One heuristics with each other because,
intuitively, they are not as effective as Distance at breaking
ties. For the Distance, #Methods, and Plus One heuristics, if
there are ties in the ranks of the tests after the scores are used,
the tied tests are alphabetically ordered in the ranked list. For
the two Combined heuristics, if there are ties in the ranks of
tests, the tied tests are ordered in descending order of their
distance to the OD test in the last test-order.

1) Example for RankFO: Figure 4 showcases an example
of the Combined (+1, D) heuristic of RankFO. In this example,
t4 is a victim and its true polluter is t2, along with a cleaner
t5. Order-1 is a failing test-order (the true polluter t2 runs
before t4 with no cleaners in between), therefore the positive
class scores of tests before t4 (t1, t2, t3) are increased by 1.
Order-2 is a passing test-order (t5 is a cleaner and runs in-
between t2 and t4), so the negative class scores of tests before
t4 (t1, t2, t5) are increased by 1. After processing the final test-
order (Order-20), tests t1 and t2 have the same highest positive
class scores and lowest negative class scores. The Combined
(+1, D) strategy then relies on Distance to break the tie by
considering the distance between t1 and t2 to the victim in
Order-20 – ultimately, finding that t2 is closer to t4 and ranking
it correctly higher than t1 as an OD-relevant test for t4.

C. Ranking Tests

After obtaining positive class scores and negative class
scores for tests from RankFL or RankFO, we use those scores
to rank the tests in order of likelihood to be OD-relevant tests.
We use three strategies to rank tests: positive class strategy,
negative class strategy, and combined class strategy.

Positive class strategy organizes all potential OD-relevant
tests by their positive class scores in descending order, placing
those with the highest likelihood at the forefront. Negative
class strategy arranges the candidate tests by their negative
class scores in ascending order, aiming to position tests with
the highest likelihood of being not an OD-relevant test at the
bottom. Combined class strategy involves subtracting the test’s
negative class score from its positive class score, subsequently
organizing the tests by this score difference in descending
order. The idea is that tests with higher difference scores are
those where the positive class score substantially outweighs
the negative class score, suggesting that such tests are more
likely to be true OD-relevant tests. In Section V-C, we evaluate
how our approaches perform using either and both scores.

IV. EXPERIMENTAL SETUP

We study the following research questions:
• RQ1: What is the efficiency and effectiveness of RankFL

and RankFO at ranking + confirming OD-relevant tests?
• RQ2: What effect do different test-orders and heuristics

have on RankFO’s effectiveness?
• RQ3: What effect do different ranking strategies have on

the effectiveness of RankFL and RankFO?
We evaluate RQ1 to see whether RankF can find the

true OD-relevant tests faster than baselines from prior work
that also find OD-relevant tests [7, 11]. We evaluate RQ2 to
assess how RankFO performs using different test-orders and
heuristics. Finally, we evaluate RQ3 to see which ranking
strategies enable RankFL and RankFO to be the most effective.

A. Dataset

RankF is meant to help find OD-relevant tests after OD
tests have been detected. As such, RankF’s evaluation requires
a dataset of known OD tests and OD-relevant tests. There
are various datasets [5, 12, 18]–[20, 38] that contain OD tests,
however to the best of our knowledge, the only dataset that
contains both OD tests and OD-relevant tests is from Wei et
al. [12]. This dataset consists of 249 OD tests detected from
44 modules1 across 25 open-source projects. This dataset also
provides for each OD test the corresponding OD-relevant tests
(e.g., the polluters for a victim and the cleaners for a polluter-
victim pair). We further confirm the correctness of this data
by explicitly running all the OD tests with their corresponding
OD-relevant tests, i.e., we run each polluter/state-setter before
their respective victim/brittle to ensure the test fails/passes as
expected, and for each polluter-victim pair, we run the cleaner
in-between to check that the victim passes. We find that some
OD tests in the dataset could not be reproduced from running
tests with Maven Surefire, and after sharing our findings with
Wei et al. [12] to confirm, we exclude them from our dataset.
In the end, we are able to reproduce 155 OD tests and their
respective OD-relevant tests from 34 modules [21].

We also collect for each module the list of all tests in the
test suite. We first run the test suite in each module to obtain

1A Maven project may contain many modules, each with their own test suite.



TABLE I: Details of our evaluation subjects. “B.” represents
Brittle, “V.” represents Victim, “P.” represents Polluter. The
module corresponding to each ID is in our artifact [21].

Num. of Suite
ID Project Tests OD B. V. P.-V. Runtime

M1 Activiti/Activiti 42 21 4 17 115 5.5
M2 Apache/Struts 61 22 0 22 77 1.7
M3 alibaba/fastjson 4781 2 2 0 0 7.9
M4 apache/dubbo 106 3 0 3 8 1.8
M5 apache/dubbo 499 1 0 1 0 1.7
M6 apache/dubbo 5 1 0 1 0 1.8
M7 apache/dubbo 58 2 0 2 2 1.6
M8 apache/dubbo 65 2 1 1 4 43.9
M9 apache/dubbo 21 2 0 2 13 1.4
M10 apache/hadoop 388 1 0 1 1 16.7
M11 c2mon/c2mon 5 1 0 1 1 14.0
M12 ctco/cukes 14 1 0 1 1 2.0
M13 doanduyhai/Achilles 233 1 1 0 0 18.5
M14 dropwizard/dropwizard 74 1 0 1 2 2.2
M15 elasticjob/elastic-job-lite 479 2 0 2 4 63.5
M16 fhoeben/hsac... 251 1 1 0 0 3.8
M17 hexagonframework/spring... 48 4 4 0 0 3.2
M18 jhipster/jhipster-registry 53 2 0 2 2 8.7
M19 kevinsawicki/http-request 163 25 0 25 24 1.3
M20 ktuukkan/marine-api 925 12 0 12 12 1.4
M21 openpojo/openpojo 588 3 0 3 12 2.8
M22 spring-projects/spring-boot 1734 2 0 2 2 13.3
M23 spring-projects/spring-boot 735 6 0 6 0 13.6
M24 spring-projects/spring-boot 584 1 1 0 0 12.9
M25 spring-projects/spring-boot 219 1 1 0 0 59.4
M26 spring-projects/spring... 10 2 0 2 2 3.9
M27 spring-projects/spring-ws 61 2 0 2 2 1.9
M28 tbsalling/aismessages 44 2 0 2 0 0.9
M29 vmware/admiral 478 1 1 0 0 4.7
M30 vmware/admiral 302 1 0 1 0 9.5
M31 wikidata/wikidata-toolkit 49 3 3 0 0 1.4
M32 wikidata/wikidata-toolkit 23 2 0 2 1 1.1
M33 wildfly/wildfly 81 21 1 20 0 2.3
M34 zalando/riptide 40 1 0 1 0 6.9

Total/ 13219 155 20 135 285
Avg. 11.2

16166 tests (excluding the tests skipped by Maven). We then
extract the test-method body of each test using srcML [28].
We exclude 2947 tests that we cannot parse their test-method
bodies. Upon inspection of a few such tests, we find them to
inherit code from parent test classes that are not even in the
same module as the tests. In total, we have 13219 tests in our
34 evaluation modules. Table I lists the subjects used in our
evaluation. For each module, the number of tests, OD tests,
and polluter-victim pairs that have cleaners are shown, along
with the time to run the test suite of each module.

B. OBO Baseline

Our first baseline is to perform the one-by-one (OBO)
approach [11] (Section II), a straightforward way to find OD-
relevant tests. We simulate OBO by looking for the first
polluter/state-setter in a failing/passing test-order, respectively,
going through each test as a candidate OD-relevant test within
the given test-order. As OBO’s effectiveness is dependent
on the given test-order, we randomly generate 10 different
failing/passing test-orders for each victim/brittle, respectively,
ensuring they are valid test-orders (i.e., no interleaving of tests
across test classes [18]). By definition, an OD test must have
both a failing and a passing test-order for it to be considered
an OD test. We can determine whether an OD test passes or
fails in a generated test-order based on the position of the OD-
relevant tests relative to the OD test in a given test-order. (The
possible failing/passing test-orders depends on the number of

tests and the number of OD-relevant tests for each OD test,
e.g., four tests containing one victim and one polluter has 12
failing test-orders, while five tests containing one victim, one
polluter, and one cleaner has 40 failing test-orders. All of our
subjects have more than 10 failing/passing test-orders. We also
verify that each of our generated test-order is unique). We refer
to the average results of 10 test-orders for OBO as OBOavg .

We also simulate a theoretical worst case scenario for OBO
to find OD-relevant tests by creating the test-order in which
the first OD-relevant test is in the worst possible position. To
create the test-order, we move all OD-relevant tests to the
very end of the test-order; the other tests can be permuted
in any ordering. If there are multiple OD-relevant tests, we
sort them by runtime, keeping the OD-relevant test with the
highest runtime first among the OD-relevant tests. Doing so
ensures that OBO will find this highest runtime OD-relevant
test before the others. There can be more than one worst test-
order if there are multiple OD-relevant tests with the highest
runtime, but choosing any such order will result in the same
worst case scenario. We refer to this baseline as OBOmax.

C. Delta-Debugging Baseline

Shi et al. previously used delta-debugging [10] in
iFixFlakies [7] to find OD-relevant tests (Section II), which we
use as a baseline. Given a failing/passing test-order for a vic-
tim/brittle, respectively, delta-debugging divides the sequence
of tests before the OD test in that test-order in half, checking
which half makes the victim/brittle fail/pass, respectively, and
recursively searches down that half. The search process stops
once it reaches a single test that makes the victim/brittle
fail/pass, respectively; that test is an OD-relevant test.

While delta-debugging can be directly used to find the
polluter/state-setter, it may not always find a cleaner for a
given polluter-victim pair. The starting condition for delta-
debugging is a passing test-order where the polluter runs
before the victim, so the tests in-between contain a cleaner,
but such a test-order is not guaranteed, i.e., the passing test-
orders for a victim has the victim run before the polluter. If
the passing test-order does not have the polluter before the
victim, then iFixFlakies resorts to using OBO on the entire
passing test-order to find cleaners. Our use of delta-debugging
is the same as iFixFlakies – we rely on delta-debugging if the
polluter is before the victim, and rely on OBO otherwise.

D. RankFL Setup

For RankFL, we prepare a labeled dataset for training using
the OD tests we use in our evaluation. The training dataset
needs both positive- and negative-labeled tuples of tests, where
a positive label means the tuple represents an OD test and
its true OD-relevant test (or a polluter-victim pair and its true
cleaner), while a negative label means the other test in the tuple
is not a true OD-relevant test for the OD test. We ensure that
the tuples always include at least one positive label tuple. We
train the models in a per-module manner, similar to prior work
on predicting flaky tests [16]. When we evaluate on tests from
one project, we train using tuples from all other projects. The



goal is to simulate a scenario where a developer takes a model
previously trained on other projects and uses it for their own
project. For such a simulation, our model is trained without
observing any tests from the project that is being evaluated.

As we are guaranteed both failing and passing test-orders
for every OD test, we can use those test-orders to help RankFL

run fewer tests. Specifically, RankFL needs to score only
the tests before the OD test in failing/passing test-orders for
victim/brittles, respectively; the tests after the OD test need not
be scored and ranked. For cleaners, RankFL scores and ranks
all tests in the test suite as the first cleaner may be before or
after a victim in any given test-order. RankFL uses the same
failing/passing test-orders used by OBOavg (Section IV-B).

E. RankFO Setup

For RankFO, we construct valid random test-orders of the
tests. We use two types of test-orders (1) 20 random test-orders
per module, (2) test-orders at which one can be at least 95%
sure of a given OD test to pass/fail at least once and then
evaluate how RankFO performs, to evaluate its effectiveness
as it analyzes more test-orders. Developers may use rerun-
based OD test detection techniques, such as iDFlakies [18], to
obtain different test-orders for RankFO. We choose 20 orders
to match the number suggested by iDFlakies.

F. Runtime Environment

For our evaluation, we run on Ubuntu machines with i7
eight-core processors and 32 GB of RAM to run RankFL and
RankFO and to measure test runtimes. For RankFL, we fine-
tune BigBird using a different Linux machine equipped with a
single NVIDIA RTX A5000 GPU and 125 GB of RAM. This
setup is based on CUDA version 12.0.

V. EVALUATION

A. RQ1: RankF Efficiency and Effectiveness

1) Efficiency Methodology: We evaluate efficiency in terms
of time per approach to find the first OD-relevant test. For
RankFL, this time includes the time to run the model on the
tests in a given test-order. For RankFO, this time includes the
time to analyze the provided set of test-orders (we assume
the sets of test-orders were run previously as part of some
detection process [5, 18]). After obtaining rankings, we mea-
sure the confirmation time as the time needed to run each
test in the ranked order together with the OD test until we
confirm the first correct OD-relevant test. Each time we run a
group of tests, we include the overhead from invoking Maven
Surefire. We obtain the overhead time to invoke Surefire from
running the entire test suite of a module and subtracting the
total time taken by all tests (as specified in Surefire reports)
from the total time taken by Surefire; we run this process 30
times to obtain an average overhead time. We report the total
time for using an approach as the sum of the analysis time
and the time to run the tests in the ranked order. As both
RankFL and RankFO produce 10 ranked lists of OD-relevant
tests, we report the average time for the 10 lists per OD test
for each approach. For OBO, we compute the average time in

the same way as RankFL, except we count only the time to
run the tests with the same 10 test-orders used by RankFL.
For delta-debugging, we compute the cumulative time to run
all tests together plus the Surefire overhead time from each
iteration of the search, where each iteration may run multiple
tests along with the OD test. The overall time for an OD test
and a given test-order is the sum of the time for all iterations
until an OD-relevant test is found.

2) Efficiency Results: Table II, Table III, and Table IV show
the time for our two proposed approaches and the baselines
under the column “Time to Rank + Confirm in seconds”. We
further highlight the cell corresponding to the best (lowest)
time across all approaches and baselines for each module.

We see that RankF always outperforms OBOavg, and it
outperforms delta-debugging for all modules except for two
modules for polluters and one module for state-setters. For
example, Table III shows RankFL and RankFO achieve a
median time of 59.5 and 13.3 seconds, respectively, to find
the first state-setter, compared to 489.5 and 118.5 seconds
for OBOavg and delta-debugging, respectively. When looking
at medians, RankFO always finds the first OD-relevant test
faster than the baselines and RankFL. Although RankFO’s
average performance is affected by extreme outliers (e.g., M22
in Table II), it is still the fastest for a majority of modules
(fastest for 36/56 modules in tables II to IV).

If we compare just RankFL with the baselines, RankFL is
always faster than OBOavg, and is faster than delta-debugging,
on median, except for finding polluters, in which they have the
same median time. From Table II, we see that delta-debugging
is the faster at finding a polluter for most modules (16/26).
However, RankFL outperforms delta-debugging for finding the
first state-setter (7/11 modules) or cleaner (18/19 modules).
Unlike the baselines, RankFL provides rankings for all tests
– a developer looking to find more than one OD-relevant test
can use those rankings to speed up their search.

We also show under “Time to Rank in seconds” the time
it takes for RankFL and RankFO to just rank the tests, along
with the percentage of that ranking time relative to the overall
time to both rank and confirm tests. RankFL takes longer to
rank tests than RankFO (which has a negligible cost of <100
ms). RankFL needs to process tuples of test code (larger sized
tuples take longer processing time) and uses a complex LLM,
which substantially increases its computational time.

3) Effectiveness Methodology: To measure the effectiveness
of RankF at ranking OD-relevant tests, we report (1) the
number of OD tests for which the approach finds a correct
OD-relevant test as the top-ranked test, essentially Rank-1 (the
more the better), and (2) the rank of the first OD-relevant test
found by the approach in the ranked list (the lower the better).
Number of OD test with OD-relevant test at Rank-1. For
RankFL, we consider it to have found the OD-relevant test as
top-ranked if such a test is Rank-1 for at least 50% of the 10
test-orders we use per OD test (Section IV-D). For RankFO,
we randomly sample 10 sets of test-orders, each with 20 test-
orders, for each module (Section IV-E). We consider RankFO

to have found the OD-relevant test as top-ranked if such a test



TABLE II: Results of finding Polluter (P.) for a given Victim. “# Victim w/ P. @ Rank-1” is the number of victims where P.
is found at rank one. “1st P. Ranking” is the rank of the first P. “Time to Rank + Confirm in seconds” is the sum of the time
to rank and confirm the first P. Highlighted cells represent the best approach in ranking + confirming.

# Victim w/ P. @ Rank-1 1st P. Ranking Time to Rank + Confirm in seconds Time to Rank in seconds Min
ID RankFL RankFO RankFL RankFO OBOavg OBOmax RankFL RankFO OBOavg OBOmax DD RankFL RankFO Orders

M1 4 6 7.4 3.4 5.7 23.6 41.8 18.8 31.3 130.6 35.8 0.7 (1.6%) 0.3 (1.6%) 468.9
M2 0 6 14.9 8.3 18.2 49.9 26.6 14.3 31.1 85.4 16.1 1.0 (3.8%) <0.1 (0.2%) 250.6
M4 0 1 13.0 7.6 42.4 99.3 26.2 13.9 77.8 182.8 19.6 1.9 (7.2%) <0.1 (0.0%) 89.8
M5 0 1 193.6 2.9 228.9 491.0 368.2 5.5 430.4 914.3 70.5 7.4 (2.0%) <0.1 (0.0%) 34.4
M6 1 1 1.5 1.0 1.7 5.0 4.2 2.7 4.6 14.3 5.4 0.1 (3.2%) <0.1 (3.4%) 1.4
M7 0 0 10.1 3.7 22.2 57.0 20.5 6.8 42.2 108.6 25.7 1.3 (6.2%) <0.1 (0.0%) 208.3
M8 0 0 9.9 35.1 41.8 55.0 24.4 176.2 209.3 241.9 309.2 1.5 (6.1%) <0.1 (0.0%) 944.8
M9 2 2 1.8 2.2 3.1 7.5 3.8 4.1 5.7 13.8 7.6 0.5 (13.0%) <0.1 (0.4%) 12.7
M10 0 0 2.3 9.4 149.0 365.0 19.5 49.2 758.7 1825.6 545.6 8.1 (41.6%) <0.1 (0.0%) -
M11 0 1 3.0 1.0 2.3 5.0 47.2 15.7 36.1 78.9 32.6 0.1 (0.2%) <0.1 (0.0%) 2.9
M12 0 1 6.8 1.0 8.1 14.0 10.4 2.5 12.2 21.0 6.6 0.2 (2.4%) <0.1 (0.0%) 23.5
M14 0 0 10.3 9.3 43.5 68.0 24.5 21.2 95.0 148.1 28.5 1.2 (4.9%) <0.1 (0.0%) 209.5
M15 0 1 63.5 88.4 231.0 468.5 2679.2 5614.9 14670.9 29754.4 5012.5 7.8 (0.3%) <0.1 (0.0%) 5.9
M18 0 1 30.9 4.0 14.1 48.0 274.2 35.9 124.5 423.2 78.9 1.0 (0.3%) <0.1 (0.1%) 27.8
M19 0 18 84.7 1.7 66.8 163.0 116.8 2.2 89.7 218.7 17.8 3.2 (2.8%) <0.1 (0.0%) 20.9
M20 0 0 319.3 94.5 278.8 917.2 497.1 136.9 402.8 1325.1 92.3 16.4 (3.3%) <0.1 (0.0%) 905.8
M21 0 0 29.3 35.3 173.2 577.3 87.5 100.8 489.9 1631.7 90.5 8.7 (10.0%) <0.1 (0.1%) 110.1
M22 0 0 136.6 1330.5 553.4 1683.5 1849.2 17697.5 7360.5 22390.3 396.3 31.7 (1.7%) <0.1 (0.0%) -
M23 0 6 146.7 1.0 410.7 390.5 2006.9 13.6 5529.7 9892.8 1116.7 14.7 (0.7%) <0.1 (0.0%) 3.9
M26 2 0 1.2 3.8 6.3 8.0 5.1 15.0 24.9 31.8 19.8 0.2 (3.7%) <0.1 (0.1%) 118.2
M27 0 2 9.1 2.6 25.6 56.0 18.4 5.1 48.8 107.0 36.9 1.0 (5.6%) <0.1 (0.0%) -
M28 0 2 8.3 1.0 23.3 43.0 8.2 0.9 20.9 38.6 5.1 0.7 (8.9%) <0.1 (2.7%) 3.3
M30 0 1 125.5 1.0 146.6 302.0 1199.8 6.1 914.8 1887.3 211.1 6.1 (0.5%) <0.1 (0.0%) 2.2
M32 0 2 4.8 1.0 15.7 23.0 6.9 1.3 21.0 31.0 6.0 0.5 (6.6%) <0.1 (0.1%) 4.8
M33 0 2 20.6 6.3 32.5 75.8 49.3 14.8 75.3 176.0 25.1 1.5 (3.1%) <0.1 (0.0%) 16.6
M34 0 1 13.0 1.0 19.0 39.0 90.6 6.9 131.2 269.2 36.4 0.8 (0.9%) <0.1 (0.0%) 2.7

Total/ 9 55 - - - - - - - - - - - -
Avg./ - - 64.6 34.2 86.7 211.9 259.8 371.1 680.8 1518.4 166.5 4.3 (1.6%) <0.1 (<0.1%) 206.0
Median - - 11.7 3.5 29.0 56.5 34.2 14.1 83.8 179.4 34.2 1.2 (5.3%) <0.1 (<0.1%) 23.0

TABLE III: Results of finding State-Setter (SS.) for a given Brittle. “# Brittle w/ SS. @ Rank-1” is the number of brittles for
which SS. is found at top one. “1st SS. Ranking” is the rank of first SS. “Time to Rank + Confirm in seconds” is the sum of
the time to rank and confirm the first SS. Highlighted cells represent the best approach in ranking + confirming SS.

# Brittle w/ SS. @ Rank-1 1st SS. Ranking Time to Rank + Confirm in seconds Time to Rank in seconds Min
ID RankFL RankFO RankFL RankFO OBOavg OBOmax RankFL RankFO OBOavg OBOmax DD RankFL RankFO Orders

M1 1 4 11.5 1.0 18.6 39.8 64.2 5.5 103.1 219.7 29.4 0.7 (1.1%) <0.1 (0.7%) 4.9
M3 0 0 19.6 144.6 93.6 187.0 218.2 1140.5 738.1 1485.1 301.7 64.3 (29.5%) <0.1 (0.0%) -
M8 1 1 6.5 1.0 15.5 58.0 23.5 1.9 60.9 266.4 419.0 1.2 (5.3%) <0.1 (0.3%) 15.6
M13 1 0 2.1 3.7 57.4 199.0 43.6 68.4 1062.4 3684.0 245.1 4.7 (10.9%) <0.1 (0.0%) 999.0
M16 0 1 160.9 1.0 130.9 251.0 607.3 3.7 489.5 939.0 33.6 5.3 (0.9%) <0.1 (0.0%) 3.8
M17 1 0 9.8 22.0 19.8 41.0 32.0 70.0 62.9 130.5 35.2 0.9 (2.7%) <0.1 (0.0%) -
M24 0 1 36.3 1.0 408.5 584.0 495.7 13.3 5423.5 7753.8 119.7 10.4 (2.1%) <0.1 (0.2%) 2.1
M25 0 1 5.4 1.0 86.2 219.0 76.9 13.3 1146.4 2912.4 388.2 5.0 (6.5%) <0.1 (0.0%) 3.4
M29 0 0 10.9 87.9 310.2 464.0 59.5 446.9 1538.3 2306.4 118.5 6.6 (11.1%) <0.1 (0.0%) 153.0
M31 3 1 1.1 5.4 2.3 5.7 2.2 7.4 3.4 9.0 11.1 0.6 (28.7%) 2.5 (33.8%) 155.6
M33 0 0 14.2 11.8 20.7 41.0 33.6 26.8 47.2 93.2 22.2 1.3 (3.8%) <0.1 (0.0%) 60.2

Total/ 7 9 - - - - - - - - - - - -
Avg./ - - 18.2 25.2 68.9 126.5 108.4 159.0 595.9 1117.7 112.1 8.6 (7.9%) 0.4 (0.2%) 86.2
Median - - 10.9 3.7 57.4 187.0 59.5 13.3 489.5 939.0 118.5 4.7 (5.3%) <0.1 (<0.1%) 15.0

TABLE IV: Results of finding Cleaner (C.) for a given Victim-Polluter. “# Victim w/ C. @ Rank-1” is the number of victims
for which C. is found at top one. “1st C. Ranking” is the rank of first C. “Time to Rank + Confirm in seconds” is the sum of
the time to rank and confirm the first C. Highlighted cells represent the best approach in ranking + confirming C.

# Victim w/ C. @ Rank-1 1st C. Ranking Time to Rank + Confirm in seconds Time to Rank in seconds Min
ID RankFL RankFO RankFL RankFO OBOavg OBOmax RankFL RankFO OBOavg OBOmax DD RankFL RankFO Orders

M1 1 12 15.3 5.9 11.8 26.6 86.0 32.8 65.3 147.7 100.0 1.1 (1.3%) <0.1 (0.0%) 273.6
M2 3 0 26.1 20.3 35.9 52.7 47.5 36.0 63.3 92.6 57.2 1.6 (3.5%) <0.1 (0.0%) 61.1
M4 2 4 21.2 1.1 27.1 103.0 43.2 1.9 50.4 190.2 44.8 3.2 (7.5%) 0.2 (8.9%) 20.2
M7 0 0 4.0 5.5 15.9 51.0 9.3 9.4 30.4 97.5 37.4 1.9 (20.7%) <0.1 (0.0%) 49.9
M8 4 4 1.0 1.0 6.8 33.0 4.1 2.4 17.4 88.9 1486.4 2.1 (51.0%) <0.1 (0.0%) 103.1
M9 2 1 4.2 2.5 8.2 17.2 8.5 4.5 15.0 31.3 11.9 0.8 (9.9%) <0.1 (0.1%) 157.0
M10 0 0 323.0 27.0 248.3 366.0 2097.4 204.6 1608.1 2357.6 1615.8 11.0 (0.5%) <0.1 (0.0%) -
M11 1 1 1.0 1.0 2.2 4.0 16.3 16.4 36.5 66.0 33.4 <0.1 (0.6%) <0.1 (0.1%) 5.8
M12 1 1 1.0 1.0 7.2 13.0 1.3 1.4 10.8 19.5 9.6 <0.1 (6.0%) <0.1 (0.0%) 9.3
M14 2 0 1.0 2.0 9.2 62.0 5.5 6.5 30.9 203.7 84.7 2.0 (36.8%) <0.1 (0.0%) 115.6
M15 0 0 9.8 1.9 32.8 378.0 585.8 123.9 2083.2 24008.4 4860.0 13.6 (2.3%) <0.1 (0.0%) 942.5
M18 0 1 10.0 12.2 33.7 48.5 90.5 108.1 300.5 432.6 286.9 1.4 (1.6%) <0.1 (0.0%) 11.6
M19 0 14 44.5 2.1 97.8 163.0 64.6 2.8 131.4 218.8 111.5 4.8 (7.4%) <0.1 (0.8%) 20.9
M20 0 0 30.8 14.8 571.5 903.6 70.5 21.4 825.9 1305.6 367.7 26.0 (36.8%) <0.1 (0.0%) 139.3
M21 0 0 70.6 119.1 170.0 575.8 216.5 336.4 480.1 1628.0 376.6 16.6 (7.7%) <0.1 (0.0%) 237.2
M22 0 0 443.0 35.8 973.4 1675.5 5948.8 476.7 12953.3 22292.5 7862.8 48.5 (0.8%) <0.1 (0.0%) 298.6
M26 1 1 1.5 1.5 3.5 4.5 6.4 4.5 14.0 18.3 25.6 0.2 (3.6%) <0.1 (0.0%) 43.6
M27 2 1 1.0 1.1 11.0 45.0 3.5 2.0 21.0 86.0 32.8 1.6 (46.5%) <0.1 (2.7%) 123.5
M32 0 1 6.0 1.0 9.7 23.0 8.6 1.3 13.0 31.0 13.0 0.6 (6.8%) <0.1 (0.0%) 7.1

Total/ 19 41 - - - - - - - - - - - -
Avg./ - - 26.6 14.4 63.9 125.1 125.0 45.4 240.6 742.5 251.7 3.9 (3.1%) <0.1 (<0.1%) 171.5
Median - - 9.8 2.1 15.9 51.0 43.2 9.4 50.4 147.7 84.7 1.9 (6.8%) <0.1 (<0.1%) 82.0



is Rank-1 for at least 50% of the sets of test-orders. We do not
report Rank-1 for OBOavg , OBOmax, and delta-debugging,
because they have no ranking scheme, so any OD-relevant
test ranked first is by pure chance, or such tests will always
be ranked after non-OD-relevant tests for OBOmax.
Rank of the first OD-relevant test. For RankFL, we report
the average rank for the first true OD-relevant test found per
OD test across the 10 test-orders. Similarly, we average the
rank across 10 sets of test-orders to compute the rank of the
first OD-relevant test for RankFO. For the baseline OBOavg ,
we use the same 10 test-orders used by RankFL for each OD
test. We find the rank of the first OD-relevant test for each
OD test in each test-order and report that average rank. For
OBOmax, we compute the rank of the first OD-relevant test
found in the generated worst test-order (Section IV-B). We do
not report for delta-debugging as it does not rank tests.

4) Effectiveness Results: From Tables II, III, and IV, we
find that RankFL and RankFO have a non-trivial number of
OD tests with OD-relevant tests at Rank-1. For example, we
find that a substantial number of brittles, up to 45% (9/20), can
already have a state-setter at Rank-1 for RankFO. That being
said, these results suggest that there can still be meaningful
future work that improves the number of OD tests with OD-
relevant tests at Rank-1.

We also see that the time each approach takes is highly
correlated to the rankings, where the better the rankings of
real OD-relevant tests are, the faster the tests are found. This
relationship between the rank and time directly influences how
RankFO compares with all baselines in our results (i.e., if an
approach has a better rank than another approach, then the
first approach must also have a better runtime than the second
approach). Any technique where the time to rank is high can
result in the relationship being not true, which we find is not
true for RankFL (Section V-A2). For instance, in Table IV
module M27, there are two OD tests and RankFL identify
the corresponding cleaner at Rank-1 for both OD tests, while
RankFO identify only one OD test’s cleaner at Rank-1. Despite
having more cleaners at Rank-1, RankFL’s total time is still
worse than RankFO, because RankFL takes more time to rank.

B. RQ2: Effect of Test-Orders and Heuristics on RankFO

1) RQ2 Methodology: We evaluate the effect of using a
different number of test-orders on RankFO’s performance. To
do so, we use 10 sets of 20 test-orders, where each set is
called STO20, compared against STO95%, which represents a
dynamic number of test-orders that is calculated so that there
is a ≈95% chance the OD test will pass and fail at least once
when all test-orders are run. Both STO20 and STO95% always
draw from the same superset of test-orders (e.g., if STO95%

is 20, then STO95% and STO20 will be the exact same set
of test-orders). The way we calculate the number of orders
is based on the probability of OD test failure obtained from
prior work [12]. E.g., for brittles, we use NumOrders =

log(0.05)

log(1− 1
X+1 )

, where X represents the number of state-setters.
2) RQ2 Results: For STO95%, on average, we used 24.6 and

22.7 test-orders for victims and brittles, respectively, slightly

TABLE V: Comparison of RankFO20 ranking functions, with
average rank of Polluter (P.), State-Setter (SS.), Cleaner (C.).

Plus One #Methods Distance
ID P. SS. C. P. SS. C. P. SS. C.

M1 3.4 1.0 5.9 4.1 1.0 6.0 3.5 1.1 5.8
M2 8.3 - 20.3 5.2 - 21.6 7.6 - 24.3
M3 - 144.6 - - 82.6 - - 103.3 -
M4 7.6 - 1.1 19.2 - 2.5 10.2 - 1.6
M5 2.9 - - 1.9 - - 1.4 - -
M6 1.0 - - 1.0 - - 1.0 - -
M7 3.7 - 5.5 13.7 - 3.5 5.5 - 7.7
M8 35.1 1.0 1.0 33.3 1.1 1.4 26.9 1.3 1.0
M9 2.2 - 2.5 2.1 - 3.9 2.0 - 4.6
M10 9.4 - 27.0 8.2 - 17.7 33.0 - 65.4
M11 1.0 - 1.0 1.0 - 1.0 1.0 - 1.0
M12 1.0 - 1.0 2.4 - 1.0 1.0 - 1.0
M13 - 3.7 - - 6.8 - - 28.1 -
M14 9.3 - 2.0 26.5 - 3.1 25.7 - 1.6
M15 88.4 - 1.9 73.5 - 7.5 80.0 - 2.6
M16 - 1.0 - - 1.0 - - 1.0 -
M17 - 22.0 - - 23.6 - - 13.2 -
M18 4.0 - 12.2 8.4 - 7.3 7.5 - 8.8
M19 1.7 - 2.1 3.1 - 2.5 15.1 - 18.2
M20 94.5 - 14.8 375.8 - 4.6 420.1 - 193.7
M21 35.3 - 119.1 52.3 - 32.5 62.2 - 81.3
M22 1330.5 - 35.8 543.5 - 276.8 650.8 - 472.2
M23 1.0 - - 1.0 - - 1.0 - -
M24 - 1.0 - - 1.0 - - 1.0 -
M25 - 1.0 - - 1.0 - - 1.0 -
M26 3.8 - 1.5 4.0 - 1.2 1.2 - 2.3
M27 2.6 - 1.1 15.8 - 2.6 11.1 - 1.1
M28 1.0 - - 1.0 - - 1.1 - -
M29 - 87.9 - - 1.0 - - 1.1 -
M30 1.0 - - 1.0 - - 1.0 - -
M31 - 5.4 - - 5.7 - - 2.7 -
M32 1.0 - 1.0 1.9 - 1.5 1.0 - 1.5
M33 6.3 11.8 - 5.9 7.2 - 11.2 5.2 -
M34 1.0 - - 1.0 - - 1.0 - -

Avg. 34.2 25.2 14.4 46.4 12.0 20.9 53.2 14.5 47.1

more than the default 20 test-orders used by iDFlakies [18]
and STO20. To use STO95%, one needs to know the number of
OD-relevant tests, which a developer may not know a priori.

We refer to RankFO that uses STO20 as RankFO20, and
RankFO that uses STO95% as RankFO95%. We randomly
sample 10 sets of test-orders with the corresponding number
of test-orders in each set depending on the variant. We average
the ranking of the first OD-relevant test found between the 10
sets of test-orders. The average ranking of the first OD-relevant
test for RankFO20 is actually lower than RankFO95%, and the
differences in the average ranking of the first polluter, state-
setter, and cleaner found are 4.2, 2.0, and 0.3, respectively,
higher for RankFO95% than RankFO20. Our results suggest
that a small change in test-orders do not appear to increase the
effectiveness of RankFO (and may even appear detrimental),
although this change has no impact on the relative ranking of
RankFO compared to RankFL and the baselines (i.e., RankFO

still appears best).
We also evaluate the effects of the five different scoring

heuristics (Section III-B) for RankFO. Table V shows the
average ranking of the first OD-relevant test found by RankFO



Fig. 5: Number of modules where a strategy is the best at
ranking OD-relevant tests.

using three scoring heuristics. The cells with “-” indicate that
there is no corresponding OD test of a particular category in
that module. This table shows only the results using RankFO20,
given that RankFO20 and RankFO95% have similar results. We
notice that RankFO20 never needed to use any tie-breaking.
Hence, Combined (+1, D) is the same as Plus One, and
Combined (#M, D) is the same as #Methods, so we do not
show their results. On average, RankFO20 needs 19.0, 17.5,
18.2, test-orders for Distance, #Methods, Plus One heuristics,
respectively, to not have any ties in the test scores. We find
that the Plus One heuristic generally performs the best, finding
the first OD-relevant test at the lowest rankings between all
scoring heuristics, on average, except for finding the first state-
setter per brittle. As such, we present results using Plus One
in all other tables involving RankFO.

We also compute the minimum number of test-orders that
RankFO needs for it to always rank a correct OD-relevant
test at Rank-1 and for its ranking to not change even if more
test-orders are provided. To determine the minimum number
of test-orders, we generate 10 sets of 1000 test-orders (which
the first 20 in each set was used for STO20) and find the
test-order where a true OD-relevant test is ranked first and
remains first even when subsequent test-orders are processed
by RankFO. We repeat this process for each of the 10 sets to
get an average minimum number of test-orders. Tables II, III,
and IV show this minimum number of test-orders to be 206.0,
86.2, and 171.5, on average, needed for polluters, state-setters,
and cleaners, respectively. These numbers are substantially
more than the 20 test-orders used by STO20, indicating that a
developer may need to run many more test-orders if they want
to obtain stable Rank-1 results from RankFO. However, based
on RQ1, we see that just 20 test-orders can still substantially
reduce the time needed to rank and confirm OD-relevant tests.

C. RQ3: Effect of Ranking Strategies

We compare the effectiveness of the three ranking strategies
(Section III-C) against each other by counting the number of
modules in which a particular strategy obtains the lowest OD-
relevant test ranks among all strategies. That is, we obtain
the average rank of OD-relevant tests for each approach and
strategy, then count a module for a strategy when it produces
the lowest average rank among all strategies. Figure 5 shows

the effectiveness of the different ranking strategies used for
RankFL and RankFO, with the left subfigure for RankFL and
the right for RankFO. For each strategy, we show three bars,
each corresponding to finding a different OD-relevant test:
polluter ( – blue bars with diagonal lines), state-setter (

– orange bars with star patterns), and cleaner ( – green
bars with a crosshatched pattern).

RankFL benefits the most from using the negative class
strategy. For polluters, the negative class strategy achieves the
best ranking for 23 out of 26 modules (only one less than
the positive class strategy and combined class strategy). For
state-setters and cleaners, the negative class strategy is better
than the other strategies (outperforming them by 3 modules
for state-setters and 4 modules for cleaners). RankFO benefits
the most from using the combined class strategy. For polluters,
the combined class strategy achieves the best ranking for 17
out of 26 modules. For state-setters, the negative class strategy
and combined class strategy achieve the best ranking for 7 out
of the 11 modules. For cleaners, the combined class strategy
achieves the best ranking for 15 out of 19 modules.

The results shown in all other tables use the best ranking
strategy for each approach, namely negative class strategy for
RankFL and combined class strategy for RankFO.

VI. DISCUSSION

Reason for RankFL effectiveness. RankFL is effective at
predicting OD-relevant tests despite analyzing only test code.
To better understand its effectiveness, we use SHAP [39] to
analyze how the model attributes importance scores to tokens.
We find that the model assigns higher importance scores to
tokens that appear in-common between tests that are truly
related, but these tokens receive lower scores for unrelated
tests. As it seems the model relies on similarities between tests,
we further investigate using TF-IDF [40] to compute similarity
scores between the code of the test pairs, with the assumption
that tests with higher similarity are more likely related. We
find that using TF-IDF this way results in a worse ranking
of tests, suggesting that the RankFL model analyzes more
complex interactions beyond the presence of similar tokens.
Practicality of RankFO. RankFO needs to analyze many test-
orders to effectively rank OD-relevant tests, though it performs
well even with just 20 test-orders (Section V-B). A developer
using tools (e.g., iDFlakies [18]) to detect OD tests would
already have many test-orders, which RankFO can use to find
OD-relevant tests more efficiently. Developers may also be
running tests in random test-orders as part of their development
process during regression testing [17], which RankFO may
also use. If a developer has very few or no test-orders to
consult, we recommend the use of RankFL.
Learning-to-rank evaluation. Our evaluation metrics focus
on the practical application of running tests in a ranked order
to more quickly find the first OD-relevant test. There are
other learning-to-rank metrics that could be used to evaluate
RankF’s effectiveness. If we evaluate using the standard MAP
score [41] with relevance score as 10, we find that RankFL,
RankFO, and OBOavg achieve average MAP scores of 0.007,



0.251, and 0.000, respectively, for ranking polluters (higher
is better). For state-setters, the scores are 0.067, 0.144, and
0.000, and for cleaners the scores are 0.050, 0.450, and
0.000, for RankFL, RankFO, and OBOavg , respectively. We
see that RankFL and RankFO achieve higher MAP scores than
OBOavg for all types of OD-relevant tests. We do not have
delta-debugging MAP scores as delta-debugging does not rank
tests. More details on these results are in our artifact [21].
Use of GPT. We evaluate whether we can prompt a pre-
trained LLM, namely GPT, without fine-tuning it to find OD-
relevant tests. We design a prompt for gpt-3.5-turbo-0125 [42]
that uses both code from an OD test paired with code from
another candidate test, asking whether the other test is an OD-
relevant test for the OD test2.

We encounter two main problems with using GPT: (1) GPT
is a third-party service with request limitations, and (2) there
is a monetary cost. To reduce the cost of our experiments,
we conducted a preliminary experiment with 32 modules and
found that GPT performs worse than the BigBird model used
by RankFL. We excluded two modules (M3 and M22), because
they have many tests (over 1500).

VII. THREATS TO VALIDITY

Our work does not handle cases where one OD test is
dependent on two or more tests (e.g., for victim v to fail, it
must run after two tests in order <p1, p2, v>, while v passes
in both <p1, v> and <p2, v>). However, prior work found
dependence on multiple tests at once to be very rare [7].

We use srcML [28] to extract the test-method body. While
srcML is a well-developed tool, we still encountered chal-
lenges such as needing to parse special characters within the
code. In our manual analysis of a few dozen examples, we
noticed only one inconsistency in extracting the method body.

For RankFL, we use BigBird, which can be problematic
when dealing with smaller test methods, leading to excessive
padding. To mitigate this problem, we used a smaller limit
(2048) than BigBird’s absolute maximum (4096).

Our results may not generalize to projects not in our
evaluation. To mitigate this threat, we used the data from
Wei et al. [12]. This data consists of OD and OD-relevant
tests in popular, Java projects that use Maven.

VIII. RELATED WORK

Luo et al. [2] conducted the first empirical study on flaky
tests in open-source projects, finding that test-order depen-
dence was among the top-three reasons for test flakiness. Prior
work proposed to detect OD tests, by generating random test-
orders [5, 18]–[20], using code changes [43], systematically
generating test-orders [12,13], and analyzing the code [44,45].
These techniques are only able to detect OD tests and cate-
gorize OD tests (victim or brittle), but they cannot find the
corresponding OD-relevant tests. A developer can use RankF
to efficiently find OD-relevant tests to help debug and fix
OD tests. RankFO does leverage random test-orders, such as

2A sample of our prompt can be found in our artifact [21].

those taken from iDFlakies [18]; future work can evaluate
RankFO’s effectiveness when using systematically generated
test-orders [12, 13]. RankFO and spectrum-based fault local-
ization [46]–[50] share a common foundation of analyzing
contrasting execution data to localize relevant entities. RankFO

ranks tests based on their likelihood of being OD-relevant
tests, while spectrum-based fault localization ranks program
statements by their suspiciousness scores.

Researchers also proposed techniques to automatically re-
pair OD tests [7]–[9]. These approaches all rely on OD-
relevant tests to generate a patch. The prominent baselines
for finding OD-relevant tests are either running tests one-by-
one (OBO) with the OD test [11] or to apply delta-debugging
to search for them within a test-order [7]. In our work, we
propose the idea of first ranking tests based on likelihood of
being OD-relevant tests and running them in that ranked order
to confirm. We compare against OBO and delta-debugging as
baselines, finding that we can find OD-relevant tests faster.

There has been recent work in leveraging LLMs for flaky-
test related tasks. Fatima et al. [16] trained a LLM to predict
which tests are flaky without running them. Others [26, 27]
have recently proposed training a LLM to further predict the
category of a flaky test. Fatima et al. [51] proposed using a
LLM to predict the type of fix needed for flaky tests. Chen and
Jabbarvand leveraged GPT to repair flaky tests, including OD
tests [9]. Unlike prior work, we leverage LLMs to compute
the likelihood of OD-relevant tests for a given OD test. Our
approach requires the model to process features from multiple
tests, as OD-relevant tests only matter w.r.t. an OD test. We
evaluate effectiveness and efficiency in this problem domain,
i.e., in how quickly one finds a correct OD-relevant test,
instead of machine-learning metrics like F1-score.

IX. CONCLUSIONS

We propose RankFL and RankFO to rank tests by their
likelihood of being OD-relevant tests for an OD test. Prior
approaches for finding OD-relevant tests are often time-
consuming, so we propose first ranking tests based on their
likelihood of being OD-relevant tests, before running them
to confirm, thereby reducing the overall search time. RankFL

employs an LLM that considers only the test-method body –
the code explicitly within a test method – to rank tests, whereas
RankFO analyzes historical test-order execution data for the
same purpose. Our results show that both RankFL and RankFO

are more efficient than baselines at finding OD-relevant tests.
In the future, we plan to improve RankF by giving it other

sources of information, such as dynamic execution traces of
tests, and explore the combination of different techniques (e.g.,
using the results of RankFL or RankFO to guide the other).
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