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Abstract— Autonomous robot navigation systems often rely
on hierarchical planning, where global planners compute
collision-free paths without considering dynamics, and local
planners enforce dynamics constraints to produce executable
commands. This discontinuity in dynamics often leads to
trajectory tracking failure in highly constrained environments.
Recent approaches integrate dynamics within the entire plan-
ning process by gradually decreasing its fidelity, e.g., increasing
integration steps and reducing collision checking resolution,
for real-time planning efficiency. However, they assume that
the fidelity of the dynamics should decrease according to a
manually designed scheme. Such static settings fail to adapt to
environmental complexity variations, resulting in computational
overhead in simple environments or insufficient dynamics
consideration in obstacle-rich scenarios. To overcome this
limitation, we propose Adaptive Dynamics Planning (ADP), a
learning-augmented paradigm that uses reinforcement learning
to dynamically adjust robot dynamics properties, enabling plan-
ners to adapt across diverse environments. We integrate ADP
into three different planners and further design a standalone
ADP-based navigation system, benchmarking them against
other baselines. Experiments in both simulation and real-world
tests show that ADP consistently improves navigation success,
safety, and efficiency.

I. INTRODUCTION

Autonomous robot navigation is critical for robots to
operate safely and efficiently in real-world environments.
Planning collision-free trajectories while respecting dynam-
ics constraints is particularly challenging in highly con-
strained environments, ranging from narrow indoor corridors
to densely populated outdoor spaces. With the expanding
deployment of robots in domains such as last-mile delivery,
healthcare assistance, and industrial inspection, navigation
systems must deliver both robustness and efficiency across
varying environmental complexities.

Traditional navigation systems usually adopt a two-stage
architecture that separates global path generation from local
trajectory execution [2]. The global planning stage produces
a geometrically feasible path over large configuration spaces
by modeling the robot as a holonomic point mass, while
the local planning stage manages real-time obstacle avoid-
ance and motion execution under full dynamics constraints
within limited horizons. This separation creates fundamental
mismatches: global paths often ignore physical limits such
as curvature and acceleration, forcing local planners to
either heavily modify the path or fail in highly constrained
environments [3].
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Fig. 1: Instead of using a fixed scheme to decrease dynam-
ics fidelity as adopted by DDP [1] (top), ADP leverages
Reinforcement Learning (RL) to adaptively adjust dynam-
ics fidelity to balance modeling accuracy and computation
efficiency during trajectory rollout (bottom).

Recent research has attempted to address this mismatch by
proposing more integrated approaches to dynamics modeling.
For example, guided sampling-based motion planning with
dynamics [4] aims to generate trajectories that strictly satisfy
the dynamics constraints along the entire path. Although
theoretically appealing, such methods are computationally
prohibitive for real-time navigation, given onboard resource
limitations and the need for rapid replanning in dynamic
environments. In contrast, Decremental Dynamics Planning
(DDP) [1] tackles this computational challenge by starting
with high-fidelity dynamics modeling at the early stages
of trajectory rollout and gradually reducing model fidelity,
thereby striking a balance between dynamics fidelity and
computational efficiency. However, DDP’s predetermined
reduction schedules lack environmental awareness, resulting
in computational overhead in simple environments where
simplified models would suffice, or insufficient dynamics
consideration in obstacle-rich environments that demand
higher fidelity modeling.

To address these limitations, we propose Adaptive Dy-
namics Planning (ADP), a learning-augmented navigation
paradigm that employs reinforcement learning to adapt dy-
namics modeling during the entire planning process. Unlike



predetermined approaches like DDP that use fixed reduction
of dynamics fidelity, ADP uses a learned agent as a meta-
controller that dynamically adjusts dynamics model fidelity
based on environmental observations. The agent learns to
modulate various aspects of dynamics modeling—balancing
computational efficiency with trajectory feasibility—while
preserving the stability and interpretability of classical plan-
ning frameworks. This learned adaptation enables intelligent
resource allocation that automatically matches modeling
complexity to environmental demands. To validate ADP’s
feasibility and effectiveness, we integrate it with three clas-
sical planners and compare it against fixed fidelity reduction
approaches based on DDP. Experiments in the simulated
BARN environments [5] and real-world deployment show
consistent improvements in navigation success, safety, and
efficiency.

II. RELATED WORK

We review related work in autonomous robot navigation
and addressing robot dynamics.

A. Autonomous Robot Navigation

Traditional robot navigation systems employ hierarchical
architectures that separate global and local planning. Global
planners, including grid-based [6], [7] and sampling-based
methods [8], [9], compute coarse paths by modeling the
robot as a holonomic point mass, neglecting dynamics for
efficiency. Local planners, in contrast, incorporate dynam-
ics constraints by forward-simulating motion over short
horizons. Methods such as Dynamic Window Approach
(DWA) [10], [11] and Model Predictive Path Integral (MPPI)
control [12]-[14] generate real-time commands while en-
suring collision avoidance and path feasibility. While this
decomposition appears to balance tractability with dynamics,
it often yields paths that are geometrically valid but dynam-
ically infeasible—for example, narrow passages requiring
abrupt turns beyond the robot’s steering limits or routes with
acceleration demands that exceed actuator capabilities.

In addition to classical approaches, recent studies have
explored learning-based navigation [3]. Early efforts focused
on end-to-end approaches [15]-[17] that directly map percep-
tual inputs to control commands, bypassing the global-local
separation. While these methods mitigate coordination is-
sues, they often lack the transparency and robustness required
for safety-critical navigation. More recent work investigated
hybrid approaches that combine learning with classical plan-
ning, aiming to retain the safety and interpretability of
traditional methods while adding adaptability and flexibility.
Such strategies enhance specific components of navigation
pipelines, such as learning cost functions [18]-[20], predict-
ing optimal parameters [21]-[23], or modeling environmental
conditions [24], [25]. Our proposed ADP method follows this
hybrid paradigm but distinguishes itself by targeting robot
dynamics: it employs a meta-control strategy to adapt dy-
namics modeling fidelity in real time to trade off computation
efficiency within different classical planners.

B. Robot Dynamics

The computational burden of dynamics modeling poses a
central challenge for real-time robot navigation. High-fidelity
models that capture mass distribution, actuator limits, and
environmental interactions enable accurate motion prediction
but impose significant computational costs, whereas simpli-
fied models improve efficiency at the expense of physical
realism and feasibility.

To balance this tradeoff, a wide spectrum of modeling
approaches has been explored. Classical methods range from
kinematic abstractions such as bicycle, Ackermann, and
differential-drive models [26]-[28] to analytical formulations
incorporating inertial and actuator constraints. Learning-
based approaches extend this spectrum with data-driven
models that capture complex interactions for high-speed
navigation [29]-[31] and mobility on challenging off-road
terrains [32], [33]. While high-fidelity models yield accurate
state predictions for reliable action generation, their com-
putational demands limit onboard applicability. To mitigate
this, Decremental Dynamics Planning (DDP) [1] begins with
high-fidelity modeling and gradually reduces fidelity during
planning, trading accuracy for efficiency. However, DDP
follows fixed reduction schedules without environmental
awareness, which can result in inefficient resource allocation.
To fully exploit computational resources and adapt to di-
verse environments, ADP leverages reinforcement learning to
adapt dynamics fidelity in real time based on environmental
observations, dynamically matching modeling complexity to
task demands.

III. ADAPTIVE DYNAMICS PLANNING

We introduce ADP, which uses reinforcement learning
to adjust dynamics modeling fidelity and efficiency during
navigation adaptively. ADP learns when to use high-fidelity
dynamics for accurate prediction and when to simplify dy-
namics models for computational efficiency. In this section,
we first formulate the motion planning problem, then define
ADP under the Markov Decision Process (MDP) framework,
and finally discuss the learning algorithm.

A. Motion Planning Problem Formulation

We consider a mobile robot operating in a world W with
state space X' = Xfree UXops, Where Xjee and Xyps denote free
space and obstacle regions, respectively. The robot’s control
space is U and the robot’s motion follows a dynamics model:

si41 = f(st,u300), s € X, u €U, (D

where ¢, specifies the dynamics modeling configuration at
time step t. In general, ¢; can be categorized into two types:
(i) physical constants that characterize the robot’s mechanical
properties, such as mass, inertia, wheelbase, and axle length;
and (ii) computational parameters that regulate the trade-off
between modeling fidelity and computational efficiency, such
as integration interval, collision-checking resolution, or in the
case of learned dynamics models based on neural networks,
(number of) weights and biases.



We instantiate a differential-drive robot as an example.
The state s; = (x,y,) represents the robot’s planar pose
in a fixed global coordinate system, where (x,y) denote
translations along the x- and y-axes, and v denotes the yaw
angle around the z-axis at time step ¢. The control input
u,; is determined by the differential-drive robot’s kinematic
constraints, specifically u; = (v¢, w;), where v; denotes the
linear velocity and w; represents the angular velocity. The
dynamics configuration ¢, can vary over time according to a
selection strategy that maps the current state and observations
to appropriate modeling parameters. Different approaches de-
termine this strategy in different ways. Traditional navigation
systems employ static thresholds (e.g., a time threshold 7 or
a distance threshold d) to switch between global and local
planning phases, maintaining fixed parameter sets throughout
navigation. In contrast, Decremental Dynamics Planning
(DDP) adopts hand-crafted schedules that gradually reduce
modeling fidelity along the rollout by adjusting integration
interval and collision-checking resolution over time.

In summary, given a start state sy € Afe and a goal
state 84 € Xfee, the motion planning problem that con-
siders dynamics is to find a sequence of control inputs
{ut}tT:_Ol together with a sequence of dynamics modeling
configurations {qﬁt}f:_ol to generate trajectories that satisfy
8¢ € Xiree, Vt € {t}1_, and ensure dynamic feasibility.

B. Adaptive Dynamics Planning Problem Formulation

We formulate ADP as a MDP operating within a meta-
environment £ that encompasses both the obstacle-occupied
world VW and the underlying motion planner p. The MDP
is defined by the tuple (S, A,7,R,7), where the agent’s
objective is to adaptively select dynamics modeling config-
urations based on environmental conditions.

The state space S at time step ¢ is defined as s; =
(ot, d1—1, g¢ ), where o, represents the current sensor observa-
tions (e.g., laser scans), ¢;_1 denotes the previous dynamics
modeling configuration, and g; encodes goal-related infor-
mation, including the relative distance and angle to the local
goal. The action space A = ® defines the feasible parameter
space for dynamics modeling configurations, encompassing
feasible ranges for integration intervals, trajectory rollout
horizons, collision-checking densities, velocity/acceleration
limits, and learned dynamics model parameters. Each con-
figuration ¢ € ® represents specific parameter values within
these ranges. The transition function 7 : Sx.A — S operates
within £ as follows: when the agent selects action a; € A,
determining configuration ¢ = a;, the motion planner p
rolls out trajectories based on a dynamics model that uses
this configuration to select best control commands u;, which
are executed in world W. This results in the next state
St+1 = (Ot+1a¢tagt+1), where St41 T('|3t>¢t) includes
new observations and goal information. To guide the learning
process, the reward function R : § x A — R evaluates
the trajectory performance resulting from applying dynamics
configuration ¢; over the planning horizon, encouraging
configurations that achieve necessarily accurate dynamics
prediction while maintaining computational efficiency.

Finally, the objective of ADP is to learn an optimal policy
m* : S — A that maximizes the expected cumulative reward
over time:

T

™ _ t
IH?X JT = E507¢t’\’7"(st)73t+1NT(5t7¢t) Z T
t=0

where v € [0, 1] is the discount factor.

C. State, Action, and Reward Specification

State Space: Our specific state space includes four com-
ponents: (i) A 720-dimensional laser scan with a 270° field
of view, normalized to the range [—1,1]; (ii) The previous
dynamics configuration from the last time step; (iii) The
robot’s current linear and angular velocities; (iv) Goal-related
information, including the relative distance and bearing to
both a local goal and the global goal. These components
are concatenated into a fixed-size state vector that serves
as the state representation for learning, consisting of 726
dimensions plus the dimensionality of the previous action
space.

Action Space: The action space defines parameters for
adaptive dynamics modeling. We design multiple strategies:
First, fixed parameter selection, where actions directly spec-
ify values for integration intervals and collision checking
density; Second, a decremental dynamics strategy where
actions specify total rollout time 7', discretization steps N
(determining how many time intervals the rollout horizon is
divided into), temporal distribution parameter p, and blending
coefficient . This strategy focuses on adaptive integration
intervals and does not modify collision checking density.
The time intervals are computed as At; = ¢; — t;_1 where
ti=a % T+ (1—a)-(£)P-T; Third, an incremental dy-
namics variant that reverses the computed interval sequence
from decremental dynamics function. We hypothesize that
the counterintuitive incremental dynamics approach would
not achieve good results. Actions are normalized to [—1, 1]
during training and mapped to feasible parameter ranges
during execution.

Reward Design: The reward function encourages effective
navigation through four components: (1) progress reward
Tprogress Measuring distance reduction toward the goal, (2)
collision penalty rconision €nforcing safety constraints, (3)
time penalty 7iym. promoting efficient task completion, and
(4) obstacle avoidance reward 7gpstacle €ncouraging safe prox-
imity to environmental obstacles. Specifically, the obstacle
avoidance component identifies the 10 nearest obstacles from
laser scan data and applies a quadratic penalty (1 —d/0.05)?
when the robot-obstacle distance d < 0.05m, encouraging
the robot to maintain safe distances from environmental
obstacles. The total reward iS 7¢ = Tprogress = Tcollision + Ttime +
Tobstacle- Lhis formulation guides the agent to learn dynamics
parameter selection policies that optimize navigation per-
formance by adapting dynamics modeling to environmental
demands.
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Fig. 2: Example of the ADP Navigation System Operating in a BARN Environment. Left: Gazebo Visualization. Right:
RViz Visualization. Lighter and deeper green colors indicate lower and higher fidelity in dynamics modeling, respectively.
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D. Reinforcement Learning Algorithm

ADP requires a reinforcement learning algorithm that
handles continuous parameter spaces and demonstrates high
sample efficiency in navigation scenarios. TD3 [34] (Twin
Delayed Deep Deterministic Policy Gradient) meets these
requirements as an off-policy actor-critic method designed
for continuous control. The algorithm maintains a policy
network and dual Q-function approximators. The dual Q-
network [35] design addresses overestimation bias through
double learning, where each network updates via the Bellman
residual objective. Training stability is enhanced through
delayed policy updates and target value clipping. Given the
computational demands and variance inherent in navigation
simulation, TD3’s robustness and sample efficiency make
it well-suited for learning dynamics parameter policies. To
improve sample efficiency, we employ distributed training
using SLURM workload manager with multiple parallel
actors collecting experience across different simulation envi-
ronments. Each actor collects data from at most two episodes
before entering an idle state, waiting for the next assignment
cycle. Data is aggregated in a centralized replay buffer for a
single learner process, accelerating training while providing
environmental diversity for robust policy learning.

E. ADP-Augmented Planners

Based on the ADP design, we integrate adaptive dy-
namics modeling into three sampling-based motion plan-
ners: DWA [10], MPPI [12], and Log-MPPI [13]: DWA
samples velocity commands within dynamic constraints and
simulates resulting trajectories; MPPI optimizes trajectories
through importance sampling of randomly perturbed control
sequences, computing optimal actions as weighted averages;
Log-MPPI applies exponential transformation to trajectory
costs, combining stochastic sampling with model predictive
control for robust optimization.

All three planners use the same ADP temporal discretiza-
tion strategy, where the learned policies are trained sepa-
rately and adaptively adjust integration intervals based on
environmental conditions. This replaces fixed parameters in
vanilla implementations and hand-crafted schedules in DDP.
Apart from the dynamics modeling precision selection, all

Laser data Goal

other components remain identical to DDP counterparts,
ensuring fair comparison. Each ADP-augmented planner
operates independently without recovery behaviors, relying
solely on learned adaptive dynamics for robust navigation.

FE. Standalone ADP-based navigation system

The ADP navigation system incorporates the same op-
erational modes as DDP, including high-speed navigation,
precision maneuvering, and recovery behaviors. The system
transitions between these modes based on environmental
feedback, maintaining the proven mode-switching framework
established by DDP. However, while DDP relies on hand-
crafted schedules for dynamics parameter selection, ADP
employs learned policies to adaptively configure temporal
discretization. In open areas, ADP automatically selects
coarse integration intervals with fewer discretization steps
for computational efficiency, while complex environments
trigger fine-grained integration intervals with higher step
counts for enhanced precision, with these decisions driven
by reinforcement learning rather than predetermined rules.

At each planning iteration, the motion planner receives
these adaptive parameters and generates trajectory sam-
ples using the variable temporal resolution. The learned
discretization strategy directly affects both the prediction
accuracy of individual trajectories and the overall compu-
tational cost of the planning process. Trajectory evaluation
employs a comprehensive cost function incorporating goal
proximity, obstacle clearance, path efficiency, and motion
smoothness. After evaluating all candidates, the system se-
lects the N = 10 lowest-cost collision-free trajectories and
computes control commands through weighted averaging
based on trajectory costs. This approach ensures that the
final control decisions reflect both the quality of individual
trajectories and the reliability of their underlying dynamics
modeling.

IV. EXPERIMENTS

In this section, we validate ADP’s capability to adapt dy-
namics modeling across diverse environments without man-
ual tuning or fixed reduction schedules. ADP is integrated
into three classical planners and evaluated in direct compari-
son with their DDP-augmented counterparts. Experiments are



TABLE I: Performance Comparison of Adaptive and Decremental Dynamics Planning: Experimental Evaluation on 225

Testing Environments from BARN Challenge

Method Task Success (%) T Avg. Time (s) | Avg. Score 1 Avg. Collision (%) | Avg. Timeout (%) |
1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
DWA-DDP 93.74 8646 7394 1247 13.10 17.67 0469 0432 0370 0626 1354 26.06 0.00 0.00 0.00
DWA-ADP 97.03 9498 8220 1047 08.62 11.82 0485 0475 0411 0297 0502 17.80 0.00 0.00 0.00
MPPI-DDP 9145 90.54 8239 1446 12.11 1431 0457 0453 0412 0841 0932 17.61 0.14 0.15 0.00
MPPI-ADP 96.70 94.13 9328 11.56 0822 10.28 0.482 0461 0466 01.02 01.01 0033 228 4.86 6.40
Log-MPPI-DDP  61.24 53.86 5041 2679 2754 31.15 0294 0.269 0.240 3474 4571 46.81 4.02 044 2.78
Log-MPPI-ADP  65.85 57.82 5438 2246 21.74 25.14 0320 0298 0264 3131 4211 4345 284 0.07 2.06
DDP 9538 96.61 93.05 1428 11.63 11.32 0473 0483 0465 01.02 0000 0503 3.60 3.39 1.92
ADP 99.61 99.22 99.11 1285 1022 08.66 0.491 0.494 0.494 0033 0059 0060 0.07 020 0.29

Each environment is tested 20 times, with the 5 best and 5 worst results excluded. Values 1.0, 1.5, and 2.0 denote maximum linear velocity (m/s). Bold

indicates the best result.

TABLE II: Ablation Studies on ADP Performance

Impact of Different ADP Models

Method Success (%) T Avg. Time (s) | Avg. Score 1
ADP-Unc 99.20 10.55 0.491
ADP-Dec 99.22 10.22 0.494
ADP-Inc 96.85 11.87 0.480
Impact of Training Environment Quantity
Method Success (%) T Avg. Time (s) | Avg. Score 1
ADP-25 96.87 11.16 0.484
ADP-75 99.22 10.22 0.494
ADP-125 99.11 10.79 0.494
ADP-175 98.92 10.98 0.491

Maximum linear velocity: 1.5 m/s.

conducted in both the BARN Challenge benchmark [36]—[38]
and real-world deployments using a Clearpath Jackal robot.

A. Experimental Setup

1) Baseline Methods: While DDP has shown im-
provement when augmenting classical approaches [1] like
DWA [10], MPPI [12], and Log-MPPI [13], we evaluate the
DDP-augmented DWA-DDP, MPPI-DDP, and Log-MPPI-
DDP against our ADP variants, i.e., DWA-ADP, MPPI-ADP,
and Log-MPPI-ADP, to assess learned versus predetermined
dynamics adaptation. Additionally, we compare integrated
DDP and ADP navigation systems that incorporate recovery
behaviors, a capability not provided by the three standalone
planners. All DWA and MPPI variants directly process laser
scans with goal progress, obstacle avoidance, and motion
smoothness objectives, while Log-MPPI variants employ
costmap-based planning. All DDP-based planners (except
Log-MPPI variants) operate with a 2-second trajectory roll-
out horizon discretized into 20 time steps with temporal
resolution At; = (i&)p Tiotal — (%)p -Tiotal, Where N = 20,
Tiotat = 2 seconds, and p = 1.7. DWA variants use 20x20
linear and angular velocity grid sampling, MPPI variants
generate 550 trajectory samples with 8-thread parallel pro-

cessing, while Log-MPPI variants employ default parameters
from the public implementation.

2) Experimental Environments: Our evaluation encom-
passes both simulated and real-world scenarios. The BARN
benchmark [5] provides 300 environments with diverse ob-
stacle configurations generated via cellular automata (Fig. [2).
We randomly select 75 training environments from the 150
most challenging ones, with the remaining 225 environments
serving as the test set. Additional evaluation is conducted
on 50 unpublished environments from the 2025 BARN
Challenge [39] to compare against state-of-the-art navigation
methods. Physical experiments are conducted in indoor test
courses, where the robot starts from the bottom-left corner
and navigates to a star-shaped goal in the upper-right corner
(Fig. B). Additionally, ADP is deployed in natural cluttered
indoor and outdoor environments (Fig. [).

3) Training Configuration: ADP agents use TD3 with
actor and critic networks. The actor employs a single fully-
connected layer after feature extraction with tanh activation
for bounded outputs, while critics use 3-layer networks (512-
256-1 units) with ReLU activations. Training occurs on a
SLURM cluster, with each training environment generating
two episodes before entering standby mode to prevent data
imbalance and ensure uniform sampling across different
environments. The system initializes from the DDP dynamics
schedule and learns environment-aware adaptation using
experience replay (200K buffer) and n-step returns (n=6) for
improved sample efficiency.

4) Hardware Configuration: Physical experiments are
conducted on a Clearpath Jackal robotic platform equipped
with a Hokuyo LiDAR sensor providing 720-dimensional
laser scans over a 270° field of view. Simulation experiments
run on a computing platform featuring an AMD Ryzen 9
5900X processor (3.7 GHz) under Ubuntu 20.04 with ROS
Noetic. All implementations are developed in C++ using g++
9.4.0 for optimal real-time performance.

5) Evaluation Metrics: In simulation, we adopt the BARN
Challenge scoring metric to quantify navigation performance.
Each environment is assigned a score based on task comple-



TABLE III: Performance Comparison on BARN Challenge
Environments

50 Most Challenging BARN Test Environments

Method Success (%) T Avg. Time (s) | Avg. Score 1
DWA-DDP 44.00 31.74 0.220
DWA-ADP 80.00 14.81 0.399
MPPI-DDP 50.67 29.90 0.253
MPPI-ADP 80.30 13.36 0.401
Log-MPPI-DDP 02.67 48.88 0.013
Log-MPPI-ADP 08.51 41.87 0.085
DDP 79.63 21.33 0.397
ADP 95.80 14.92 0.470

2025 BARN Challenge Leaderboard (50 Unpublished Environments)

Method Success (%) T Avg. Time (s) | Avg. Score 1
INVENTEC 98.20 14.13 0.4206
KUL+FM 99.60 12.32 0.4641
AIMS 96.00 9.70 0.4723
LiCS-KI [40] 95.40 7.55 0.4762
DDP 99.00 7.67 0.4873
FSMT 98.20 8.65 0.4878
ADP 99.39 10.23 0.4940

All approaches are evaluated with a maximum linear velocity of 1.5 m/s.

tion and traversal efficiency:
OT;

where OT; and AT; denote the optimal and actual traversal
times respectively with 1%9°°®S as an indicator function for
traversal success. The clipping bounds normalize execution
time, ensuring scores remain within a consistent range [36]—
[38]. To compute the average traversal time across all trials,
the traversal time of failed trials is set to 50 seconds. For
each environment, we conduct 20 runs and report results after
removing the top five and bottom five performance trials to
ensure statistical robustness. For real-world experiments, per-
formance is evaluated using three primary metrics: success
rate, completion progress, and traversal time.

B. Ablation Study

1) Dynamics Modeling Strategies: The first table in Ta-
ble |lIj compares three ADP dynamics modeling strategies:
ADP-Unc (unconstrained) allows flexible dynamics fidelity
adjustment across all time steps without predefined patterns,
ADP-Dec (decremental) reduces dynamics fidelity over the
planning horizon, and ADP-Inc (incremental) progressively
increases dynamics fidelity. ADP-Dec achieves the best
overall performance, demonstrating a superior success rate,
time efficiency, and navigation score compared to the other
variants. ADP-Inc shows notably lower performance across
all metrics, suggesting that increasing dynamics fidelity over
time is less effective for navigation tasks. These results val-
idate the effectiveness of decremental scheduling proposed

success

by DDP, which necessitates adaptation in contrast to a fixed
schedule.

2) Number of Training Environments: The second table in
Table [[I| examines the effects of training environment quan-
tity on ADP performance. ADP-25 underperforms due to
insufficient training diversity, while ADP-75 achieves better
results across all metrics. Interestingly, ADP-125 maintains
similar performance to ADP-75, but ADP-175 shows slight
degradation.

Based on these findings, we use ADP-Dec trained on 75
environments as our default configuration, which achieves
the best performance while avoiding overfitting to the train-
ing distribution.

C. Simulated Experiments

1) Standard BARN Environments: Table [ compares ADP
and DDP variants across 225 test BARN environments
at three velocity settings, with navigation times including
both successful and failed attempts. ADP-enhanced planners
consistently surpass their DDP counterparts, achieving higher
success rates, fewer collisions, and faster navigation across
DWA, MPPI, and Log-MPPI. The standalone ADP system
works particularly well, sustaining near-perfect navigation
even at maximum velocity, where fixed-schedule methods
typically degrade. These findings highlight the effectiveness
of adaptive dynamics modeling, which delivers both safety
and efficiency. Log-MPPI exhibits inherently lower perfor-
mance due to the difficulty in maintaining accurate costmaps
during agile maneuvers in highly constrained spaces, though
it still demonstrates improvement with ADP. These results
suggest that environment-aware dynamics adaptation can
achieve improvements within various planning paradigms.

2) Challenging Environments: The top table in Table [IT]]
reports the performance across the 50 most challenging
BARN test environments. The benefits of ADP become even
more pronounced in these demanding scenarios: adaptive
modeling enables planners to remain robust under extreme
constraints, while DDP counterparts suffer sharp perfor-
mance drops. ADP-enhanced DWA and MPPI maintain
strong reliability, and the standalone ADP system continues
to succeed in scenarios where other methods frequently fail.
Even Log-MPPI, though inherently limited by its costmap-
based structure, gains measurable improvements from ADP
integration. These results confirm that adaptive dynamics
modeling is especially critical in highly constrained settings.

3) Unpublished environments: The bottom table in Ta-
ble [III| compares ADP against top-performing methods from
the 2025 BARN Challenge using 50 unpublished test envi-
ronments. ADP achieves the strongest overall performance,
surpassing prior systems, including DDP. This highlights
ADP’s strong generalization ability beyond its training distri-
bution and underscores its potential for broader deployment
in diverse navigation scenarios.

D. Physical Experiments

As shown in Fig.[3] we evaluate three groups of navigation
methods across two complex physical environments for real-
world experiments: DWA-DDP vs DWA-ADP, MPPI-DDP



Fig. 3: Two Physical Test Environments.

TABLE IV: Performance on Two Physical Test Environments

Method Success T Avg. Progress (%) T  Avg. Time (s) |
DWA-DDP 0/8 67.52 £+ 4.67 120.00 % 0.00
DWA-ADP 2/8 77.21 £+ 4.35 101.57 + 4.31
MPPI-DDP 3/8 74.10 £ 5.72 114.87 + 5.21
MPPI-ADP 5/8 89.50 + 1.82 95.75 + 4.57
DDP 8/8 100.00 £ 0.00 90.24 £+ 4.73
ADP 8/8 100.00 £ 0.00 65.02 + 3.55

Maximum linear velocity: 1.5 m/s.

vs MPPI-ADP, and the standalone systems DDP vs ADP. Due
to Log-MPPI’s poor performance in simulation experiments
and safety considerations for the physical testing, we exclude
it from real-world evaluation. Each method is tested four
times in each environment. For successful completions, we
record the average traversal time; for failed attempts, we
set a uniform timeout of 2 minutes and measure navigation
progress. Table [IV] shows that ADP-augmented methods
consistently outperform their DDP counterparts across all
metrics. Both standalone systems (DDP and ADP) achieve
perfect success rates, with ADP demonstrating significantly
faster completion times. ADP shows notable improvements
in both success rates and progress completion compared
to their respective baselines, validating the effectiveness of
learned adaptive dynamics over hand-crafted scheduling in
real-world scenarios.

V. CONCLUSION

In this work, we present ADP, a novel framework that em-
ploys reinforcement learning to adaptively regulate dynamics
modeling fidelity. By adjusting modeling complexity during

Fig. 4: Real-World Cluttered Environment Experiments.

planning, ADP addresses the fundamental trade-off between
accuracy and efficiency and mitigates the feasibility limi-
tations of traditional hierarchical methods. Comprehensive
evaluations across 300 simulated BARN environments and
real-world Jackal deployments demonstrate that ADP con-
sistently enhances navigation success, safety, and efficiency
relative to fixed scheduling strategies. Its integration with
multiple planners, including DWA, MPPI, and Log-MPPI,
underscores the generality of the framework, while supe-
rior performance on unseen BARN Challenge environments
confirms its robustness and generalization capability. These
findings indicate that adaptive dynamics modeling provides
a powerful alternative to static parameterization, enabling
navigation systems to balance computational efficiency with
physical feasibility. This paradigm shift from fixed to adap-
tive modeling offers a promising pathway for advancing
mobile robot autonomy in complex environments.
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