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Anticipatory Task and Motion Planning:
Improved Rearrangement in Persistent
Continuous-Space Environments

Roshan Dhakal *”, Duc M. Nguyen

and Gregory J. Stein

Abstract—We consider a sequential task and motion planning
(TAMP) setting in which a robot is assigned continuous-space
rearrangement-style tasks one-at-a-time in an environment that
persists between each. Lacking advance knowledge of future tasks,
existing (myopic) planning strategies unwittingly introduce side
effects that impede completion of subsequent tasks: e.g., by block-
ing future access or manipulation. We present anticipatory task
and motion planning, in which estimates of expected future cost
from a learned model inform selection of plans generated by
a model-based TAMP planner so as to avoid such side effects,
choosing configurations of the environment that both complete
the task and reduce overall cost. Simulated many-task deploy-
ments in navigation-among-movable-obstacles and cabinet-loading
domains yield improvements of 32.7% and 16.7% average per-
task cost respectively. When given time in advance to prepare the
environment, our learning-augmented planning approach yields
improvements of 83.1% and 22.3%. Finally, we also demonstrate
anticipatory TAMP on a real-world Fetch mobile manipulator.

Index Terms—Integrated planning and learning, task and
motion planning.

I. INTRODUCTION

E consider a sequential task and motion planning

(TAMP) setting, in which a long-lived robot is assigned
rearrangement-style tasks one-at-a-time from a sequence. The
environment persists between tasks, so that the terminal state
after completing one task serves as the starting state for the
next. Lacking advance knowledge of what tasks the robot will
later be assigned, existing TAMP planners [1], [2], [3], [4], [5],
[6], [7], [8], [9] are myopic, targeting low-cost solutions to their
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Fig.1. Anticipatory TAMP reduces cost by anticipating how plans now impact
tasks that may later be assigned, shown here to improve performance in our
cabinet-loading scenario.

immediate objective without regard to the future, a pervasive
planning strategy that often incurs side effects on subsequent
tasks that increase overall cost.

Consider the cabinet-loading scenario of Fig. 1. Myopic
planning via an off-the-shelf TAMP solver [10] quickly loads
the mugs and bowls into the cabinet yet in a configuration that
impedes unload the bowls, atask the robot might next be
assigned for which the mugs must be moved out of the way. If
the robot were to instead anticipate that it may later be tasked
to unload the bowls or unload the mugs, it would
load the cabinet so as to avoid such side effects. As shown in
Fig. 1 (bottom), this small immediate expenditure of additional
effort reduces cost overall.

The cabinet-loading scenario falls within the realm of an-
ticipatory planning [11], [12] an emerging subfield in which
a robot jointly considers the cost of accomplishing its current
task—specified as a high-level symbolic goal the robot should
achieve—and the impact of its solution on subsequent tasks. As it
will not know its future tasks in advance, the robot must instead
plan with respect to a task distribution, which specifies what
future tasks may later be assigned and their relative likelihood.
Anticipatory planning thus involves searching over the space of
plans to find the one that jointly minimizes the immediate plan
cost and the expected future cost.

Recent work in the space of anticipatory planning [11],
[12], [13], [14], so far focuses specifically on anticipatory fask
planning problems, for which the state space is discrete; one
such approach [12] considers anticipation in homes, yet only
over symbolic states, not considering geometric constraints and
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continuous motions. However, rearrangement-style tasks in
general often require jointly reasoning about both discrete ele-
ments of the state (e.g., whether an object is loaded into the cabi-
net) and continuous parameters of the state: e.g., where inside the
cabinet the object is placed. Integrated TAMP, designed to solve
such problems, is inherently complex due to the interconnected
nature of the discrete and the continuous, since removing an
object from the back of a cabinet may first require moving other
objects out of the way. This challenge is further amplified by
the need to anticipate how the robot’s actions may negatively
impact potential future tasks.

Just as TAMP requires specialized solvers, exhibiting antic-
ipatory behaviors in a continuous setting requires novel con-
tributions that intertwines search over an integrated discrete-
continuous state space. Existing anticipatory planning strategies
are not well-suited to reason about these continuous aspects of
the state. Our cabinet-loading scenario illustrates the importance
of their consideration: though loading all objects inside the
cabinet specifies only a single symbolic state, how those objects
are arranged within the cabinet strongly determines how easily
objects can be subsequently unloaded. This work develops an
approach that, unlike the dominant paradigm, accounts for sub-
sequent tasks to improve the performance of long-lived robots
that live in an environment that persists between tasks.

We present Anticipatory Task and Motion Planning, which
improves robot performance of over long deployments in per-
sistent environments, each deployment a sequence of tasks as-
signed one-at-a-time, by imbuing them with the ability to antic-
ipate the impact of their actions on future tasks in continuously-
valued manipulation and rearrangement tasks. Difficult to com-
pute exactly, the expected future cost is estimated via learning
using a graph neural network (GNN) that consumes a graphical
representation of the state. A model-based TAMP planner [5],
[10] generates candidate plans, in effect sampling over the
continuous goal space, and we select the plan that minimizes
the total cost: (i) the immediate cost from the TAMP planner
plus (ii) the estimated expected future cost from our learned
estimator. Using learning and planning in tandem, our approach
quickly and reliably completes the assigned objective while
also producing solutions that reduce overall cost over lengthy
many-task deployments.

The contributions of this work are as follows: (1) the insight
that a lack of anticipation is a source of poor performance for
robots operating in persistent continuous-space environments;
no approach exists that can jointly reason about the continuous
aspects of state and anticipation. (2) a novel approach that can
address both the challenges of anticipation and TAMP: an anytime
approach that leverages an off-the-shelf TAMP planner, to benefit
from its reliability and generality in continuous-space settings,
and uses a learned expected future cost estimator to select
future-conscious continuous-space plans from the solver. (3)
experimental evaluations that validate our insight and afford sig-
nificant performance gains in both simulated environments and
real-robot experiments that reflect elements pervasive among
mobile robots.

We evaluate the performance of our learning-augmented plan-
ning approach in two domains: an object-reaching scenario in
a navigation among movable obstacles (NAMO) domain and
a cabinet-loading domain. We demonstrate that our approach
reduces average plan cost by 32.7% over 20-task sequences
in the NAMO domain and by 16.7% over 10-task sequences
in the cabinet domain. Furthermore, if given time in advance
to prepare the environment before any tasks are assigned, we
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demonstrate performance improvements of 83.1% and 22.3%
in the NAMO and cabinet domains respectively. In both simu-
lated and real-world experiments, we show the benefit of our
learning-augmented TAMP strategy, improving performance over
deployments in persistent environments consisting of multiple
tasks given in sequence, a step towards more performant long-
lived robots.

II. RELATED WORK

Task and Motion Planning: TAMP involves jointly reasoning
over discrete (place the bowl)and continuous (at pose
X)) spaces to achieve long-horizon goals (load the bowls
and mugs) [15], [16]. We build on the sampling-based TAMP
planner of Srivastava et al. [5]. Existing TAMP approaches [1],
121, [3], [4], [5], [8], [9], [17], [18] solve tasks in isolation. We
show empirically that this myopic approach performs poorly
when the environment persists and solutions to one task may im-
pact the next.

Feasibility Checking for Planning: Lagriffoul and An-
dres [19] use geometric features to prune infeasible plans.
Learning-based methods also exist to predict feasibility [20],
[21], [22]. While these methods improve efficiency by specif-
ically focusing on feasibility checks and predictions, our ap-
proach explicitly estimates expected future costs to avoid neg-
ative side effects in general, improving performance averaged
over all possible future tasks even in the absence of any feasi-
bility constraints or considerations.

Anticipating and Avoiding Side Effects: Recent work has
explored how anticipating future tasks can improve planning:
e.g., via estimation of expected future costs [11], [12], task
prediction using LLMs [13], or modeling human routines to
enable proactive assistance [14]. However, these methods focus
on discrete-space task planning rather than integrated TAMP,
which requires reasoning over both symbolic and continuous
state spaces. Therefore, a new approach is required that can rea-
son about anticipation in the joint discrete-continuous space of
TAMP. Other works in reinforcement learning [23] and learning
from demonstration [24], [25], [26], [27] aim to acquire helpful
behaviors through interaction or example, and could help reduce
side effects. However, their direct application is difficult in our
setting, which is non-deterministic, long-horizon, and requires
generalization across symbolic and geometric constraints.

Integrating Planning and Learning: To address some of
the computational challenges in task planning and TAMP, recent
advances have leveraged learning: learning heuristics for task-
level planning [6] or sampling distributions for continuous-space
planning [6], [28], [29]. Recently, the use of LLMs has also been
explored in TAMP: language-guided object rearrangement [30],
planner-motion feedback loops that reason over inverse kinemat-
ics/collision failures [31], as translators/checkers [32], and for
grounding [33]. However, all such approaches focus on solving
a single task in isolation and are also not well-suited to address
the unique challenges of our anticipatory TAMP objective. Our
learned model for this work is a graph neural network (GNN) [34],
[35], [36], as they have proven effective for TAMP problems [9],
[37], [38], [39].

III. ANTICIPATORY TASK AND MOTION PLANNING

A. Preliminaries

Task and Motion Planning: We define a task and motion
planning (TAMP) problem as a tuple (S, F, A, s, 7) following
the conventions of Chitnis et al. [7]. S defines the configuration
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space of the robot and all moving objects in the environment.
F are Boolean predicates describing symbolic relationships; A
are high-level operators such as pick, move, and place. The
initial state is sg € S, and the task 7 is a set of goal fluents
defining the goal region G, C S.

The goal of a TAMP planner is to find a sequence of actions
T = |ag,...,ay] such that the final state tail(m) € G,. We
assume access to such a planner. In this work, we use the planner
of Srivastava et al. [5], [10], which uses the Planning Domain
Definition Language (PDDL) [40] and FastDownward [41] for
symbolic task planning and leverages RRT-Connect [42] for mo-
tion planning, to refine task skeletons into feasible trajectories.
For notational convenience later, we represent a state s as a
tuple (o, k), representing the discrete symbolic components of
the state o (e.g., on which surface an object is placed) and the
continuous aspects of the state k: e.g., where on that surface the
object is placed.

Anticipatory Planning: There is often considerable flexibil-
ity in how the robot can choose to complete its assigned task
T: i.e., the goal region GG, consists of more than a single sat-
isfying state. During long-lived deployments, the environment
will persist between tasks, and so effective planning requires
that the robot consider how its choice of how to complete the
current objective—which goal state s, it ends up in—impacts
possible tasks it may later be assigned, where tasks are assigned
according to a fask distribution P (7). We treat this distribution as
static, a realistic setting in which the robot’s responsibilities do
not change over its lifetime. We adopt the formalism of Dhakal
et al. [11], [12], which defines anticipatory planning as a joint
minimization over (i) the cost to complete its assigned current
task 7. and (ii) the expected future cost to complete a subsequent
task:

Immediate Task Cost:
Cost to reach sy from sg

—
s, = argmin Vi, (s0) + g P(1)V:(sg) ]|
’ s4€G(7e) -

Anticipatory Planning Cost:
Expected cost over future tasks

ey

where V; (s0) is the plan cost to reach state s, from starting state
s0, and V- (s4) is the cost to complete task 7 from state s,, and
the notational shorthand ) __ indicates a sum with a contribution
from each task 7 in the task distribution P (7). As mentioned by
Dhakal et al. [11], reasoning about expected future cost over
long sequences of tasks is computationally challenging, and so
Eq. (1) instead seeks to minimize cost over an immediate task
and a single next task in the sequence; we will show in Section V
that this formulation is still sufficient for improved behavior over
lengthy sequences. We note that the aim of anticipatory planning
is not to directly predict what the next task might be, but to plan
to reduce expected future cost.

Owing to the difficulty of integrated TAMP, recent work in
this space [11], [12], [13], [14] considers only fask planning
settings, focusing only on symbolic planning and thus ignoring
continuously-valued aspects of the state.

B. Problem Formulation: Anticipatory TAMP

We solve the problem of anticipatory TAMP, which combines
elements of both TAMP and anticipatory planning and so is de-
fined by the tuple: (S, F, A, so, 7, P(7)). Tackling this problem
requires reasoning about both discrete and continuous aspects
of the state and so anticipatory TAMP in general involves solving
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the following objective:

Immediate Task Cost: Anticipatory Planning Cost:

Cost to reach s g =(o g,k )

[ Vo i(s0)+ 30 P()Va((og,ky)) |

Expected cost over future tasks

* Ok .

04k, = argmin )
0g,kgeG(1e)

= argmin

Vi, (50) + Var. (o9 k) |-
0g,kgeG(Tc) N—

Va.p.= expected future cost

where V, ;(so) is the plan cost to reach state s = (o, k) from
initial state sy and V- ({04, kq)) is the cost to complete task 7
from state s, = (04, k).

Preparation as Task-Free Anticipatory TAMP: Household
robots will not be in perpetual use and so can take preemptive
action to prepare the environment: transform or rearrange the
environment to reduce expected future costs and thus make
it easier to complete tasks once they are eventually assigned.
Formally, preparation can be defined as task-free anticipatory
planning [11]. For anticipatory TAMP, we define preparation as
minimization over the space of continuous states k associated
with the current symbolic state o, kprep € K (00): €.g., rear-
ranging the objects within the cabinet. Thus, the prepared state
of the environment (00, k},,..,,) is defined via:

3)

k;rep = argmin [VA-P-(<JOV kprep>)] .
kprep €K (00)

C. Approach: Planning Via Anticipatory TAMP

Our anticipatory task and motion planning involves selecting
a plan that minimizes total cost: the sum of immediate plan
cost and expected future cost, Va p. (Eq. (2)). Since computing
Va p. online is intractable in general, we use a learned model,
APCOSTESTIMATOR, to estimate it during planning. Fig. 2 and
Algorithm 1 outline this process.

Our method builds on an existing randomized TAMP solver [5],
[10], which produces diverse plans by sampling over the con-
tinuous goal space. Each call returns a valid plan 7 ending in a
randomly sampled goal state. We query TAMPSOLVER N times
to generate /N candidate plans, estimate V p. for each using
APCOSTESTIMATOR, and return the plan with the lowest total
cost according to Eq. (2). This algorithmic approach is similar
to that of Talukder et al. [12], who use a random sampling
approach as a computation saving measure to search the space of
possible states to select the state that jointly minimizes the sum
of immediate cost and the anticipatory cost, consistent with the
general framework of anticipatory planning. Our approach relies
on a TAMP solver to search the space of plans and so is capable
of continuous-space reasoning necessary for our setting.

This approach is anytime. Both the anticipatory TAMP solver
and the myopic TAMP solver are run multiple times as computa-
tion allows (as would be determined by the user or setting) with
a different selection criteria used to select the “best” plan. The
only added cost over the baseline is the negligible overhead of
the learned estimator. When computation is not available more
than once, both approaches return the only generated plan. With
more computation, our method yields clear benefits, as shown
in Section V-D.

Due to the high computational cost of searching over hy-
brid state spaces, in this work we specifically study tasks with
well-specified symbolic goals. This shifts the planning emphasis
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Fig. 2. Schematic of our Anticipatory TAMP Approach. As detailed in
Alg. 1, a TAMP solver is queried N times and we choose the solution that
minimizes the sum of immediate task planning cost and expected future cost,
estimated by a learned model: APCOSTESTIMATOR.

to continuous aspects—for instance, placing all objects in a
cabinet defines a single symbolic goal, yet requires reasoning
over their exact continuous placements. However, we note that
our contributions are generally applicable.

Preparation, task-free anticipatory TAMP, searches for the
state that minimizes expected future cost in advance of being
given a task. We perform this search via a simulated anneal-
ing optimization approach [43]. Beginning with an initial state
(00, ko), we iteratively perturb the continuous object states & to
find valid configurations. If the V5 p. of the new state is improved
or meets a probabilistic criterion influenced by a decreasing
temperature factor, it is accepted as the new state to perturb.
Search proceeds for IV iterations or as computation allows,

eventually returning the prepared state (0o, k5, )-

IV. ESTIMATING EXPECTED FUTURE COST

During deployment, direct computation of the anticipatory
planning cost Vi p ({04, ky)) is often infeasible, due to the
high computational cost of solving all possible future tasks for
every state considered during planning or because the robot
may not have direct access to the underlying task distribution
when deployed. Instead, we estimate V p. via an estimator
(APCOSTESTIMATOR): a GNN [34], [35] trained via supervised
learning with data generated during an offline training phase.

The one-time investment to train the estimator obviates the
need for difficult, exhaustive computation of expected future cost
during deployment. Our anytime approach comes with only neg-
ligible computational overhead and achieves forward-looking
behaviors out of reach for its myopic counterpart.

Training Data Generation Offline, we assume access to
the task distribution P(7), which defines possible tasks and their
likelihoods. To generate training data, we sample states s; from
the domain of interest and solve future tasks 7 using TAMP-
SOLVER, computing plan costs V- (s;) to compute the anticipa-
tory planning cost via its definition: Va p. =5 P(7)V;(s;).
Each datum consists of a state s; with its corresponding Vs p_,
which the model learns to estimate. Ubuntu 22.04 is used with
an NVIDIA RTX A4000 GPU.
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Algorithm 1: Anticipatory TAMP

function ANTTAMP(sg, 7, APCOSTESTIMATOR)
*
‘/tmal 0
for : € {1,2,...,N} do
>Get a candidate plan and its cost for T
off-the-shelf TAMP solver, sampling goal states.

7, PLANCOST <— TAMPSOLVER(sq, T)

(og,ky) <= TAIL(m)

>Myopic planning uses a zero-function in place of the
Va.p estimator, as it does not anticipate.

Vap. < APCOSTESTIMATOR ({0 g, k7))

Viotal ¢ PLANCOST + Vap.

using

if V{otal < V;;tal then
T =T Vg ¢ Vioul
return 7*

N

»%’ 5
e

Fig. 3. Example states and their graph representations for both our Cabinet
and NAMO domains for GNN training.

Learning and Estimation via Graph Neural Networks As
we rely on a GNN for learning and estimation, we represent
the environment state (o, k) as a graph G, as shown in Fig. 3.
Nodes represent objects—e.g., the robot, movable objects, and
object containers—and edges represent spatial or semantic re-
lationships between them: e.g., that a bowl is in the cabinet
or a mug is on the table, as visualized in Fig. 3. G includes
features for both nodes and edges, specific to each environment;
see details alongside our experiments in Section V. Our GNN is
implemented via PyTorch Geometric [44] and consists of three
TransformerConv layers [35] each followed by a leaky ReLU
activation, culminating in a mean-sum pooling operation and a
fully-connected layer. We use a mean absolute error loss and
train with AdaGrad [45] with a batch size of 8 for 10 epochs
with a 0.05 learning rate.

V. EXPERIMENTS AND RESULTS

We first evaluate our approach on two PyBullet [46] simulated
domains based on those by Chitnis et al. [10]: (A) object-
reaching in a navigation among movable obstacles (NAMO)
domain and (B) cabinet-loading.

For each trial, we evaluate performance of four planners.

MyoPrIC Myopic TAMP, which does not anticipate future cost.
Planning relies on Alg. 1 using a zero-function for the antic-
ipatory cost estimator, ensuring fair comparison.

ANTTAMP Our anticipatory TAMP approach, which seeks to
minimize both immediate and expected future cost via Eq. (2).
We plan via Alg. 1 using a learned anticipatory cost estimator,
trained in the environment of interest.
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Fig. 4.

Navigation among movable obstacles (NAMO) Domain Results. Left: In examples, ANTTAMP moves obstacles so that they are out of the way, reducing

cost for subsequent tasks. This improves upon the MYOPIC plan, which cannot consider potential side effects. Given time to prepare, our robot rearranges the
objects into a ring-like structure that ensures all objects are easily reached without any moveclear actions. Visualized plans omit the robot’s return-to—home for
clarity. Right: the average per-task performance over time (i.e., as each sequence proceeds) shows that anticipatory TAMP tends towards reducing average task cost

over its deployment. Cost is further reduced by preparation.

PREP+MYOPIC The robot first prepares the scene via Eq. (3)
(Section III-B) and then plans via MYOPIC.

PREP+ANTTAMP The robot first prepares via Eq. (3) and then
plans via ANTTAMP.

Our central aim is to show the need for anticipation in a
continuous-space setting, validating our insight that without our
ANTTAMP approach, the robot will not achieve these desirable
behaviors. Thus, the commonly-used MYOPIC planning is the
most appropriate baseline for our ANTTAMP approach.

A. Object Reaching Scenario in a NAMO Domain

We first evaluate in a navigation among movable obstacles
(NAMO) domain, where tasks require that the robot navigate to a
target object, as if the object requires interaction or inspection,
and then return to the start. This standard TAMP setup, extending
the domain from [10], reflects cluttered home and warehouse
domains (as in [10], [39]). The task distribution is uniform over
10 objects. moveclear actions are needed to move blocks that
obstruct traversal, incurring a base cost of 200 plus Euclidean
distance for movement. Reaching the target object may require
moving other objects out of the way, and so good performance
requires that the robot position objects so that they do not block
others.

Our anticipatory cost estimator GNN is trained on 10K data,
each labeled with expected future cost approximated by sam-
pling from the distribution of future tasks analytically-computed
expected future cost, an expensive operation taking roughly 10
minutes per labeled example, prohibitive to do during planning.
Training with these generated samples takes approximately five
minutes. Each graph node represents an entity (robot or object)
with input features: one-hot type encoding, pose, and distance
to the robot. Edges encode pairwise distances and count the
number of obstructing objects the straight-line edge touches. We
evaluate our approach on 256 trials, where each trial consists of
a random sequence of 20 tasks. For each task, Alg. 1 generates
100 candidate plans (see Section V-D), requiring approximately
1-2 minutes of planning time per task, and with 5000 itera-
tions for preparation.

Table 1 reports the average cost-per-task across four plan-
ning strategies. All trials succeed using the model-based TAMP
solver. Compared to MYOPIC, ANTTAMP reduces planning

TABLE I
AVERAGE COST-PER-TASK OVER 20-TASK SEQUENCES ACROSS PLANNING
APPROACHES IN THE NAMO AND CABINET DOMAINS. *THE NAMO 11—13 AND
CABINET 10 DOMAINS INCLUDE ADDITIONAL OBJECTS FOR EVALUATING LIMITED
TEST-TIME SHIFT; SEE SECTION V-C

Planning Approach NAMO Cabinet NAMO 11-13* Cabinet 10*

MyoprIC 56.1 283.2 108.3 314.8
ANTTAMP (ours) 378 2358 92.5 281.5
PREP (ours)+MYOPIC 9.5 267.7 48.9 303.1
PREP+ANTTAMP (ours) 9.5 219.9 45.8 272.7

cost by 32.7%. Preparation further improves performance, with
PREP+ANTTAMP and PREP+MYOPIC achieving identical 83.1%
lower costs than MYOPIC: preparation consistently finds states
from which all objects are accessible without rearrangement,
thus, anticipatory TAMP does not need to go out of its way to
rearrange the blocks during task execution, as doing so would
increase overall cost.

Fig. 4 (right) shows that ANTTAMP lowers per-task cost
over time—indicating that the environment becomes easier to
navigate through repeated interaction, an emergent benefit of
anticipatory planning. We highlight a few examples in Fig. 4
that corroborate the quantitative results, namely that planning
via ANTTAMP ensures that obstacles are placed so as to be out
of the way for subsequent tasks. Prepared states often exhibit a
ring-like structure that allows unhindered access to all objects.

B. Cabinet Loading and Unloading Scenario

Our cabinet domain consists of nine objects: three each of
mugs (blue), bottles (red), and bowls (green), using URDF models
from Liu et al. [47]. Each task involves loading or unloading all
objects of one or more semantic classes—e.g., move all bottles
to the table—each assigned with equal probability. The domain
includes three operators to complete a task: move (with cost
based on Euclidean distance), and pick and place (each with
a fixed cost of 20 units).

To estimate the anticipatory planning cost, we train a GNN
on 5000 states labeled with the expected future cost. It takes
roughly twenty minutes to label each datum and approximately
eight minutes to train the model. Node features include a one-hot
encoding of entity type (robot, container, or object), pose, and
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on the table —&— Myopic + Prep.

—a—Prep. + Anticipatory Tamp
300

280

Cost: 273.7 260

Task: place bottles 240
on the table

220

Anticipatory Tamp
improves performance
as sequence proceeds

Preparation improves
performance early

Average Cost of Task Number

o

T5
Task Number (i task in sequence)

Instead, ANTTAMP groups similar objects when loading, making it easier to unload later, reducing overall planning cost. Preparation similarly organizes the cabinet
so that subsequent tasks are made easier, showing the strength of our approach. Right: the average per-task performance over time (i.e., as the sequence proceeds)
shows that ANTTAMP tends towards improved average task cost over its deployment while MYOPIC tends towards poor performance, even with preparation in

advance.

distance to the robot. Edges represent spatial and semantic
relationships, with features including inter-node distance and
the number of movable obstacles (set to zero for non-movable
objects). Objects of the same semantic class are interchangeable,
so only objects from other classes are treated as obstacles when
computing edge features. We evaluate our system across 64
deployments, where each deployment consists of a sequence
of 10 tasks. For each task, Alg 1 samples 200 candidate plans,
with planning taking approximately 2—4 minutes per task. We
use 2500 candidate states for preparation.

Table 1 shows the average cost-per-task for four planning
strategies. Since our approach relies on model-based TAMP,
all trials succeed in completing the assigned task for all plan-
ners. ANTTAMP reduces cumulative planning cost by 16.7%
compared to MYOPIC. Preparation further lowers cost for both,
yielding a 22.3% improvement over MYOPIC.

We highlight the performance-over-time in Fig. 5 (right),
which shows that ANTTAMP increasingly outperforms MYOPIC
over time. This encouraging result shows that as our robot
continues to be given tasks the environment becomes easier
and easier to use, behavior that leads to cabinet configurations
that increasingly reduce expected cost: organizing the cabinet
without explicit examples of how the cabinet should be laid out.
Fig. 5 (left) show example cabinet layouts during planning via
the various strategies.

We can see similar performance gains afforded by prepa-
ration, by which the environment is rearranged in advance to
reduce expected future cost. Preparation improves the perfor-
mance of both planning strategies, yet over time its benefits
for the MYOPIC planner diminish; just as ANTTAMP gradually
results in lower-expected-cost configurations of the environ-
ment, under MYOPIC planning the environment gradually tends
towards higher costs as the side effects of myopic action accrue.
Combining preparation with ANTTAMP yields the best results.

Fig. 5 shows example trials, which support our statistical
results; each shows how planners that rely on our anticipatory
TAMP have discovered the benefit of loading objects so as to
avoid obstructing those of different semantic class and so tend
to reduce overall cost over the course of each 20-task sequence.
Moreover, though our approach only involves direct optimiza-
tion with respect to a single subsequent task, our approach yields
improvements that tend towards lower expected cost over the
course of multiple tasks, as can be seen in the ANTTAMP results
in Fig. 5, emergent behavior that further reinforces the benefit
of our approach.

NAMO Domain Cabinet Domain
-+ Myopic Baseline
«Anticipatory TAMP

#Prep. + Anticipatory TAMP

2800

2500

Avg. Plan Cost
S
8

600 | S q\\\“
200 2000
3
£ 200
= 100
o 1
£ 110 50 100 1 50 100 200
Number of Samples
Fig. 6. Average cumulative task cost and average planning time (in seconds)

versus number of samples for ANTTAMP and MYOPIC over 64 and 128 tri-
als on Cabinet and NAMO domains, respectively. Anticipatory TAMP improves
performance across varied effort.

C. Evaluation Under Limited Test-Time Shift

We conduct additional experiments in each study to study
performance under limited shifts at test-time. We add additional
objects—NAMO 11-13 contains an additional 1-3 movable ob-
jects and Cabinet 10 contains an additional bowl or mug or
bottle in the cabinet domain—and shift the task distribution
to accompany these changes: e.g., to unload 4 mugs from the
cabinet, a task not seen during training. Though the costs across
all experiments are higher due to the increased difficulty of
each new setting, the results in Table 1 still show performance
improvements from our approach.

D. Performance as a Function of Computation

Our approach is anytime, and so performance improves with
additional computation. We evaluate with 1, 2, 5, 10, and 100
samples in the NAMO domain, and up to 200 in the Cabinet do-
main and show performance results in Fig. 6. As expected, more
samples lead to better performance for all planners. Moreover,
since anticipation tends towards states in which tasks are easier
to complete, Fig. 6 (bottom) additionally shows that the per-task
planning time is comparatively less for our approach, a further
benefit of using our approach.

Notably, even with relatively few samples, our anticipatory
planner achieves meaningful reductions in the cumulative plan
cost and planning time, demonstrating its effectiveness even
under limited computational resources.

E. Real-World Demonstration on a Mobile Manipulator

We further evaluate our approach using the Fetch Mobile
Manipulator [48] in a real-world cabinet-loading scenario with

Authorized licensed use limited to: George Mason University. Downloaded on January 01,2026 at 02:16:56 UTC from IEEE Xplore. Restrictions apply.



1856

Fig. 7. Left: Our Fetch robot. Middle: Environment occupancy map. Right:
April tags for object pose estimation.
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Fig. 8. Real-world demonstration with the Fetch. An example 2-task se-
quence (loading and unloading cylinders) given one-at-a-time, such that latter
tasks are unknown in advance. MYOPIC takes 577 seconds (24 actions) to
complete the sequence whereas our approach ANTTAMP completes them in
only 430 seconds (16 actions).

six cylindrical objects—two each in red, blue, and green—and
with an anticipatory cost estimator trained in simulation environ-
ments of the same composition. We demonstrate our approach
on a Fetch Mobile Manipulator (Fig. 7). The robot uses the ROS
move_base package [49] for navigation, AprilTags [50] for
object pose estimation, and Movelt [51] and IKFast [49], [51] for
manipulation. The demonstrations involve first generating a plan
in the simulated environments using the TAMP solver described
above and then executing that plan, by sequential execution of
the prescribed actions, using the aforementioned planning and
perceptual modules.

We show the performance of both ANTTAMP and MYOPIC
planners; both are initialized with the same starting configuration
(Fig. 8) and tasked to load the two objects from the table into the
cabinet. Upon completion of that first task, each robot is then
instructed to unload the two red cylinders and move them to the
table, a task made difficult if either red cylinder is obstructed
other non-red cylinders.

The MyopIC planner (Fig. 8, top), incapable of considering
the effect of its actions on possible future tasks, solves the first
task such that the back red cylinder is more difficult to remove
when the second task is eventually assigned. Conversely, our
ANTTAMP approach places the cylinders in the same-colored

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 11, NO. 2, FEBRUARY 2026

groups and so the second task is made easier. Our approach
requires fewer total actions (pick, move, place) and correspond-
ingly less total execution time to complete the tasks in the
sequence, as illustrated in Fig. 8.

VI. DISCUSSION, LIMITATIONS, AND FUTURE WORK

We present anticipatory task and motion planning (TAMP), a
strategy for improving performance across task sequences in
persistent, continuous-space rearrangement-style settings. Un-
like most existing TAMP approaches that plan one task at a time,
our method uses a learned model to estimate how current actions
impact future tasks, guiding the planner to balance immediate
plan cost with reduction of expected future costs. In both sim-
ulated and real-world experiments, we show the benefit of our
learning-augmented TAMP strategy, improving performance over
deployments in persistent environments consisting of multiple
tasks given in sequence, an important step towards more perfor-
mant long-lived robots.

Limitations: Our approach, which relies on existing solvers
during planning, suffers from many of the same challenges of
scale and computation that limit TAMP for rearrangement prob-
lems in general. Moreover, planning via Algorithm 1 requires
repeated TAMP solver calls to search the continuous goal space,
limiting scalability to complex problems without better sampling
or search. Our experiments so far only consider the (realistic)
setting where a robot’s responsibilities are static over its lifetime,
and so deeper evaluation of the learned model may be necessary
to consider scenarios where this distribution evolves or differs
significantly at deployment.

In future work, we are excited to scale our approach to
more complex environments, such as households, where object
states (e.g., clean vs. dirty dishes) affect future cost, and task
distributions may shift over time. This will require transferring
knowledge from simulation or learning online as user needs
evolve. Future work may also simultaneously leverage the ex-
pected future cost estimator more deeply to also guide search at
the symbolic level, though would also require an investigation
of how to select planning heuristics so as to ensure it does not
add considerable additional computation.
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