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Abstract— We present a novel method, AutoSpatial, an ef-
ficient approach with structured spatial grounding to enhance
VLMs’ spatial reasoning. By combining minimal manual super-
vision with large-scale Visual Question-Answering (VQA) pairs
auto-labeling, our approach tackles the challenge of VLMs’
limited spatial understanding in social navigation tasks. By ap-
plying a hierarchical two-round VQA strategy during training,
AutoSpatial achieves both global and detailed understanding
of scenarios, demonstrating more accurate spatial perception,
movement prediction, Chain of Thought (CoT) reasoning, final
action, and explanation compared to other SOTA approaches.
These five components are essential for comprehensive social
navigation reasoning. Our approach was evaluated using both
expert systems (GPT-4o, Gemini 2.0 Flash, and Claude 3.5 Son-
net) that provided cross-validation scores and human evaluators
who assigned relative rankings to compare model performances
across four key aspects. Augmented by the enhanced spatial
reasoning capabilities, AutoSpatial demonstrates substantial
improvements by averaged cross-validation score from expert
systems in: perception & prediction (up to 10.71%), reasoning
(up to 16.26%), action (up to 20.50%), and explanation (up to
18.73%) compared to baseline models trained only on manually
annotated data.

I. INTRODUCTION

Social navigation poses unique challenges for robots in

human environments, where avoiding obstacles is insuffi-

cient—robots must also interpret and respond to nuanced

human behaviors [1], [2]. While traditional and learning-

based methods have improved navigation [3], [4], they often

fail in dynamic social scenarios due to a lack of explicit

spatial reasoning [5].

Vision-Language Models (VLMs) offer promising reason-

ing capabilities [6], but their application to social navigation

is hindered by two major limitations: (1) poor spatial ground-

ing, as they lack explicit metrics like relative positions or

movement trajectories [7], [8]; and (2) insufficient domain-

specific data, since most annotated datasets focus on driving,

not pedestrian interaction [9], [10].

Main Results: To address these limitations, we introduce

AutoSpatial, an efficient approach that systematically en-

hances spatial reasoning capabilities in VLMs for social navi-

gation reasoning, including human’s motion, relative position

to the robot, and social interactions. AutoSpatial employs

a structured question-answer paradigm to provide ground

truth text labels for various visual observations and to train

VLMs in perception, prediction, Chain-of-Thought (CoT)

reasoning, final action, and explanation, enabling them to
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Fig. 1: Overview of the AutoSpatial approach. The approach

consists of two primary components: Structured Spatial
Grounding (purple), which standardizes positional (e.g.,

‘Slightly to the right’ and ‘At a very close distance’ for

the pedestrian in the bounding box) and directional de-

scriptions (e.g., ‘Moving towards west’), and Data Label-
ing (blue), which combines auto-labeled Visual Question-

Answer (VQA) pairs that focus on percetion, prediction,

and CoT reasoning, with manual annotations that focus on

percetion, prediction, CoT reasoning, final action, and

explanation, and further formats them into a two-round

VQA structure (see details in Fig. 2).

better interpret spatial relationships and social dynamics. Our

approach leverages limited manual annotations in combina-

tion with large-scale auto-labeled data to significantly reduce

annotation costs while maintaining high data quality. We

conduct extensive evaluations on the SNEI benchmark [11]

for spatial reasoning and social action estimation (Fig. 3

right).
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• We propose a VLM-based approach, AutoSpatial, for

enhancing spatial reasoning in social navigation;

• We introduce a novel automatic data labeling strat-

egy with a two-round Visual Question-Answer (VQA)

structure, inlcuding individual and group social motion

understaning, that efficiently addresses domain-specific

data scarcity while hierarchically enhancing spatial un-

derstanding;

• We evaluate our approach using averaged cross-

validation scores from expert systems (GPT-4o, Gemini

2.0 Flash, Claude 3.5 Sonnet) and relative rankings

from human evaluators. AutoSpatial outperforms other

approaches in perception & prediction (up to 10.71%),

reasoning (up to 16.26%), action (up to 20.50%), and

explanation (up to 18.73%) in averaged cross validation

of expert models.

II. RELATED WORK

VLMs, which combine visual perception with natural lan-

guage understanding, have demonstrated significant potential

across various robotics tasks. We review related work in

social robot navigation and VLMs for robotics tasks, with

particular focus on their spatial reasoning capabilities and

limitations in dynamic social environments.

A. Social Robot Navigation

Robust social navigation is essential for robots in human-

populated spaces [1], [2], [12]. Early approaches used

hand-crafted rules, such as the Social Force Model [3]

and proxemics-based methods [13], which simulate human-

robot interactions via spatial constraints. Learning-based

methods [4], [14]–[17] improve adaptability by leverag-

ing large datasets to learn socially compliant behaviors.

However, these models often lack explicit reasoning about

nuanced human-robot dynamics shaped by unwritten social

norms [11], [18].

B. Spatial Reasoning Limitations of Robotics VLMs

Recent VLMs enable task and motion planning [19]–[21]

and support human-robot interaction [16], [22]. Yet, two core

challenges hinder their performance in social navigation:

Lack of spatial reasoning: VLMs lack explicit spatial

encodings (e.g., trajectories, cost maps) [2], and struggle with

ambiguous relative positioning [8], [18], [23].

Insufficient domain-specific data: Unlike other do-

mains [24], social navigation lacks large-scale annotated

datasets reflecting complex, implicit crowd behavior [9]–

[11].

We address these challenges with AutoSpatial, which

augments VLMs through structured spatial VQA training,

combining minimal manual annotation and large-scale auto-

labeling.

III. METHODOLOGY

We present AutoSpatial, a systematic approach for en-

hancing VLMs’ spatial reasoning capabilities in social nav-

igation. As illustrated in Fig. 1, our approach is built upon

the structured spatial grounding that standardizes positional

and directional descriptions, providing a consistent spatial

terminology foundation. Guided by this, we label our training

data through two complementary approaches: auto-labeled

VQA pairs for large-scale spatial understanding and targeted

manual annotations for complex social scenarios. These

data are further formatted into a structured two-round VQA

architecture (see details in Fig. 2), which enables hierarchical

learning from basic spatial perception to complex reasoning.

This methodology addresses our key observation that existing

VLMs often struggle with fundamental spatial reasoning,

leading to incorrect actions even when high-level reasoning

appears sound.

A. Structured Spatial Grounding
Our key innovation is to decompose spatial relationships

into two clear, independent components: (1) positional de-

scription of humans, including angular position and dis-

tance, and (2) description of human-moving directions. This

structured representation makes it easier to precisely locate

and track pedestrians in relation to the robot. Traditional

approaches, which describe spatial relationships between

humans and robots in navigation, often lead to ambiguity,

especially when addressing multiple agents [7].
For angular position of pedestrians, we divide the robot’s

field of view into five distinct zones: ‘on the left’, ‘slightly to

the left’, ‘directly in front’, ‘slightly to the right’, and ‘on the

right’ of the robot. This discretization provides a clear way

to describe a pedestrian’s relative position w.r.t. the robot,

while maintaining sufficient granularity for navigation tasks.

Each pedestrian is assigned to a zone based on their center

point’s horizontal pixel location in the image.
Distance estimation follows a five-level classification:

‘very close’ (< 3m), ‘close’ (3− 6m), ‘moderate’ (6− 9m),

‘far’ (9−12m), and ‘very far’ (> 12m). By combining these

two components, our approach can generate precise spatial

descriptions such as “the pedestrian is slightly to the left of

the robot at a moderate distance.”
For movement directions, we adopt a unified coordinate

system relative to the robot’s frame, where the robot’s for-

ward direction is defined as north. This allows us to describe

pedestrian movements using eight cardinal and intercardinal

directions (N, NE, E, SE, S, SW, W, NW) plus a stationary

state. This standardization eliminates the ambiguity often

found in relative directional descriptions and provides a

consistent reference frame for perception and prediction.
The structured spatial grounding plays a critical role

in both our auto-labeling process and manual annotation.

During auto-labeling, it provides a consistent framework

for generating spatial VQA pairs, ensuring that perception,

prediction, and reasoning outputs are systematically struc-

tured. For manual annotations, it serves as a guideline for

annotators to maintain consistency in descriptions, reducing

subjective variations.

B. Data Labeling
Our training data combines auto-labeled VQA pairs and

manual annotations to achieve both breadth in spatial reason-
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Round 1

Round 2
Question:
Given separate descriptions of individual pedestrians from bounding boxes (Pedestrian 0, 1, etc.), synthesize them into a comprehensive scene 
description.
[Descriptions of first 3 tasks are the same with Round 1]
[Task: Final Action]
Comprise high-level natural language action commands.
[Task: Explanation]
Explain generally what the robot sees, what the robot does, and why.
Answer:
[Task: Perception]
The scene shows an active intersection of pathways with moderate pedestrian traffic. A person in a gray hoodie and black pants is walking towards
west at a very close distance. Several other pedestrians are visible in the background, including a person with a red backpack directly in front of the 
robot at a medium distance moving towards north. The surface appears wet from recent rain.
[Task: Prediction]
The pedestrians will continue navigating through this intersection following an implicit order based on arrival time and proximity, with the person in 
gray likely to complete their crossing first due to their current position. The pedestrians in the background, including the one with the red backpack, 
will continue their current trajectories, mainly towards north.
[Task: Chain of Thoughts Reasoning]
This intersection shows typical pedestrian behavior where people navigate in multiple directions while maintaining an informal "first come, first 
cross" pattern. Given that the person in gray hoodie arrived at the intersection before the robot and is already in the process of crossing, social 
navigation norms and safe navigation in potentially slippery conditions suggest yielding to their movement.
[Task: Final Action]
Wait for the established crossing sequence to finish before proceeding.
[Task: Explanation]
I'm observing a typical pedestrian intersection where people are crossing in multiple directions. Since the person in gray arrived first and is already 
crossing, I'll wait my turn according to the natural flow of pedestrian traffic. This respects the unwritten "first arrive, first cross" norm that pedestrians 
naturally follow at such intersections.

Question:
In this scene, there are one or multiple pedestrians marked with bounding boxes. 
Pedestrian 0 is marked in Red. 
[Task: Perception]
Where is the pedestrian in the bounding box located relative to the robot? In which 
direction is the pedestrian in the bounding box moving relative to the robot?
[Task: Prediction]
Assess the potential future movement of agent(s) within the scene.
[Task: Chain of Thoughts Reasoning]
Given the robot's perception and prediction, formulates a high-level natural 
language instruction.
Answer:
[Task: Perception]
Pedestrian 0
The pedestrian is slightly to the right of the robot, at a very close distance. The 
pedestrian is moving towards west.
[Task: Prediction]
Pedestrian 0
The pedestrian will continue moving towards west. and move across the robot's 
path from east to west.
[Task: Chain of Thoughts Reasoning]
Pedestrian 0
Given the close proximity of the person crossing the robot's path from east to west, 
the robot should slow down and stop if necessary, wait for the person to pass, and 
then continue.

Input Image

Fig. 2: An example of the two-round VQA structure, where training data of each round follows the same format of

<image, question, ground-truth answer>. Round 1 is auto-labeled, focusing on perception, prediction, and CoT reasoning

for individual pedestrians, while Round 2 is optional and only available when the image input is manually annotated. It

refines individual descriptions into a comprehensive scene-level understanding, incorporating group dynamics and higher-

level spatial reasoning. The structured spatial grounding, though not explicitly shown here, is incorporated into the system

prompt as part of the model input. Note that bounding boxes and color-pedestrian correspondence are only provided to the

model during training.

ing and depth in scene understanding. As shown in Fig. 2,

the upper part illustrates the auto-labeled VQA pairs, while

the lower part represents the manually annotatations.

1) Auto-labeled VQA Pairs: We develop a systematic

approach to generate VQA pairs based on the CODA

dataset [25]. This dataset provides a rich collection of real-

world pedestrian interactions in urban environments captured

from a robot’s perspective, offering the necessary trajectory

information and bounding box annotations required by our

approach. Note that this process relies solely on rule-based

heuristics rather than complex learning-based models such

as VLMs. For each frame, our approach processes three key

aspects:

Spatial Perception: Spatial perception consists of two

components: positional description and movement direction

description. Precise spatial descriptions are generated using

our structured spatial grounding discussed in Sec. III-A.

Movement Prediction: Our approach analyzes short-

11300
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term trajectories using a multi-frame sliding window. After

smoothing velocity vectors to reduce noise, it categorizes

movement patterns into five primary types: started motion,

continued motion, left turns, right turns, and transitions to

stationary states. Predictions are generated based on velocity

and direction changes exceeding predefined thresholds.
Interaction Description: Our approach identifies, classi-

fies, and describes various interaction patterns: 1. Trajectory

conflicts: Detected by analyzing relative positions and veloc-

ities; 2. Path crossing: Categorized as west-to-east or east-

to-west movements; 3. Pass-by scenarios: Classified based

on relative trajectories; 4. Others: Categorized as scenarios

without risks of collision.
2) Manual Annotations: We carefully select 72 challeng-

ing scenarios from the CODA dataset, focusing on cases

where auto-labeled VQAs show limitations. These scenar-

ios typically involve high pedestrian density environments,

complex social grouping patterns, and situations requiring

abstraction from individual to group-level understanding,

where auto-labeled VQAs tend to exhibit significant errors

or ambiguities.
Following the SNEI protocol [11], we also annotate data

using the structured format of 5 tasks: Perception, Prediction,

CoT Reasoning, Final Action, and Explanation. However, our

approach differs in that we provide our structured spatial

grounding guideline for annotators, as described in III-

A. This ensures stricter spatial terminology and reduced

ambiguity, which not only improves annotation consistency

but also provides clearer supervision.

C. Two-Round VQA Structure
On top of the generated data, we use a two-round VQA

structure (Fig. 2) for scenes with manual annotations to

facilitate hierarchical learning. For each selected scene, the

first round consists of auto-labeled VQAs focusing on in-

dividual pedestrians, while the second round incorporates

human annotations to refine group dynamics, social relation-

ships, and collective movement patterns. This hierarchical

approach enhances spatial reasoning by first establishing

precise spatial-temporal understanding through structured

auto-labeling, followed by higher-level scene interpretation

via human annotations.
Specifically, we structure our data into consistent formats.

For scenes with only auto-labeled data, we use a single-

round format of <image, round 1 question, round 1 ground-

truth answer>. For scenes with manual annotations, we

structure the data as a two-round conversation: <image,

round 1 question, round 1 ground-truth answer> followed by

<image, round 2 question, round 2 ground-truth answer>.
This progressive structure yields synergistic effects be-

yond simple data augmentation. To explore this interplay,

we conduct experiments (see Section IV-C) to assess how

spatial reasoning capability acquisition and social context

comprehension mutually reinforce each other.

IV. EXPERIMENTS

We conduct extensive experiments to evaluate the ef-

fectiveness of AutoSpatial in enhancing spatial reasoning

for social navigation. Our evaluation focuses on assessing

improvements in perception & prediction, reasoning, action,

and explanation, comparing our approach against baseline

models.

A. Experimental Setup

We build our model based on LLaVA-1.6 OneVision-7B

and conduct all experiments using a computing node with

four A100 80GB GPUs. We follow the default instruction

tuning procedure and hyperparameters from LLaVA [26]

without any special loss weighting between different data

sources. Our focus is on evaluating the effectiveness of

our data labeling and structured VQA framework rather

than sophisticated training techniques. For each training

sample, we provide the model with an input image along

with corresponding VQAs following our structured spatial

grounding guideline. We use the AdamW optimizer with

a learning rate of 2e−5 and batch size of 8 with gradient

accumulation steps of 4. To comprehensively evaluate our

approach, we establish a two-fold evaluation framework that

assesses both basic spatial reasoning capabilities and high-

level scene understanding.

For evaluating basic spatial reasoning, we employ an au-

tomated metric on the auto-labeled VQA pairs from CODA.

Specifically, we first perform data balancing to mitigate

directional bias by ensuring diverse pedestrian movement

directions, then partition the dataset into training and test

sets with a 90-10 split ratio. This results in 6,205 training

frames (containing 16,530 pedestrian instances) and 573 test

frames (containing 1,542 pedestrian instances). The test set

evaluation focuses on two fundamental aspects of spatial

understanding that can be objectively assessed: movement

direction prediction and relative position estimation. Given

the inherent variability in text generation, we implement a

keyword-based evaluation metric, where model outputs are

matched against predefined categorical labels. The scoring

system awards 1.0 point for exactly correct answers and

0.5 points for approximately correct answers (e.g., predicting

“northeast” when the ground truth is “north”).

For comprehensive scene understanding evaluation, we use

the SNEI benchmark with both expert systems, such as GPT-

4o, Gemini 2.0 Flash, and Claude 3.5 Sonnet, and 7 human

evaluators, most of whom are graduate computer science

students with backgrounds in computer vision and robotics.

Our human evaluation focused on a randomly sampled subset

of 49 scenarios from the SNEI dataset. Both expert systems

and human evaluators assess four key aspects—Perception

& Prediction, Reasoning, Action, and Explanation. Expert

systems assign scores on a scale of 1-10, while human

evaluators focus on our best method alongside two baseline

models and provide relative rankings for each key aspect.

We chose relative rankings for human evaluation rather than

absolute scores because we believe it can mitigate potential

subjective biases. For a fair comparison, we ensure all models

receive identical input formats and evaluation criteria.

To analyze different aspects of our approach, we compare

several model configurations. Our baseline models include
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TABLE I: Cross-Validation Scores across Models for Different Aspects (Higher is Better).

Model ID1 CODA
Benchmark

Gemini 2.0 flash GPT-4o Claude 3.5 Sonnet
P&P R A E P&P R A E P&P R A E

AS-A72D1 0.710 6.824 7.079 7.292 7.258 6.838 6.338 6.290 6.471 6.652 5.831 6.385 6.065
AS-A72D2 0.582 6.883 7.070 7.272 7.264 6.862 6.221 6.302 6.413 6.677 5.671 6.351 6.000

AS-A72D3 0.573 6.775 7.048 7.360 7.310 6.813 6.077 6.250 6.269 6.674 5.591 6.292 5.957

AS-A72D5 0.483 6.627 6.878 7.280 7.270 6.739 5.947 6.114 6.139 6.504 5.490 6.151 5.831

AS-A36D1 0.686 6.661 6.996 7.277 7.227 6.764 6.135 6.167 6.247 6.584 5.613 6.234 5.936

AS-A0D1 0.680 6.484 6.660 6.859 6.756 6.582 5.517 5.733 5.920 6.551 5.415 4.831 5.375

LLaVA-M 0.404 6.246 6.089 6.108 6.157 6.662 5.815 5.791 6.351 6.031 5.065 5.342 5.302

Vanilla-LLaVA 0.376 6.243 6.083 6.102 6.154 6.486 5.492 5.458 6.092 5.809 4.815 4.803 5.409

1 The model IDs follow the format ‘AS-AxxDy’, where ‘AS’ denotes AutoSpatial, ‘Axx’ indicates the number of manual annotations used (e.g.,
A72 for 72 annotations), and ‘Dy’ represents the downsampling ratio applied to the auto-labeled data (e.g., D1 for no additional downsampling).

TABLE II: Ablation Study

Model ID CODA
Benchmark

Gemini 2.0 flash GPT-4o Claude 3.5 Sonnet
P&P R A E P&P R A E P&P R A E

AS-A72D1-P&P-VQA 0.709 6.781 7.014 7.203 7.153 6.832 6.194 6.185 6.004 6.652 5.717 6.375 6.010

AS-A72D1-R-VQA-1 0.518 6.717 7.008 7.246 7.206 6.601 5.541 5.767 5.542 6.621 5.684 6.323 5.982

AS-A72D1-R-VQA-2 0.520 6.751 7.126 7.287 7.246 6.835 6.231 6.287 6.010 6.584 5.853 6.397 6.050

AS-A72D1 0.710 6.824 7.079 7.292 7.258 6.838 6.338 6.290 6.065 6.652 5.831 6.385 6.065

TABLE III: Human Evaluator Rankings for Different Mod-

els.

Model P&P R A E

AS-A72D1 1.19 1.70 1.43 1.55
LLaVA-M 2.89 2.02 2.03 1.73

Vanilla LLaVA 2.93 2.03 2.55 2.53

the original LLaVA-1.6 OneVision-7B and LLaVA finetuned

on only 72 manual annotations(referred to as LLaVA-M,

where ’M’ denotes ’Manual annotations’). We deliberately

focus on comparing with these 7B-parameter models to

ensure a fair comparison, as larger proprietary models with

hundreds of billions of parameters naturally demonstrate

superior performance but operate at a fundamentally dif-

ferent scale, which prohibits inference onboard a mobile

robot. We then evaluate variations of our approach with

different training data compositions: models trained, with the

full dataset combining 72 manual annotations and CODA

VQA data (18,615 pairs in total), and with different overall

downsampling ratios (AS-A72D1 as 1, AS-A72D2 as 2, AS-

A72D3 as 3, and AS-A72D5 as 5, see Tab. I) of CODA VQA

data, to examine the impact of different data mixing ratios. To

investigate the impact of manual annotation quantity, we also

train models with reduced manual annotations (36 examples,

see AS-A36D1 in Tab. I) and with no manual annotations

(AS-A0D1). Additionally, we conduct ablation studies using

only perception & prediction VQAs (AS-A72D1-P&P-VQA)

and only reasoning VQAs with manual annotations (AS-

A72D1-R-VQA-1 and AS-A72D1-R-VQA-2) to understand

their individual contributions.

B. Results
Tab. I and Tab. III present a comprehensive evaluation of

our approach through both automated metrics and human

assessment. We evaluate all model variants on the CODA

benchmark for basic spatial reasoning and using three state-

of-the-art VLMs (Gemini 2.0 flash, GPT-4o, and Claude 3.5

Sonnet) for expert assessment on SNEI dataset, focusing on

four aspects: Perception & Prediction (P&P), Reasoning (R),

Action (A), and Explanation (E). Additionally, we conduct

focused human evaluation on the three most representative

models: our best-performing variant (AS-A72D1, AutoSpa-

tial with 72 human Annotations and Downsampling ratio 1),

LLaVA-M, and vanilla LLaVA.
Our proposed method (AS-A72D1) demonstrates consis-

tent superior performance across all evaluation metrics. In

the CODA benchmark focusing on spatial reasoning, AS-

A72D1 achieves a score of 0.710, significantly outperforming

both LLaVA-M (0.404) and vanilla LLaVA (0.376). This

substantial improvement in spatial reasoning capabilities is

further validated by both expert system evaluations and

human assessment (Tab. III), where AS-A72D1 consistently

outperforms the baseline models, particularly in perception

& prediction and reasoning capabilities.
A key finding is that manual annotations and auto-labeled

data complement each other, and combining them yields

a synergetic effect, surpassing the performance of models

trained on either data source alone. While LLaVA-M outper-

forms Vanilla-LLaVA, the gap remains substantial, indicating

that manual annotations alone are insufficient to fully address
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(a) Input Image

The robot's visual inputs show a busy street scene with multiple pedestrians. The 
most prominent pedestrian is a man in an orange shirt and white shoes, walking 
towards the robot. He is holding a white object, possibly a phone or a ticket. There
are several other pedestrians in the background, including a woman in a brown 
sweater and blue jeans who is slightly to the right of the man in orange. The 
crowd density is moderate, with people walking in various directions. The 
pedestrians are dressed in casual clothing, and the scene appears to be during the
day with clear skies.
The man in the orange shirt is likely to continue walking towards the robot, as he is 
already in motion and holding an object that suggests he is focused on his 
destination. The woman in the brown sweater and blue jeans is also likely to
continue walking in the same direction, as she is not interacting with the man in 
orange and appears to be moving independently.

Given the man in the orange shirt's direction and the woman in the brown sweater's 
direction, the robot should maintain a safe distance and avoid obstructing their
paths. The robot should also be aware of the surrounding pedestrians and adjust its 
movement accordingly to ensure safe navigation.

The robot should continue to navigate the street while maintaining a safe distance 
from the pedestrians. It should be aware of the man in the orange shirt and the 
woman in the brown sweater and adjust its path as necessary to avoid any
collisions or obstructions.

The robot sees a busy street scene with multiple pedestrians. It perceives a man in
an orange shirt and white shoes walking towards it, holding a white object. The 
robot also sees a woman in a brown sweater and blue jeans slightly to the right of 
the man in orange. The crowd density is moderate, and the pedestrians are dressed 
in casual clothing. The robot predicts that the man in the orange shirt willcontinue
walking towards it, and the woman in the brown sweater will continue walking in 
the same direction. The robot maintains a safe distance and adjusts its path as 
necessary to ensure safe navigation

The scene shows a busy pedestrian area with a high density of 
people. A person in an orange shirt is crossing the street directly in
front of the robot, moving towards west. The person is at a close 
distance and is the main obstacle in the robot's path. Several 
pedestrians are visible on both sides of the street, with some 
walking towards east and others towards west, creating a busy
street scene.

The person in the orange shirt will continue crossing the street 
towards west. Other pedestrians will continue their current 
movements, with some walking towards east and others towards
west.

Given the close proximity of the person in the orange shirt crossing
directly in front of the robot, the robot must stop and wait for the 
person to clear the path. Once the person has crossed, the robot can 
proceed cautiously, monitoring the movements of other pedestrians 
on the left and right sides to ensure safe navigation.

Stop and wait for the person in the orange shirt to clear the path.

I see a moderately crowded scene with pedestrians moving in 
various directions. A person in an orange shirt is crossing the street 
directly in front of me, moving towards west. I will stop and wait
for them to clear the path before proceeding, ensuring safe 
navigation through the busy pedestrian area.

Perception

Prediction

Chain-of-
Thought 
Reasoning

Final Action

Explanation

(b) Output comparison: LLaVA-M (left) v.s. AutoSpatial (right)

Fig. 3: While LLaVA-M suffers from faulty spatial reasoning, leading to ambiguous or ineffective navigation decisions,

AutoSpatial exhibits improved pedestrian identification and reasoning, when augmented with auto-labeled VQA pairs.

the spatial reasoning deficiencies in VLMs. Notably, training

on only auto-labeled VQA data (AS-A0D1) achieves only

a marginal performance improvement over Vanilla-LLaVA

and, in some cases, even underperforms, demonstrating that

human supervision is still essential for grounding social

interactions.

The robustness of our approach is demonstrated through

several key findings. First, varying the downsampling ratio

(AS-A72D1 through AS-A72D5) results in only minor per-

formance differences, indicating that our method is relatively

insensitive to the exact mixing proportions of the training

data. Second, reducing manual annotations by half (AS-

A36D1) leads to minimal performance degradation, suggest-

ing that our approach can achieve strong results even with

limited manual supervision.

C. Ablation Studies

Tab. II examines the individual contributions of different

components in our framework. Training with only perception

and prediction VQA tasks (AS-A72D1-P&P-VQA) shows

strong performance in the P&P metric but limited improve-

ment in other aspects. Conversely, using only reasoning

VQA tasks without the ground truth of perception and

prediction VQA tasks (AS-A72D1-R-VQA-1) improves rea-

soning, action, and explanation scores but struggles with

basic spatial understanding. Even with the ground truth of

the perception and prediction VQA tasks provided in the

question (AS-A72D1-R-VQA-2), the improvement in P&P

remains limited.

These ablation results reveal a crucial insight: the synergis-

tic effect of combining different types of VQAs with man-

ual annotations. While individual VQA types can improve

specific aspects of performance, only the full combination

achieves optimal results across all metrics.

D. Qualitative Analysis

To better understand our model’s capabilities and limita-

tions, we analyze one representative case that highlights the

differences between our approach and baseline models. In the

scenario shown in Fig. 3, featuring a crowded sidewalk with

multiple pedestrians, our model demonstrates superior spatial

awareness by clearly identifying key actors and their rela-

tive positions using standardized spatial terminology (e.g.,

“moving towards west” instead of “walking towards/away

from the camera”). More importantly, while baseline models

generate generic advice like “continue to navigate the street

while maintaining a safe distance”, our model provides

specific, socially-aware instructions—recommending to wait

for pedestrians to cross before proceeding, which better

aligns with social norms.

However, our analysis also reveals areas for improvement.

While the model demonstrates strong spatial reasoning, it

occasionally misinterprets subtle human cues, such as gaze

direction and body orientation, which are crucial for under-

standing pedestrian intent. Additionally, it sometimes reverts

to ambiguous camera-relative descriptions used intensively

by LLaVA instead of consistently applying the structured

spatial grounding, likely due to data limitations during train-

ing.

This qualitative analysis validates our approach’s effec-

tiveness in improving spatial reasoning while also identifying

clear directions for future enhancement. The improved spatial

reasoning capabilities directly contribute to more specific and

socially appropriate navigation decisions, even though op-
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portunities remain for further refinement in human behavior

understanding.

V. CONCLUSIONS

In this paper, we present an efficient approach to enhance

VLMs’ spatial reasoning capabilities through a combination

of auto-labeled data and minimal manual annotations. Our

method demonstrates that with just 72 carefully selected

manual annotations combined with structured auto-labeled

data, we can achieve significant improvements in both basic

spatial understanding and high-level scene comprehension.

Our experimental results reveal several key findings. First,

the combination of auto-labeled VQAs focusing on individ-

ual pedestrians and manual annotations emphasizing group

dynamics creates a synergistic effect that exceeds the perfor-

mance of either approach alone. Second, our method shows

remarkable robustness to various training configurations,

maintaining strong performance even with reduced manual

annotations. Third, qualitative analysis demonstrates that

enhanced spatial reasoning capabilities directly contribute to

more specific and socially appropriate navigation decisions.
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[12] A. Francis, C. Pérez-d’Arpino, C. Li, F. Xia, A. Alahi, R. Alami,
A. Bera, A. Biswas, J. Biswas, R. Chandra, et al., “Principles and
guidelines for evaluating social robot navigation algorithms,” arXiv
preprint arXiv:2306.16740, 2023.

[13] M. Daza, D. Barrios-Aranibar, J. Diaz-Amado, Y. Cardinale, and
J. Vilasboas, “An approach of social navigation based on proxemics for
crowded environments of humans and robots,” Micromachines, vol. 12,
no. 2, p. 193, 2021.

[14] M. Luber, L. Spinello, J. Silva, and K. O. Arras, “Socially-aware robot
navigation: A learning approach,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 902–
907.

[15] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[16] D. Song, J. Liang, A. Payandeh, A. H. Raj, X. Xiao, and D. Manocha,
“Vlm-social-nav: Socially aware robot navigation through scoring us-
ing vision-language models,” IEEE Robotics and Automation Letters,
2024.

[17] A. H. Raj, Z. Hu, H. Karnan, R. Chandra, A. Payandeh, L. Mao,
P. Stone, J. Biswas, and X. Xiao, “Rethinking social robot navigation:
Leveraging the best of two worlds,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024, pp.
16 330–16 337.

[18] B. Chen, Z. Xu, S. Kirmani, B. Ichter, D. Sadigh, L. Guibas, and
F. Xia, “Spatialvlm: Endowing vision-language models with spatial
reasoning capabilities,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 14 455–14 465.

[19] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian, et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in Conference on robot
learning. PMLR, 2023, pp. 287–318.

[20] D. Song, J. Liang, X. Xiao, and D. Manocha, “Tgs: Trajectory
generation and selection using vision language models in mapless
outdoor environments,” arXiv preprint arXiv:2408.02454, 2024.

[21] S. Nasiriany, F. Xia, W. Yu, T. Xiao, J. Liang, I. Dasgupta,
A. Xie, D. Driess, A. Wahid, Z. Xu, et al., “Pivot: Iterative visual
prompting elicits actionable knowledge for vlms,” arXiv preprint
arXiv:2402.07872, 2024.

[22] S. Narasimhan, A. H. Tan, D. Choi, and G. Nejat, “Olivia-nav: An
online lifelong vision language approach for mobile robot social
navigation,” arXiv preprint arXiv:2409.13675, 2024.

[23] J. Wang, Y. Ming, Z. Shi, V. Vineet, X. Wang, Y. Li, and N. Joshi,
“Is a picture worth a thousand words? delving into spatial reasoning
for vision language models,” arXiv preprint arXiv:2406.14852, 2024.

[24] Y. Cao, Y. Kang, C. Wang, and L. Sun, “Instruction mining: Instruction
data selection for tuning large language models,” arXiv preprint
arXiv:2307.06290, 2023.

[25] A. Zhang, C. Eranki, C. Zhang, J.-H. Park, R. Hong, P. Kalyani,
L. Kalyanaraman, A. Gamare, A. Bagad, M. Esteva, and J. Biswas,
“Towards robust robot 3d perception in urban environments: The ut
campus object dataset,” 2023.

[26] H. Liu, C. Li, Y. Li, B. Li, Y. Zhang, S. Shen, and Y. J.
Lee, “Llava-next: Improved reasoning, ocr, and world knowledge,”
January 2024. [Online]. Available: https://llava-vl.github.io/blog/
2024-01-30-llava-next/

11304

Authorized licensed use limited to: HOKKAIDO DAIGAKU KOHGAKUBU. Downloaded on December 17,2025 at 08:52:31 UTC from IEEE Xplore.  Restrictions apply. 


