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CARoL: Context-Aware Adaptation for
Robot Learning

Zechen Hu , Tong Xu , Graduate Student Member, IEEE, Xuesu Xiao , and Xuan Wang , Member, IEEE

Abstract—Using Reinforcement Learning (RL) to learn new
robotic tasks from scratch is often inefficient. Leveraging prior
knowledge has the potential to significantly enhance learning ef-
ficiency, which, however, raises two critical challenges: how to
determine the relevance of existing knowledge and how to adap-
tively integrate it into learning new task variants with differing
dynamics. In this letter, we propose Context-aware Adaptation for
Robot Learning (CARoL), a novel framework to efficiently learn a
similar but distinct new task from prior knowledge. CARoL incor-
porates context awareness by analyzing state transitions in system
dynamics to identify similarities between the new task and prior
knowledge. It then utilizes these identified similarities to prioritize
and adapt specific knowledge pieces for the new task. Additionally,
CARoL has a broad applicability spanning policy-based, value-
based, and actor-critic RL algorithms. We validate the efficiency
and generalizability of CARoL on both simulated robotic platforms
and physical ground vehicles. Simulations include CarRacing and
LunarLander environments, where CARoL demonstrates faster
convergence and higher rewards when learning policies for new
tasks. In real-world experiments, we show that CARoL enables a
ground vehicle to quickly and efficiently adapt policies learned in
simulation to smoothly traverse real-world off-road terrain.

Index Terms—Reinforcement learning, transfer learning,
autonomous agents.

I. INTRODUCTION

IN RECENT years, Reinforcement Learning (RL) ap-
proaches have achieved remarkable success in advanced

robotic control and complex task learning in dynamic environ-
ments, enabling applications across various domains [1], [2], [3].
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Fig. 1. Autonomous off-road navigation: a vehicle extensively trained in
(simulated) grass and concrete environments. However, its next task requires
it to navigate on (real-world) unseen rocky terrain. The vehicle must effectively
leverage the prior knowledge to solve this new challenge.

Despite these advancements, RL methods are typically compu-
tationally demanding, as they rely on repeated trial-and-error ex-
ploration to discover high-reward outcomes. Knowledge fusion
and adaptation [4] provide promising approaches to address the
inefficiency of RL. They leverage knowledge (such as a learned
control policy, value function, etc.) from previously explored
tasks to accelerate training on new tasks, eliminating the need
to train from scratch for every scenario. For example, consider
a vehicle navigating highly complex off-road terrain as shown
in Fig. 1. Suppose the vehicle has undergone extensive training
in several existing environments, it should ideally be capable of
adapting to a new type of terrain by utilizing previously learned
knowledge.

Our goal is to leverage prior knowledge to enhance learn-
ing efficiency of new task variants with differing dynamics.
Existing indiscriminate knowledge fusion methods [5] do not
consider (and exploit) the relationship between previous and
new environments, i.e., being unaware of the environment
context, even though many skills are context-specific. Instead,
robots should selectively prioritize and utilize knowledge that
is relevant to the new task. This poses two key challenges:
how to effectively quantify the relevance of existing knowl-
edge and how to adaptively integrate it into the learning
process.

In this work, we propose Context-aware Adaptation for Robot
Learning (CARoL), a framework that leverages context aware-
ness to enable efficient adaptation to task variants with differing
dynamics using prior knowledge. CARoL introduces a novel
approach to quantify task similarities by using state transi-
tion (dynamic awareness) representations as context, which is
different from other context-awareness works that commonly
use environment [6] or robot [7] representations. The rationale
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behind this choice is that the state transition is the core of a
Markov Decision Process (MDP) upon which reinforcement
learning is established. State transition inherently captures the
combined impact of the environment and the robot, thus, is a
straightforward and comprehensive measure of task similarity,
without the need to carefully choose features from environments
or robots. For instance, steep inclines and partially icy surfaces
may differ significantly in their environmental characteristics
but can produce similar state transitions such as wheel traction
loss. By leveraging this shared context, control policies can be
adapted in a more general and robust manner. The contributions
of CARoL:
� CARoL explicitly leverages state transition to identify task-

specific contextual similarity, allowing targeted learning
rather than indiscriminate adaptation from prior knowl-
edge.

� CARoL has broad applicability that can be integrated into
both policy-based and value-based (or combined actor-
critic) RL algorithms to achieve knowledge adaptation.

� Our experimental study demonstrates the effectiveness of
CARoL, not only in simulation environments but also
through validation on physical off-road navigation tasks.

II. RELATED WORK

1) Learning Adaptation: By leveraging shared knowledge,
multi-task learning improves sample efficiency and general-
ization in robotics and RL. MT-Opt [8] demonstrated how
robots can learn a broad spectrum of skills. For quadrotor
control tasks, the study [9] leveraged shared physical dynamics
to enhance sample efficiency and task performance. Although
parameter sharing across tasks can intuitively improve data
efficiency, during the training process, gradients from different
tasks can interfere negatively with each other. Methods such
as policy distillation [10] and actor-mimic [11] train a single
policy by using the guidance of several expert teachers [12].
These methods perform well on already encountered tasks or
tasks with known structures. However, in most applications,
robots often face unknown tasks, making it difficult to ensure
the performance of fused control strategies in these unfamiliar
scenarios. To guarantee performance on new tasks, knowledge
fusion typically requires an additional adaptation process. For
instance, the work [13] leveraged lifelong learning techniques
to learn a navigation policy complementary to classical motion
planners to adapt to new navigation scenarios without forgetting
previous ones. The approach in [14] adopted dynamic generation
and adjustment of network structures to adapt prior knowledge,
leveraging unsupervised knowledge integration for new task
adaptation. Lifelong learning is storage-efficient, as it retains
only one model that solves all scenarios over the learning lifes-
pan. However, as the model tries to avoid forgetting existing
knowledge, it may negatively impact the efficiency of acquiring
a new one due to contradicting gradients.

Few-shot reinforcement learning addresses the challenge of
rapidly adapting to new tasks with minimal experience by
leveraging structured prior knowledge. RL2 [15] approaches
this through a recurrent neural network that learns a learning
algorithm itself, enabling fast adaptation to new tasks within the
same distribution. PEARL [16] uses probabilistic embeddings to
encode task-specific information, allowing an actor-critic agent
to quickly adapt to new tasks by inferring latent task representa-
tions from limited experience. VariBAD [17] extends this con-
cept by maintaining a belief over possible task parameters and

using Bayesian updates to refine task understanding during adap-
tation. For these methods, the accuracy of latent representation
has a critical impact on performance. Meta-learning represents
another prominent paradigm within few-shot learning, where
algorithms like MAML [18] learn initialization parameters
that enable rapid convergence on new tasks through gradient-
based adaptation. Modular meta-learning approaches [19] ex-
tend this by learning to compose reusable modules for different
tasks. However, they suffer from optimization instability due to
their reliance on second-order gradients and incur significant
computational overhead.

2) Context-Awareness Learning for Robotics: Context-
aware learning considers a set of Markov Decision Processes
(MDPs) that share the same state and action spaces but dif-
fer in transition probabilities and rewards based on contextual
variations. Thus, a learning model can be made adaptive, by
using context-awareness as an augmented input [20], [21], [22].
For example, the work presented in [20] proposed contextual
MDP to model how human decision-making varies depending
on their surrounding environment. Context-Aware Policy reuSe
(CAPS) [21] leverages contexts as identifiers to determine when
and which source policies should be reused. Another notable
approach is Successor Features [23], which decomposes value
functions into reusable successor features and task-specific re-
ward weights, using the reward weights as context to enable rapid
adaptation to new reward structures while preserving learned
environmental dynamics. For robotic applications, the method
in [22] used a latent context vector to capture robot-specific
structural features, enabling the prediction of future states. For
quadruped robot control on diverse terrains, the framework in [6]
treated environmental encodings as contexts, which are then
used as an extra argument to a base policy for quick adaptation.
A similar idea has also been extended to other domains, such
as bipedal locomotion [24] and in-hand object rotation [25].
For these existing works, context is typically represented as
latent encodings of either environments or robots, generated
during end-to-end training processes. In contrast, our work di-
rectly uses state transitions as contexts. Moreover, while existing
methods primarily rely on data-driven mechanisms to map the
impact of context on model outputs, our approach explicitly
integrates context to guide knowledge adaptation, which offers a
more interpretable and structured way to enhance robot learning
efficiency.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Markov Decision Processes and Knowledge

An RL task can be modeled by a Markov Decision Process
defined as a tuple T = {S,A,P,R}, where each element rep-
resents state space, action space, transition probability measure,
and reward function, respectively. The objective of an RL agent
is to learn a decision-making strategy that selects actions from
the action space A based on current states in state space S ,
in order to maximize the cumulative reward R. In this letter,
we use a general notation K to represent the critical knowl-
edge required for such decision-making. Depending on the RL
methods employed, K can take various forms: For policy-based
RL, it represents a policy that directly maps states to actions.
For value-based RL, it represents the value function that esti-
mates the cost-to-go which informs the choice of action; For
actor-critic RL, it combines both the policy (actor) and value
function (critic).
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Fig. 2. CARoL consists of three key steps. (i) Acquiring both the context
representation and prior knowledge for each source task. (ii) Evaluating the
contextual similarities between the target task and source tasks. (iii) Performing
contextual knowledge adaptation, which can be applied to policy-based, value-
based, or actor-critic RL approaches.

B. Problem Formulation

Consider a set of n source tasks T = {T1,T2, . . . ,Tn},
where each source task Ti = {S,A,Pi,R} for i ∈ {1, . . . , n}
is defined by shared state and action spaces (S ,A) and a common
reward function (R), but distinct transition probability measures
(Pi). A new unseen target task variant with differing dynamics is
represented as Tg = {S,A,Pg,R}. The target task shares the
same state space, action space, and reward function as the source
tasks, but its transition probability measure Pg is unknown.

The formulation applies to scenarios with similar objectives,
such as robot navigation tasks with a consistent success metric.
We can use the same state and action spaces for all scenarios,
but variations in robot configurations (e.g., chassis, wheels,
tires, etc.) and deployment across various terrain (e.g., geom-
etry, surface material, etc.) will lead to differences in transition
probability measures.

We assume the source tasks can be sufficiently trained to
acquire a knowledge set K = {K1,K2, . . . ,Kn}. The problem
of interest is to develop an efficient algorithm that derives the
knowledge Kg for the target task Tg , by leveraging the prior
knowledge K to accelerate learning and improve performance.

IV. CONTEXT-AWARE ADAPTATION FOR ROBOT LEARNING

(CAROL)

To explain the rationale behind CARoL, note that in a given
MDP, the transition probability Pi plays a central role in deter-
mining the knowledge Ki required to solve the problem. This
makes Pi a natural choice as the contextual marker for knowl-
edge adaptation: greater similarities in state transitions indicate
stronger relevance between the knowledge associated with a
source task and that needed for a new target task. We explicitly
use state transitions as the context, i.e., dynamic awareness for
adaptation. This provides a more interpretable and structured
method to enhance learning efficiency. We present details of
the proposed CARoL algorithm. As illustrated in Fig. 2 with
components summarized in the caption.

Context Representation: For each source task Ti, along with
the standard use of RL that acquires the knowledge Ki, we also
train an approximation of the transition function to represent the
context, denoted by fi(si, ai |φi) : S ×A → S for each source
task. This function predicts the next state based on the current
state-action pair and is parameterized by φi. The parameters are
updated via gradient descent for the i-th task:

φ′i = φi − α∇φi
LTi

(φi), (1)

whereα is the learning rate and the task collects state-action-next
state triplets {(si,k, ai,k, s+i,k)} sampled from robot trajectories,
with k ∈ {1, . . . ,mi} being the indicator of samples. The loss
function is defined as the difference between the next true
state from samples and the predicted next state: LTi

(φi) =∑mi

k=1 ‖fi(si,k, ai,k |φi)− s+i,k‖2.
Evaluation of Contextual Similarity: We use state transition

functions fi(·) to evaluate the contextual similarity between
source task i and the new target task, which quantifies the
relevance of their knowledge. A straightforward approach is to
learn a transition function fg(·) for the new task, then compare it
with fi(·) from source tasks. However, learning fg(·) for a new
task can be computationally expensive.

To address this, our method uses sampled trajectories
{(sg,k, ag,k, s+g,k)},k ∈ {1, . . . ,mg} from the target task. These
samples are applied to each state transition function fi(·),
i ∈ {1, . . . , n} learned from the source tasks to compute their
similarity, that is, for source task i:

Yi =

mg∑
k=1

‖fi(sg,k, ag,k)− s+g,k‖2. (2)

We regulate these measures into weights as i ∈ {1, . . . , n},

wi =
exp(−Yi)∑n
j=1 exp(−Yj)

. (3)

Remark 1: We assume the transition functions are well-tuned,
thenYimeasures the difference between the predicted next state
(from the sampled state-action pair) and the true next state from
the exploration data. A smaller Yi indicates higher contextual
similarity between the i-th source task and the target task in
(3). The resultingwi prioritize relevant knowledge for the target
task, thereby guiding knowledge transfer when source tasks are
sufficiently related (i.e. a subset of source tasks contains use-
ful behavioral priors under similar local contextual dynamics).
However, a limitation of the algorithm is that if none of the source
tasks are relevant, the target policy may perform poorly due to the
absence of effective guidance. This issue will be preliminarily
addressed by CARoL+ (Section IV-A4).

Context-aware Adaptation: The similarity weights wi enable
the robot to prioritize knowledge from the corresponding source
tasks.

1) CARoL for Policy-Based RL: Suppose the knowledge
Ki of each source task is a pre-trained policy, denoted by
πi(s) : S → A. The contextual similarity weights are wi. Let
the target policy πg(s|θg) be parameterized by θg and assume
it interacts with the target environment on-policy to generate
an action distribution πg(s|θg) based on the current state s ∈ S
and parameter θg . Let ξg represent the set of trajectories explored
by the policy in the target task and each trajectory τ ∈ ξg is a
sequence of state-action pairs.

We define a learning loss based on the divergence between
the action distribution of the target policy and a weighted
combination of the action distributions of the source policies:

LP =
∑
τ∈ξg

∑
s∈τ

n∑
i=1

wiD(πi(s), πg(s|θg)), (4)
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Algorithm 1: CARoL for Policy-Based RL.

◦
where D(·, ·) is the Kullback–Leibler (KL) divergence:

D(πi(s), πg(s|θg)) = Φ

(
πi(s)

T

)
ln

Φ(πi(s)
T )

Φ(πg(s|θg)) . (5)

Here, Φ(·) is the softmax function and T is the temperature pa-
rameter. This process selectively incorporates knowledge from
relevant source policies to optimize the target task, as summa-
rized in Algorithm 1.

2) CARoL for Value-Based RL: Value-based RL algorithms
use value functions to estimate the expected cumulative reward
starting from a given state-action pair (or from a state), then guide
action selection. In the following, we consider the knowledge
Ki of each source task to be a pre-trained state-action value
function Qi(s, a) : S ×A → R (a similar mechanism can be
easily generalized to state value function Vi(s).). The contextual
similarity weights are wi.

Let the target value function be a neural networkQg(s, a |ψg)
parameterized byψg . Actions are greedily selected for the target
task using an epsilon-greedy strategy, transitioning from early
exploration to later exploitation. During exploitation, we select
the action that yields the highestQ-value output from the current
state in the Q-network.

Once the replay buffer reaches a sufficient size, we randomly
extract a minibatch B of data. For each data pair in this mini-
batch, the target value is computed. However, unlike traditional
value-based RL algorithms, we do not rely on the inadequately
trained target Qg-network for updates. Instead, we leverage the
knowledge from the source Qi(s, a) functions, reweighted by
contextual similarities, as follows:

Qnext =

n∑
i=1

wiQi(s
+, argmax

a+
(Qi(s

+, a+))), (6)

where s+ is the next state, and argmax selects the action by
maximizing each source Qi value function.

Using the Bellman equation with a discount factor γ, we de-
fine the following learning loss based on the difference between
the target value function and the value using reweighted source
Qi networks as prior knowledge:

LQ =
∑
s∈B

[‖Qg(s, a |ψg)− r − γQnext‖2
]
, (7)

Algorithm 2: CARoL for Value-Based RL.

where B is the minibatch extracted from the replay buffer, and
r is the reward for the corresponding state-action pair.

The process, summarized in Algorithm 2, selectively incor-
porates knowledge from the relevant source value functions to
approximate the value function for the target task. To test the
learned Qg(s, a |ψg) in Tg, the greedy method can be used to
select actions.

3) CARoL for Actor-Critic RL: If the prior knowledge Ki is
in the form of an actor-critic structure, involving both a policy
and a value function, then both of them can be leveraged to
enhance learning in a new task. Instead of directly combining the
methods introduced earlier to simultaneously learn a policy and
a value function for the target task, we focus on learning a target
actor (i.e., policy) πg(s | θg), while adopting a static fusion
method to leverage the source critic (value) functions without
using a parameterized function approximation. Otherwise, if the
actor and critic are updated simultaneously, the method might
suffer from issues such as instability and overestimation of
Q-values, which are common in actor-critic RL [26].

Similar to the policy-based approach outlined in Algorithm 1,
we define part of the learning loss to be LP , which measures the
weighted combination of divergences between the target policy’s
action distribution and source action distributions.

Additionally, we define a loss from critic as follows:

LC = −
∑
τ∈ξg

∑
s∈τ

[
n∑

i=1

wi ·Qi(s, πg(s|θg))
]
, (8)

where the action for each state s is determined by the current
actor πg . Thus, LC evaluates the performance of the target actor
using the weighted combination of source critics, prioritizing
those that are more contextually similar to the target task.
Minimizing LC helps to iteratively improve the target actor by
leveraging the guidance of source critics.

The combined losses in (4) and (8) yield:

LAC = LP + βLC . (9)

By minimizing LAC , the target actor πg is informed by both
the source actors πi(s) through LP as well as the source critics
Qi(s, a) through LC . The value of β ∈ R+ is adjustable and
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Fig. 3. Two OpenAI simulation environments for validating our algorithm:
(a) CarRacing environment; (b) LunarLander environment. One physical exper-
iment environment: (c) Ground vehicle off-road navigation.

Algorithm 3: CARoL for Actor-Critic RL.

determines the importance of each. Algorithm 3 summarizes
how to use CARoL for actor-critic RL.

4) CARoL+: In the above subsections, the introduced
CARoL focuses on leveraging prior knowledge to solve a new
target task. It omits the aspect of using standard RL approaches to
acquire new knowledge from the task. This is because additional
learning may not always be necessary when prior knowledge
is already sufficient for solving the task. However, if learning
from the target task is required, this can be achieved by adding
standard RL loss terms to the functions (4), (7), and (9) for
policy-based, value-based, and actor-critic methods. This ex-
tension enables the model to not only adapt prior knowledge but
also refine it through direct learning from the target task. An
implementation of this, called CARoL+, will be included in the
experiments section for comparison.

V. EXPERIMENTS

In this section, we present both simulated and physical ex-
periments to evaluate the effectiveness of CARoL. To ensure
reproducibility, the simulated experiments are conducted us-
ing OpenAI’s CarRacing and LunarLander tasks, as shown in
Fig. 3(a), (b). To demonstrate CARoL’s capabilities in real-world
scenarios (Fig. 3(c)), we deploy it on a ground vehicle, enabling
the rapid and efficient adaptation of policies learned from source
tasks to smoothly navigate real-world off-road terrain. In these
setups, CARoL is integrated with two types of RL algorithms:
PPO (Proximal policy optimization, focusing on policy gradient

TABLE I
CONTEXTUAL SIMILARITIES - CARRACING

optimization using a clipped surrogate objective) and TD3 (Twin
Delayed Deep Deterministic, with the actor updated to maximize
the Q-value estimated by the critic, following a value-based
update mechanism) for knowledge adaptation [26]. The per-
formance of CARoL is compared against multiple baseline
approaches.

A. Simulated Experiment: CarRacing

1) Experiment Setup: As shown in Fig. 3(a), CarRacing is
a continuous control task where an autonomous mobile robot
must navigate a procedurally generated racetrack to maximize
cumulative rewards. The task involves balancing speed and
control to avoid going off-track while efficiently moving forward
on the racetrack. The dynamics of the car depend on track
friction. We design three task environments with low μ = 0.5,
medium μ = 1, and high friction μ = 2, as source tasks. To
implement CARoL, we obtain all source knowledge (SK) using
PPO (Proximal policy optimization) [27]. While PPO has a value
function, it is primarily an actor-focused method. The source
knowledge is represented as pre-trained source policies. There-
fore, our CARoL framework utilizes Algorithm 1 for adaptation.
Implementation of Baselines:
� Policy Distillation (PD) [28]: PD is implemented us-

ing source policies as teachers to train a target policy,
which fuses all source policies equally in an indiscriminate
manner.

� Model-Agnostic Meta-Learning (MAML) [18]: We in-
clude MAML as a representative method for meta-learning.
The meta-model is trained using all source tasks. Then the
meta-model is adapted to the new environment using PPO.

� Learning from Scratch (LfS): The same method that is
used in source knowledge training but adjust the network
structure to match that of CARoL.

� Source Knowledge (SK): We directly apply source knowl-
edge to different target tasks. The cumulative reward values
are evaluated by averaging over 20 episodes.

For the purpose of fair comparison between CARoL and other
baseline methods, we used neural networks of similar sizes; then,
the number of episodes would serve as the measure for both
convergence and computational efficiency.

2) Results and Analysis: Table I presents the contextual simi-
larity weights learned for the three source tasks in different target
tasks under the CarRacing simulated experiment. We observe
that the contextual similarity weight assigned to a source task
for a given target task is generally negatively correlated with their
friction difference. In particular, the tasks with μ = 0.5, μ = 1,
and μ = 2 are scenarios where the target task is the same as one
of the source tasks. The results confirm the effectiveness of our
similarity weight, as the corresponding source task consistently
receives the highest values.

Fig. 4 presents the reward curves, where the x-axis represents
the number of training steps, and the y-axis represents the reward

Authorized licensed use limited to: George Mason University. Downloaded on October 26,2025 at 05:42:33 UTC from IEEE Xplore.  Restrictions apply. 



12068 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 11, NOVEMBER 2025

Fig. 4. Comparison of cumulative reward for CARoL and baselines under different CarRacing tasks. The x-axis represents the running steps and the y-axis
represents the reward. The height of dash lines demonstrates the average cumulative reward of source knowledge (SK) under the task.

value. We observe that each SK performs well on its correspond-
ing task, indicating that the SK has been well-trained. In all cases,
CARoL demonstrates a faster convergence speed compared to
other methods. This verifies CARoL’s capability to efficiently
leverage existing knowledge and quickly adapt to the target
task. In terms of the final reward, CARoL generally achieves
the best performance. Specifically, when the target environment
matches one of the source environments, as in subfigures (b,
d, g), CARoL produces results comparable to the well-trained
SK policies. When compared to PD, which indiscriminately
fuses SK policies, CARoL can prioritize relevant SKs, leading
to better performances in (a, c). Additionally, CARoL exhibits
a more stable training process than PD.

The LfS uses the same parameter settings as CARoL. LfS
struggles to converge in most tasks within the given training
steps, whereas CARoL adapts significantly faster. Regarding
MAML, despite extensive testing meta-training and adaptation,
its performance remains poor. This may be due to an undesirable
meta-model that is difficult to generalize effectively to new
environments.

B. Simulated Experiment: LunarLander

1) Experiment Setup: As shown in Fig. 3(b) LunarLander is a
control task where an autonomous lander robot must safely land
on a designated landing pad in a simulated lunar environment.
The robot must balance thrust and control to achieve a smooth
landing while minimizing fuel consumption. The LunarLander
environment allows adjustments of gravity and wind power. For
source tasks, we set the two parameters as (−5, 0); (−10, 0);
(−5, 10); (−10, 10), respectively. To implement CARoL, we
obtain all source knowledge using TD3 (Twin Delayed Deep
Deterministic) [26]. The source knowledge is represented as
pre-trained source policies and state-action value functions.
Therefore, our CARoL utilizes Algorithm 3 for adaptation with
β = 1. In addition to the baselines used in the CarRacing, we
also include two further variants in our evaluation:
� CARoL+: This variant incorporates CARoL’s original

adaptation loss in (9), while adding an additional TD3
learning objective on the target task.

TABLE II
CONTEXTUAL SIMILARITIES - LUNARLANDER

� RMA [6]: We adapt RMA by learning the policy con-
ditioned on latent contextual dynamics representations
and an adaptation module to infer these from trajectory
histories.

2) Results and Analysis: Table II presents the contextual
similarity weights learned for four source tasks in different target
tasks. We observe that the weight is negatively correlated with
their geometric distance in the 2-D parameter space.

Fig. 5 shows the reward curves. In comparison with baselines,
we see that PD exhibits a consistently lower reward conver-
gence than CARoL across most target tasks. Comparing LfS to
CARoL, we observe that LfS demonstrates a significantly slower
convergence speed, particularly for (f) and (h), and generally
achieves lower final rewards. This is because Lfs has a same
network size as CARoL but cannot leverage prior knowledge.
It is worth noting that in target tasks (i) and some trials of (j),
LfS achieves higher rewards than CARoL. This is because the
source task may not provide sufficient useful knowledge to the
target tasks, as these target tasks use parameters outside the
combination of the source tasks. In these cases, LfS benefits from
learning new knowledge from the new task and thus outperforms
CARoL.

However, this issue can be addressed by CARoL+ (cf. Sec-
tion IV-A4). CARoL+ integrates interaction-based learning dur-
ing adaptation, allowing it to achieve the highest reward across
all cases. This compensates for CARoL’s potential limitations
in final convergence values. Additionally, CARoL+ retains
CARoL’s advantage of fast convergence while also being the
most stable one during the convergence process.
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Fig. 5. Comparison of cumulative reward for CARoL, CARoL+ and baselines under different LunarLander tasks. The x-axis represents the running episodes
and the y-axis represents the reward.

We also evaluate RMA, which is trained under randomized
contextual dynamics, simultaneously learning a latent represen-
tation of the environment. For a new task, it can be directly
deployed without training. It first collects short trajectories (e.g.,
10 trials of 50 steps) from the target task and uses them to
infer the latent encoding, which is then fed into the policy
for execution. The results are presented as the straight lines in
Fig. 5. Initially, when using an adaptation module with a similar
network size as CARoL, RMA (yellow line) fails to achieve
high cumulative rewards in most target tasks. We attribute this
limitation to the lack of structured generalization in the learned
latent space. Specifically, the adaptation module relies on fitting
the latent representation from short historical trajectories, which
may lead to estimation drift or errors, especially in unseen tasks.
However, when we increased the network complexity of the
adaptation module, RMA-large (brown line) obtains compara-
ble performance, suggesting that the representational capacity
of the latent encoding network is a critical factor for RMA’s
effectiveness.

C. Real World: Ground Vehicle Off-Road Navigation

We apply CARoL to an off-road mobility problem with a
physical robot. As shown in Fig. 3(c), the goal is to enable the
robot to autonomously and successfully navigate from the start
to the goal. RL for real-world off-road mobility is particularly
inefficient due to the prohibitive cost of collecting physical
vehicle-terrain interaction data. Therefore, in this experiment,
we aim to apply CARoL to adapt policies learned in simulation
to the real world.

1) Experiment Setup: We leverage a high-fidelity multi-
physics simulator, Chrono [29], to train two different off-road
navigation policies: SK1 for concrete terrain and SK2 for grass
terrain. We generate off-road terrain with undulating topogra-
phies and vary the friction coefficient between the vehicle tires
and the underlying terrain, i.e., 0.9 and 0.4. Here, different
friction levels influence traversability. For example, for the same
slope, friction determines whether the robot can climb it or
must bypass it. In the real world, we construct an off-road
mobility testbed with hundreds of rocks and boulders. We posit

the friction coefficient of the real-world rocks and boulders to
be between 0.57 and 0.73, necessitating adaptation from the two
SKs into a new policy.

2) Implementation of CARoL: In the simulators, we use PPO
to train two source knowledge policies from scratch and train
state transition functions for each environment as context rep-
resentation. To implement CARoL in the real world, we first
compute the contextual similarity. We manually control the
vehicle to randomly navigate 20 trials on the real-world off-road
terrain to collect trajectory data, instead of relying on random
exploration, for real-world sample efficiency. The contextual
similarity is quantified by comparing the prediction errors of
the source task transition functions over trajectories collected in
the real-world environment.

Based on the obtained contextual similarity and source task
policies, we employ CARoL-Algorithm 1 to adapt to the real
world. We perform a total of 10 iterations with 8 navigation
trials each (approximately 130 minutes in total), during which
the vehicle gradually improve from initially failing (veering off
the experimental field, getting stuck halfway, or flipping over)
to successfully reaching the goal. In the final two iterations, the
vehicle successfully reaches the goal in every episode, indicating
a good adaptation performance. We then compare this converged
model with the source knowledge policies and the fusion of
knowledge with specific weights (not the correct weights ob-
tained from contextual similarity). We do not implement LfS
and MAML methods due to the cost of collecting extensive
physical vehicle-terrain interaction data. For the same reason,
we do not employ CARoL+. We also do not employ RMA since
training the adaptation module of RMA requires substantial
environment-policy interaction across diverse terrain settings,
which is expensive in the Chrono. The real-world experiment
delivers two key contributions: 1) Demonstrating the feasibility
of CARoL in real robot adaptation scenarios; 2) Providing
evidence of the rationality of the learned contextual similarity
weights.

3) Experiment Results and Analysis: In the comparison ex-
periments, each model undergoes five trials from the start to
the goal. The source knowledge refers to the model trained in
the Chrono simulator, which is directly deployed on the robot.
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TABLE III
PHYSICAL EXPERIMENT RESULTS

The evaluation metrics for this experiment, aligned with the RL
rewards, include success rate, roll, and pitch. While traveling
time is not evaluated, it is provided as a reference.

As shown in the results Table III, CARoL achieves the high-
est success rate, and the robot demonstrates the most stable
navigation under CARoL’s adapted model. Although CARoL
takes the longest time to reach the goal, we do not impose any
reward or penalty on travel time in this task. The longer duration
may suggest that the robot is carefully selecting paths based
on traversability. The primary objective is to ensure that the
robot autonomously reaches the goal successfully, and CARoL
has high stability in terms of roll and pitch. To further validate
the effectiveness of CARoL’s contextual weights, we include
three additional baselines for comparison. We observe that if
the weights cannot be properly learned and assigned, the per-
formance degrades substantially. Additionally, we observe that
while SK2 achieves the shortest average traveling time, its low
success rate and higher instability highlight the risk of directly
deploying single-source policies to the real world, even when the
terrain seems similar (e.g., friction level). Overall, these results
demonstrate that CARoL not only successfully transfers learned
behaviors to the real world, but also achieves superior navigation
stability and robustness through adaptive policy fusion based on
contextual similarity.

VI. CONCLUSION AND LIMITATIONS

We presented CARoL, a framework that first evaluates con-
textual similarities between source and target tasks based on their
state transitions. Given the prior knowledge from source tasks,
CARoL then performs contextual knowledge adaptation for tar-
get tasks. A key advantage of CARoL is its broad applicability to
policy-based, value-based, and actor-critic RL methods. Experi-
mental results demonstrated that our algorithm effectively adapts
to new tasks. Limitations of CARoL include: (i) in task space,
source task configurations need sufficient coverage over target
tasks; (ii) sufficient state-action space exploration is needed for
quantification of contextual similarity; (iii) we limit the scope to
dynamics-shifted tasks with shared reward functions. For future
work, we plan to explore learning continuous task embeddings to
improve coverage and flexibility of adaptation across smoothly
varying tasks, and on tasks with dynamics and reward shifts to
validate the generalization of CARoL+.
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