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Abstract: This paper introduces Disturbance-Aware Redundant Control (DARC), a control
framework addressing the challenge of human–robot co-transportation under disturbances.
Our method integrates a disturbance-aware Model Predictive Control (MPC) framework
with a proactive pose optimization mechanism. The robotic system, comprising a mobile
base and a manipulator arm, compensates for uncertain human behaviors and internal
actuation noise through a two-step iterative process. At each planning horizon, a candidate
set of feasible joint configurations is generated using a Conditional Variational Autoencoder
(CVAE). From this set, one configuration is selected by minimizing an estimated control cost
computed via a disturbance-aware Discrete Algebraic Riccati Equation (DARE), which also
provides the optimal control inputs for both the mobile base and the manipulator arm. We
derive the disturbance-aware DARE and validate DARC with simulated experiments with
a Fetch robot. Evaluations across various trajectories and disturbance levels demonstrate
that our proposed DARC framework outperforms baseline algorithms that lack disturbance
modeling, pose optimization, or both.

Keywords: redundant robots; Disturbance-Aware Control; pose optimization; human–
robot collaboration; Model Predictive Control

1. Introduction
Human–robot collaboration is an emerging topic in research that helps to reduce

humans’ physical and cognitive workloads in various applications. For example, in in-
dustrial applications, collaborative robots are often used to perform repetitive tasks that
enhance productivity and reduce human effort [1,2]. In such scenarios, robots generally
operate behind safety fences, with physical separation from humans, to ensure safety [3].
Moreover, when humans and robots share the same workspace, the robots must be aware
of human movements to ensure safety and achieve task goals [4]. This is important in both
industrial and non-industrial settings. The application in non-industrial settings includes
supporting elderly people with daily activities [5] and providing navigation assistance to
individuals [6]. These applications require high-level planning with low-level control of the
robot to achieve increased performance while maintaining safety. Increased performance
refers to comparison with the performance level of either humans or robots operating
independently [7].

Among these diverse applications, the co-transportation of objects by a human with a
mobile manipulator (i.e., a robotic arm mounted on a mobile base) is a common scenario [8],
as illustrated in Figure 1. In human–robot co-transportation tasks, there are challenges in

Electronics 2025, 14, 2480 https://doi.org/10.3390/electronics14122480

https://doi.org/10.3390/electronics14122480
https://doi.org/10.3390/electronics14122480
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4283-4567
https://orcid.org/0009-0007-7889-6352
https://orcid.org/0000-0001-5151-2186
https://orcid.org/0000-0003-2587-070X
https://doi.org/10.3390/electronics14122480
https://www.mdpi.com/article/10.3390/electronics14122480?type=check_update&version=1


Electronics 2025, 14, 2480 2 of 24

ensuring safe and efficient performance, especially when subjected to disturbances [9,10].
These disturbances include unpredictable human behavior, hardware imperfections such
as sensor noise or actuator inaccuracies, etc. Even if the task has a predefined nominal
path, humans often deviate from it due to fatigue, personal preferences, or external influ-
ences [11,12]. These deviations need to be compensated for by the robot to achieve the task
goals. For a mobile manipulator, such adaptation toward disturbances is complex, as the
robotic arm must dynamically reconfigure its joint angles to adapt to the human.

Human Uncertainty
Pose Optimization

Figure 1. Human–robot co-transportation through disturbance-aware MPC and pose optimization
(redundancy resolution for the same end-effector position).

The high-level planning of a mobile manipulator highly relies on the Model Predictive
Control (MPC) framework, which has the predictive capabilities to enhance collabora-
tive task performance [13]. However, this framework may lead to singularities or semi-
singularities where the arm loses degrees of freedom or becomes stuck [14]. To address
(semi-)singularities, proactive pose optimization can be implemented by exploiting the
manipulator’s kinematic redundancy [15,16]. Yet, limited existing works consider the
integration of MPC and pose optimization, and they are not directly applicable to the
co-transportation task considered in this paper [17,18]. Furthermore, the complexity rises
in a mobile manipulator compared to a fixed-base robotic arm. Although using a mobile
manipulator extends the system’s workspace and maneuverability, such flexibility chal-
lenges the simultaneous coordination of the base’s mobility with the arm’s joint angle
velocities [19].

To address these challenges, this work (a preprint of this paper is available in [20])
proposes a DARC framework by combining a disturbance-aware Model Predictive Control
strategy as a high-level planner with a pose optimization mechanism at the low-level
control. The MPC component plays the role of coordinating the movements of the mobile
base and robotic arm by estimating the effects of disturbances on tracking accuracy and
energy consumption. At the low-level control, we use a pose optimization mechanism that
dynamically adjusts the robot’s joint angles to compensate for disturbances. This also helps
avoid singularities and enhances tracking accuracy under disturbances. This two-step
interactive process, integrating the predictive capability of MPC and the proactive control
of the robot with pose optimization, helps to reduce control effort and improve energy
efficiency and tracking performance.

Statement of Contribution: The main contributions of this paper are as follows:

• We formulate a high-level Model Predictive Control (MPC) planner problem that incorpo-
rates disturbances along with a low-level pose optimization mechanism and the robot’s
whole-body kinematics. We propose a two-step iterative optimization approach to
holistically solve the high-level and low-level problems.
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• For the high-level MPC problem, we estimate control costs under disturbances and
generate optimal control inputs. The initial state of the MPC controller depends on
the low-level pose optimization.

• For the low-level pose optimization, we optimize the robot’s pose selected from a joint
configuration set generated using Conditional Variational Autoencoder (CVAE). The
selection criteria are informed by the expected cost of the high-level MPC.

• We provide theoretical derivations and simulated experiments with a Fetch mobile
manipulator to validate the DARC framework. Quantitative comparisons highlight
the advantages of our method over different baselines.

2. Literature Review
Human–robot collaboration can be broadly classified into four levels based on their

interaction modes: (i) physical separation (No Coexistence), (ii) shared space with no shared goals
(Coexistence), (iii) shared goals in shared space (Cooperation), and (iv) simultaneous work on a
shared object in shared space (Collaboration) [21,22]. Co-transportation work falls into level
(iv) as the human and the robot carry the same object in the same environment.

To enhance the performance of such collaborative tasks while ensuring safety by
adapting to humans, integrating model-based control and reinforcement learning has
been explored. Recent works use model-based reinforcement learning to assist humans
in target activities [23], perform wood sawing and surface polishing [24], and execute
Gaussian Process MPC in collaborative assembly tasks [13]. Furthermore, studies consider
robust variable admittance control with unknown payload [25], sampling-based MPC for
task and motion planning [26], and combined task/joint-space constraint handling [27].
Co-manipulation and transportation tasks are also addressed by considering whole-body
kinematics of mobile manipulators [28–30] or employing human–humanoid collaboration
strategies [31–33] to reduce human workload. While reinforcement learning methods are
effective for handling unmodeled human uncertainties, they often lack transparency and
rigorous guarantees of performance. For such issues, the control-theoretic framework is
provided by robust MPC for addressing uncertainties, ensuring strict safety [34], adhering
to physical constraints [35], and accommodating parameter variations [36]. However,
these approaches do not integrate the disturbance-aware MPC formulation with pose
optimization to enhance the overall performance further. This is one of the main differences
from the problem addressed in our proposed framework. Additionally, they usually do not
embed the disturbance component in the problem formulation itself; rather, they include it
in the robot dynamics.

The idea of pose optimization is closely related to redundancy resolution, where
multiple joint configurations can achieve a desired end-effector pose [16,37]. Redundancy
resolution is one of the most important parts in controlling high-degree-of-freedom robotic
systems, particularly for end-effector manipulation. Such kinematic redundancy helps to
avoid singularities [38], improves dexterity in confined workspaces [39], and enhances pre-
cision under dynamic conditions [40]. Recent research has explored diverse methodologies
to address these objectives—for instance, employing Monte Carlo tree search to optimize
redundant configurations [41], introducing a sampling-based approach to navigate com-
plex constraint spaces [42], and leveraging stiffness modeling to refine pose selection for
task-specific compliance [43]. In soft robotics, [44] demonstrated redundancy resolution
for continuum manipulators by adapting poses to flexible forms. Additionally, many
researchers have used learning methods for redundant manipulators. These include utiliz-
ing the proximal policy optimization algorithm [45], deep deterministic policy gradient
algorithm [46], and deep reinforcement learning [47]. In general, these works highlight the
adaptability of pose optimization in overcoming environmental and operational constraints.
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Although pose optimization has been investigated in many scenarios, these seldom ac-
count for disturbances [48]. In contrast to prior approaches, our formulation redefines
pose optimization by coupling it with a disturbance-aware MPC framework. This strategy
helps to select poses that not only satisfy kinematic goals but also minimize the impact
of disturbances.

3. Preliminaries and Problem Formulation
In this section, we first define how disturbances impact the co-transportation process

in terms of a nominal trajectory for the human and robot to complete the task. Next, we
present the kinematic model of a mobile manipulator’s end-effector, where we integrate
the kinematics of its mobile base and arm. Finally, we formulate an MPC problem that
incorporates pose optimization to address disturbances effectively.

Notations: Let Ir be the r× r identity matrix and diag{a1, · · · , ar} be a diagonal matrix
whose entries are a1, . . . , ar. For any vector x, let ∥x∥2 be the Euclidean norm. If M is a
square matrix, Tr(M) is the trace. Additionally, M ≻ 0 (M ⪰ 0) denotes that M is positive
(semi-)definite We define ∥x∥2

M = x⊤Mx.

3.1. Trajectory with External Human Disturbances

Consider the co-transportation task illustrated in Figure 1, where a human and a
mobile manipulator jointly move an object. Let

r(k) =
[
rx(k), ry(k), rz(k), rα(k), rβ(k), rγ(k)

]⊤ ∈ R6

be the manipulator’s end-effector pose, where (rx, ry, rz) denotes the Cartesian position
and (rα, rβ, rγ) the orientation in Euler angles, respectively. We define this pose over a finite
horizon k = 0, 1, . . . , H, where H is the planning horizon. To account for external human
disturbances, we incorporate a disturbance term ϖ(τ) in the trajectory:

r(k) = r̃(k) + D
k

∑
τ=0

ϖ(τ), (1)

where r̃(k) ∈ R6 is a nominal trajectory. If we assume that the task has a desired trajectory,
this r̃(k) can be treated as known to the human and the robot. Otherwise, we may consider
trajectory prediction of r̃(k) by the robot based on human behaviors. In existing works,
such trajectory prediction can be achieved using geometry-based curve fitting [49], utility
function frameworks [50], or learning methods like recurrent neural networks [51,52],
LSTM [53–55]. We use LSTM (the detailed implementation will be described in the Ap-
pendix A) because it can capture temporal dependencies in sequential data. This makes
it beneficial in predicting the continuous, non-linear evolution of human movement. The
term ϖ(τ) represents the disturbance due to human movement, modeled as a Gaussian
distribution—i.e., ϖ(τ) ∼ N (αϖ , Σϖ) in the x, y, and z directions where τ denotes the time
step. Here, αϖ ∈ R3 is the non-zero-mean and Σϖ ∈ R3×3 is the covariance matrix that
captures individual variations or preferences of the human collaborator. D ∈ R6×3 is a
matrix that maps ϖ(τ) into the 6D pose space. To focus on the translational disturbances
caused by the human, we assume the orientation (rα, rβ, rγ) remains unaffected by these
disturbances. This is because the orientation is co-determined by the robot and the human.
Thus, the disturbance towards orientation is not necessarily impacted only by the human,

and the robot can compensate for this. Thus, we define D =
[

I3 03×3

]⊤
.
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3.2. End-Effector Kinematics

We illustrate the modeling details using a Fetch Mobile Manipulator [56], as we used
this robot for experiments. The Fetch robot has a differential-drive mobile base and a
7-DOF robotic arm. In the following, we consider simplified kinematics, focusing on
velocity inputs.

Note that our proposed framework is applicable to either a dynamic or a kinematic
model of the end-effector of any kind of mobile manipulator. A dynamic model with
torque control requires the use of accurate inertial parameters, the modelling of non-linear
Coriolis and gravity terms, and the capturing of friction and actuator dynamics. When
using dynamic models instead of kinematic models, the computational and implementation
complexity might increase, but the process remains unchanged. Additionally, the approach
can be easily generalized to other types of mobile manipulators, such as robots with an
omnidirectional base and a robotic arm mounted on top. For this, we only need to modify
the corresponding kinematics equations accordingly.

Mobile Base. The kinematics model of the mobile base of the Fetch Mobile Manipu-
lator can be approximated using a standard differential-drive model in the inertial frame
(Figure 2a). Let

sbase(k) =
[

xbase(k) ybase(k) ϕ(k)
]⊤
∈ R3

be the pose of the base. This has Cartesian coordinates (xbase, ybase) in the inertial frame
and heading angle ϕ. The state update of sbase from step k to k + 1 is given by

sbase(k + 1) = sbase(k) + ∆t


cos(ϕ(k)) 0

sin(ϕ(k)) 0

0 1

ubase(k), (2)

where
ubase(k) =

[
v(k) ϕ̇(k)

]⊤
∈ R2

where the base’s linear velocity is v and the angular velocity is ϕ̇ at time k. We denote
the time interval as ∆t. Here, (v, ϕ̇) are in the robot’s body frame Ξ, which translates and
rotates with the base.

(a)

𝑥2

𝑧2
𝑧3

𝑥3

𝑥4

𝑧4
𝑥5

𝑧5

𝑥6

𝑧6
𝑥7

𝑧7

𝑥8

𝑧8

𝑥9

𝑧9

𝑑2
𝜗2

𝜗3

𝜗4
𝜗5

𝜗6
𝜗7

𝜗8

𝑎2 𝑑4 𝑑6 𝑑8

𝑑1 𝑧Ξ

𝜙 𝑥Ξ

𝑦Ξ

(b)
Figure 2. (a,b) show the Fetch robot’s mobile base and arm configuration. (a) Fetch robot’s base in the
inertial frame. A shifted frame Ξ centered at the robot’s current position. (b) Denavit–Hartenberg (DH)
representation with 8-DOF (manipulator’s joint angles and base’s heading angle) joint configurations
in Ξ frame.

Robotic Manipulator. Fetch robot incorporates a 7-DOF manipulator mounted on
top of its base. We denote each joint angle as ϑi, where i ∈ {2, . . . , 8} represent seven joint
angles. In addition, we include the base’s heading angle ϕ as an extra DOF that yields an
8-DOF system as illustrated in Figure 2b. This helps to merge the kinematics of the mobile
base and the manipulator by enabling the transformation of the end-effector’s pose in the
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robot body frame from the inertial frame without any rotation and vice versa. Additionally,
it allows the incorporation of the heading angle ϕ into the pose optimization along with
the arm’s joint angles. Let

θ = [ ϕ, ϑ2, . . . , ϑ8 ]
⊤ ∈ R8

combine the base’s heading angle and the arm’s seven joint angles. We denote the corre-
sponding angular velocities by

ω = [ ϕ̇, ϑ̇2, . . . , ϑ̇8 ]
⊤ ∈ R8.

Let sarm be the end-effector pose in the body frame Ξ. Specifically,

sarm =

parm

ψarm

 ∈ R6,

where parm ∈ R3 denotes the Cartesian position of the end-effector in Ξ frame, and
ψarm ∈ R3 represents the orientation in Euler angles in the same frame. Note that our use
of Euler angles is primarily for simplicity, although we are aware that Euler angles may
potentially lead to singularities [57]. In our application, the target end-effector orientation is
maintained horizontally relative to the ground, which helps mitigate the issue. Orientation
may also be represented using quaternions or SO(3) with complex dynamic matrices.
However, we claim that the choice of the representation method does not impact our results
if we modify the equations related to Euler angles in Section 4.

Although the original model of forward kinematics is non-linear, it can be locally
linearized around θ(k) for small sampling intervals. We perform linearization to map the
end-effector pose from joint angle velocities, which is a standard process in MPC to enhance
computational tractability. Additionally, if the planning horizon of MPC is short, then the
impact of this linearization is not significant. Letting f (·) be the forward-kinematics map,
we have

sarm(k + 1) = f
(
θ(k) + ∆t · ω(k)

)
≈ sarm(k) + ∆t · J

(
θ(k)

)
ω(k), (3)

where J
(
θ(k)

)
∈ R6×8 is the Jacobian matrix, which is computed as J(θ(k)) = ∂ f (θ)

∂θ

∣∣∣
θ=θ(k)

.

The specific form of J is derived from the DH parameters of the Fetch arm [56].
End-Effector Kinematics. We integrate the kinematics of the base (2) and manipu-

lator (3) to capture the end-effector kinematics of the manipulator in the inertial frame.
We define

s ∈ R6 where s = sarm +


xbase

ybase

04×1

.

Because sbase is measured in the inertial frame, sarm is in the frame Ξ, and ϕ is already
included in θ, the heading angle change is effectively captured by the Jacobian matrix itself.
Combining the control inputs into u = [ v, ω⊤]⊤ ∈ R9 and combining (2) and (3) into a
single linearized state transition for s(k) yields

s(k + 1) = s(k) + B
(
θ(k)

)
u(k), (4)
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where

B(θ(k)) = ∆t


cos(ϕ(k))

sin(ϕ(k)) J(θ(k))

04×1

 ∈ R6×9

is the input matrix. Here, the first column represents the contribution of the base’s linear
velocity, and the other columns reflect the effect of the angular velocities ω(k) through the
Jacobian J

(
θ(k)

)
.

3.3. MPC-Based Tracking with Pose Optimization

To achieve effective co-transportation, the robot mainly aims to precisely control its
end-effector pose by adjusting its joint angles. This ensures seamless coordination with the
human during the collaborative task. However, due to the inherent redundancy of high-
degree-of-freedom manipulators, a given end-effector pose corresponds to infinitely many
joint angle combinations. These different configurations can lead to different future costs.
For example, some joint combinations may perform better in tracking trajectories along the
y-axis, while some others may be better for the z-axis. Motivated by this observation, we
introduce an approach that allows the robot to slightly adjust its joint configuration between
each control input without changing the end-effector pose. Such adjustments enable the
robot to proactively select a configuration from multiple solutions that potentially minimize
future tracking costs. This leads to jointly optimizing both the control inputs and the robot’s
joint configuration, as we describe next.

Our goal is to track the trajectory r(k) while considering the robot’s whole-body
kinematics. To achieve this, we formulate a disturbance-aware Model Predictive Control
(MPC) problem that incorporates pose optimization. This allows the robot to select a new
joint configuration θ̄, which may differ from the initial configuration θ0. We formulate the
following finite-horizon optimization problem:

min
u(0:H−1), θ̄∈Θ

J
(
u(0 : H − 1), θ̄

)
(5)

≜ Eϖ

[
H

∑
k=0

(
s(k)− r(k)

)⊤Q
(
s(k)− r(k)

)︸ ︷︷ ︸
Tracking Error Cost

]

+
H−1

∑
k=0

u(k)⊤R u(k)︸ ︷︷ ︸
Control Cost

+ κ
∥∥θ̄− θ0

∥∥2
2︸ ︷︷ ︸

Pose Optimization

+ wθ exp
(
−
∥∥θlim− θ̄

∥∥2
2

)
︸ ︷︷ ︸

joint limit penalty

subject to
s(k + 1) = s(k) + B

(
θ̄
)

u(k) , s(0) = s0,

r(k) = r̃(k) + D
k

∑
τ=0

ϖ(τ), ϖ(τ) ∼ N (αϖ, Σϖ).

Here, u(0 : H − 1) = { u(0), u(1), . . . , u(H − 1)} denote the control input sequence
over finite horizon H, and Θ is the candidate set of all feasible joint configurations. The
tracking error cost term penalizes the deviations of the end-effector pose s(k) from the
trajectory r(k) over the planning horizon. The matrices Q ⪰ 0 and R ≻ 0 weigh the tracking
error and control efforts costs, respectively. κ > 0 adjusts how strongly the optimizer prefers
to remain near the initial configuration θ0. The joint limit penalty discourages the robot
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from approaching its joint limits. This penalty term exponentially increases the cost as
the pose θ̄ approaches the joint limit values θlim. This helps the robot operate within
safety bounds and avoids any potential configuration that may lead to a stuck pose. The
coefficient wθ > 0 is the weighting factor for the joint limit penalty. The expectation Eϖ [·]
is computed over the disturbance ϖ(τ). Note that, for computational tractability, B(θ̄) is
treated as fixed over the planning horizon based on the new configuration θ̄. This technique
is common in MPC implementations with short horizons [58,59] since re-linearizing at each
step would increase the computational burden. By allowing the robot to proactively adjust
its joint configuration from θ0 to θ̄, we claim that our framework selects more favorable
poses to better compensate for disturbances.

We also note that the state update (cf. Equation (4)) considers an ideal scenario without
noise. However, in real-world applications, a robot’s internal noise, such as sensor noise or
actuator errors, often exists and introduces uncertainty. From a modeling perspective, both
types of noise can be incorporated into the disturbance term ϖ(τ) without introducing
additional variables. The impact of these noises will then be propagated to the predicted
control cost to inform pose optimization. In terms of implementation, actuator errors can
be compensated through closed-loop control. Sensor noise, however, is more difficult
to address, as it corrupts the measurements and prevents the system from accurately
observing its true state. Developing filtering techniques to mitigate the impact of sensor
noise will be the focus of our future work.

4. Main Result
In this section, we first present the theoretical foundation of how our framework

estimates the impact of disturbances with derivations of the optimal control law. Then, we
detail the methodology of generating a candidate set of feasible joint configurations using
a Conditional Variational Autoencoder (CVAE).

4.1. Optimal Control Law:

In the problem formulation (5), the control input sequence u(0 : H − 1) depends on
the input matrix B(θ̄), which itself is a function of the robot joint configuration θ̄. A direct
solution that jointly optimizes both u(0 : H − 1) and θ̄ is often not tractable because of
highly non-linear and non-analytic dependence on θ̄. To handle this challenge, we adopt a
two-step iterative approach:

1. We first generate a set of candidate joint angle configurations around θ0. Then, for
each candidate pose θ̄ in this set, we compute the sequence of optimal control inputs
u∗(0 : H − 1) and associated cost-to-go.

2. We compare the estimated cost-to-go J ∗(θ̄) for each configuration in the candidate
set and choose the one that yields the minimum cost-to-go.

To achieve our goal, we first need to derive an optimal control law, and for that, we
need error dynamics. To obtain the error dynamics, we subtract r(k + 1) from Equation (4):

s(k + 1)− r(k + 1) = s(k)− r(k) + r(k)− r(k + 1) + B̄u(k)

⇒ e(k + 1) = e(k) + B̄u(k) + r̃(k)− r̃(k + 1)− Dϖ(k + 1) (6)

where we use B̄ = B(θ̄), which is the input matrix evaluated at the chosen pose θ̄. e(k) =
s(k)− r(k) is the tracking error. We assume that optimal cost-to-go has the following form:

J ∗(e(k), k) = ∥e(k)∥2
P(k) + 2e(k)⊤q(k) + c(k) (7)

where P(k) ∈ R6×6, q(k) ∈ R6, and c(k) ∈ R are unknown quantities to be determined.
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Theorem 1. Suppose the optimal control input u∗ for (5) yields a cost-to-go function in the
quadratic form of (7). Then for a given pose θ̄ and its corresponding input matrix B̄, the quantities
P(k), q(k), and c(k) are obtained using a disturbance-aware Discrete Algebraic Riccati Equation
(DARE). Letting M = R + B̄⊤P(k + 1) B̄,

P(k) = Q + P(k + 1) − P(k + 1) B̄ M−1 B̄⊤ P(k + 1), (8a)

q(k) = q(k + 1) + P(k + 1)
[
r̃(k)− r̃(k + 1)− D αϖ

]
− P(k + 1) B̄ M−1 B̄⊤

(
P(k + 1)

[
r̃(k)− r̃(k + 1)− D αϖ

]
+ q(k + 1)

)
, (8b)

c(k) = c(k + 1) +
∥∥r̃(k)− r̃(k + 1)

∥∥2
P(k+1) + Tr

(
Σϖ D⊤ P(k + 1) D

)
−

∥∥P(k + 1)
[
r̃(k)− r̃(k + 1)− D αϖ

]
+ q(k + 1)

∥∥2
B̄ M−1 B̄⊤

+ 2
(
r̃(k)− r̃(k + 1)− D αϖ

)⊤(P(k + 1) [−D αϖ ] + q(k + 1)
)
, (8c)

with the terminal conditions

P(H) = Q, q(H) = 0, c(H) = κ ∥θ̄− θ0∥2
2 + wθ exp

(
−

∥∥θlim − θ̄
∥∥2

2

)
.

The corresponding optimal control input has the form

u∗(k) = −M−1B⊤
(

P(k + 1)
(
e(k) + r̃(k)− r̃(k + 1)− Dαϖ

)
+ q(k + 1)

)
(9)

Proof of Theorem 1. Combining the Equations (6) and (7),

J ∗(e(k), k) = min
u(k)
J (e(k), k))

= min
u(k)

[
Eϖ

[
∥e(k)∥2

Q + ∥u(k)∥2
R + J ∗(e(k + 1)), k + 1)

]]
= min

u(k)

[[
∥e(k)∥2

Q + ∥u(k))∥2
R

+ ∥e(k) + B̄u(k) + r̃(k)− r̃(k + 1)∥2
P(k+1)

+ Tr(ΣϖD⊤P(k + 1)D)

+ 2(e(k) + B̄u(k) + r̃(k)− r̃(k + 1)− Dαϖ)
⊤P(k + 1)(−Dαϖ)

+ 2(e(k) + B̄u(k) + r̃(k)− r̃(k + 1)− Dαϖ)
⊤q(k + 1) + c(k + 1)

]]
(10)

where E(ϖ(k + 1)) = αϖ. Because the control input is optimized to minimize the cost at
each step, the optimality condition yields the following:

∂J ∗(e(k), k)
∂u(k)

= Ru(k) + B̄⊤P(k + 1)(e(k) + B̄u(k) + r̃(k)− r̃(k + 1)) + B̄⊤q(k + 1) = 0. (11)

By solving this, we obtain the optimal control law as

u∗(k) = −(R + B̄⊤P(k + 1)B̄)−1B⊤(P(k + 1)(e(k) + r̃(k)− r̃(k + 1)− Dαϖ) + q(k + 1))

Let
d = r̃(k)− r̃(k + 1)− Dαϖ, M = R + B̄⊤P(k + 1)B̄,

M = B̄⊤(P(k + 1)(e(k) + d) + q(k + 1)).
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By expanding (10) and injecting u∗(k) = −M−1M into (10), one has

J ∗(e(k), k) =e(k)⊤(Q + P(k + 1))e(k)

+ 2e⊤(P(k + 1)d + q(k + 1))

+ (M−1M)⊤M(M−1M)

− 2(M−1M)⊤M+Z
=e(k)⊤(Q + P(k + 1))e(k)

+ 2e⊤(P(k + 1)d + q(k + 1))

−M⊤M−1M+Z (12)

where Z = Tr(ΣϖD⊤P(k + 1)D) + (r̃(k)− r̃(k + 1))⊤P(k + 1)(r̃(k)− r̃(k + 1))
+ 2d⊤P(k + 1)(−Dαϖ) + 2d⊤q(k + 1) + c(k + 1). ExpandingM⊤M−1M yields

[
P(k + 1)(e(k) + d) + q(k + 1)

]⊤B̄M−1B̄⊤
[
P(k + 1)(e(k) + d) + q(k + 1)

]
= e(k)⊤(P(k + 1)B̄)M−1(B̄⊤P(k + 1))e(k)

+ 2e(k)⊤(P(k + 1)B̄)M−1(B̄⊤P(k + 1)d + B̄⊤q(k + 1))

+ (B̄⊤P(k + 1)d + B̄⊤q(k + 1))⊤M−1(B̄⊤P(k + 1)d + B̄⊤q(k + 1)) (13)

Putting this back into (12) gives

J ∗(e(k), k) = e(k)⊤(Q + P(k + 1)− P(k + 1)B̄M−1B̄⊤P(k + 1)))e(k)

+ 2e(k)⊤(P(k + 1)d + q(k + 1)

− (P(k + 1)B̄)M−1(B̄⊤(P(k + 1)d + B̄⊤q(k + 1)))

− (B̄⊤(P(k + 1)d + B̄⊤q(k + 1))⊤M−1(B̄⊤(P(k + 1)d + B̄⊤q(k + 1)) +Z (14)

Comparing (14) with (7), we obtain

P(k) = Q + P(k + 1)− P(k + 1)B̄M−1B̄⊤P(k + 1)

q(k) = q(k + 1) + P(k + 1)(r̃(k)− r̃(k + 1)− Dαϖ)

− P(k + 1)B̄M−1B̄⊤(P(k + 1)(r̃(k)− r̃(k + 1)− Dαϖ) + q(k + 1))

c(k) = c(k + 1) + ∥r̃(k)− r̃(k + 1)∥2
P(k+1)

+ Tr(ΣϖD⊤P(k + 1)D)

− ∥P(k + 1)(r̃(k)− r̃(k + 1)− Dαϖ) + q(k + 1))∥2
B̄M−1 B̄⊤

+ 2(r̃(k)− r̃(k + 1)− Dαϖ)
⊤(P(k + 1)− Dαϖ + q(k + 1))

where J ∗(e(H), k = H), P(H), q(H), and c(H) are obtained.

From Theorem 1, we observe that c(k) is not a part of the expression for u∗(k) in (9).
However, the term c(k) is essential in computing the optimal cost-to-go J ∗. Therefore,
when we compare different pose candidates θ̄ ∈ Θ, each candidate yields a different set of
P, q, and c values. This results in a different cost J ∗(θ̄) for each candidate. Among all, we
select the pose with the lowest J ∗.

Specifically, our proposed two-step iterative process framework, described in
Algorithm 1, addresses the challenge that arises from the strong non-linear and non-analytic
dependence on θ̄. For this reason, finding an optimized θ̄ can be computationally infeasible.
Hence, we use a sample-based approach for generating a set of candidate poses Θ. In our
approach, we use a deep learning method that is discussed in the following Section 4.2 to
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obtain each candidate pose θ̄ ∈ Θ. A similar approach of using learning methods and a
sampling-based approach have been used in [42,60], respectively.

Algorithm 1 Disturbance-Aware MPC Tracking with Pose Optimization

Require: Reference trajectory r̃(0 : H), disturbance parameters αϖ, Σϖ, initial pose θ0
Ensure: Sequence of optimal inputs u∗(0 : H − 1) and optimized pose control ū

1: Trajectory Formulation
2: Formulate trajectory r(k = 0 : H) through (1).
3: Create set of candidate joint configurations Θ using CVAE (cf. Algorithm 2).
4: Step 1: Evaluation for Each Candidate Pose
5: for all θ̄ ∈ Θ do
6: Compute the Jacobian matrix J(θ̄) = ∂ f (θ)

∂θ

∣∣∣
θ=θ̄

.

7: Compute input matrix B(θ̄).
8: Solve (5) by the disturbance-aware DARE solution (see Theorem 1).
9: Compute the optimal cost J ∗(θ̄) via (7).

10: end for
11: Step 2: Pose Optimization and Control Computation
12: Determine the optimal pose θ̄∗ = arg minθ̄∈Θ J ∗(θ̄).
13: Compute the pose control input as ū = θ̄∗−θ0

τ .
14: Reuse the DARE solution for θ̄∗ to compute u∗(0 : H − 1) using Equation (9).
15: Apply the combined control input ū + u∗(0) to the robot.

For each candidate pose θ̄ ∈ Θ, we compute the associated Jacobian, input matrix
B(θ̄) and then evaluate the estimated optimal cost J ∗(θ̄) using Theorem 1. Because each
candidate in Θ is processed independently, this computation can be parallelized to reduce
runtime. We can achieve this if the number of candidates in Θ is less than the number
of computing threads of the test computer. Once the cost J ∗(θ̄) is obtained for every
candidate, we choose the θ̄ that yields the smallest cost (θ̄∗) and apply the corresponding
optimal control sequence computed via Equation (9). The ideal implementation of the
algorithm would be as follows: (i) move the robot pose to θ̄∗ and then (ii) apply the arm
control inputs u∗. However, such execution can be challenging in real-time settings. Because
of this, we merge these two controls into a single step by adding the pose optimization
command and the manipulator control command vectorially. Based on the triangle law
of vector addition, this combined approach does not increase the total cost relative to the
separated steps. Moreover, if the difference (θ̄∗ − θ0) is very small, the potential difference
in cost is negligible in practice.

4.2. Generation of Candidate Set with Conditional Variational Autoencoder (CVAE):

As discussed in Section 4.1, directly finding θ̄∗ is challenging because of the input
matrix’s non-linear and non-analytic dependence on θ̄. To overcome this, we generate a
set of candidate poses that yield the same end-effector pose. We want these configurations
to be closer to the initial joint angle combination θ0, since larger deviation from θ0 incurs
a higher cost as formulated in (5). However, finding multiple configurations for a given
end-effector pose is challenging, as traditional inverse kinematics often yields a single
configuration for a certain end-effector pose. To address this, we use a CVAE model to
obtain multiple joint angle combinations where each of them gives the same end-effector
pose and is close to the initial configuration θ0.
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Algorithm 2 Training Algorithm for Conditional Variational Autoencoder (CVAE)

Require: Joint angle data {θi}N
i=1, end-effector pose data {s}N

i=1, initial configurations
{θ0i}N

i=1, learning rate α, weight coefficients λKL, λpose, number of epochs E, and batch
size B.

Ensure: Trained CVAE model parameters.
1: for epoch = 1 to E do
2: for each mini-batch of {θ, s} of size B do
3: Forward Pass:
4: Compute encoder input: Ein ← [θ, s].
5: Compute latent variables: (µ, log σ2)← Encoder(Ein).

6: Compute σ← exp
(

1
2 log σ2

)
.

7: Sample ϵ ∼ N (0, I).
8: Obtain latent vector: ξ ← µ + σ⊙ ϵ.
9: Compute decoder input: Din ← [ξ, s].

10: Reconstruct joint angles: θ̂ ← Decoder(Din).
11: Loss Computation:
12: Total loss function: Ltotal ← Lrecon + λKLLKL + λposeLpose
13: Backpropagation and Optimization:
14: Backpropagate Ltotal.
15: Update model parameters ρe and ρd using the NAdam optimizer
16: end for
17: end for

The CVAE model has an encoder, a reparameterization step, and a decoder. The encoder
maps an input joint angle vector θ to a latent variable ξ ∈ Rl. This is conditioned on the
end-effector pose s ∈ R6. We model this mapping as a multivariate Gaussian distribution:

Qρe(ξ | θ, s) = N
(

ξ; µρe(θ, s), diag(σ2
ρe(θ, s))

)
(15)

where ρe denotes the encoder’s trainable parameters, and µρe and log σ2
ρe are the mean and

log-variance of the latent distribution, respectively. To sample ξ while enabling gradient-
based optimization, we employ the reparameterization trick:

ξ ← µρe + σρe ⊙ ϵ, ϵ ∼ N (0, I) (16)

where ⊙ represents element-wise multiplication. The decoder then reconstructs a joint
angle vector θ̂ ∈ R8 from ξ, conditioned on s and θ:

Pρd(θ̂ | ξ, s, θ) = N
(

θ̂; µρd(ξ, s, θ), diag(σ2
ρd
)
)

(17)

where ρd represents the decoder’s parameters. Each reconstructed θ̂ is a candidate for
inclusion in Θ.

Loss Function: We train the model by minimizing a composite loss function. This
function comprises (i) Reconstruction loss (Lrecon) that measures the discrepancy between
the reconstructed joint configurations θ̂ and the original combinations θ; (ii) Kullback–Leibler
(KL) Divergence loss (LKL) that regularizes the latent space to follow a standard normal
distribution; and (iii) Pose Similarity loss (Lpose) that encourages consistency between the
pose derived from the reconstructed angles and the desired end-effector pose. Putting all
these terms together, the total loss is
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Ltotal = Lrecon + λKLLKL + λposeLpose

=
1
B

B

∑
i=1

[
∥θ̂i−θi∥2−λKL

2

l

∑
j=1

(
1+log σ2

ij−µ2
ij−σ2

ij

)
+λpose∥ŝi−si∥2

]
(18)

where B is the batch size, and λKL and λpose are the hyperparameters controlling the relative
importance of each term.

Network Architecture and Training: We generate the training data for CVAE by
randomly taking joint angle combinations and use forward kinematics to obtain the end-
effector pose with the Fetch’s URDF. Since all data is generated using the kinematic model
and satisfies the joint limit constraints, the output of the CVAE model is therefore trained
to meet these constraints. The URDF of the Fetch Mobile Manipulator can be found
at https://github.com/ZebraDevs/fetch_ros/blob/ros1/fetch_description/robots/fetch.
urdf (accessed on 16 June 2025). In the rare case where infeasible candidates are generated,
we will discard the output during selection for the candidate set. We train the encoder and
decoder parameters (ρe, ρd) by minimizing Ltotal using the Nesterov-accelerated Adaptive
Moment Estimation (NAdam) optimizer [61]:

ρe ← ρe − α∇ρe Ltotal, ρd ← ρd − α∇ρd Ltotal (19)

where α is the learning rate. We generate the dataset by performing forward kinematics on
an 8-DoF configuration (7-DoF manipulator and 1-DoF mobile base, considering heading
angle only) to obtain pairs of joint angle vectors θ ∈ R8 and the corresponding end-
effector pose s. Algorithm 2 summarizes our training procedure, and a block diagram is
illustrated in Figure 3. For presentation simplicity, we use (ϕ, ϑ2, . . . , ϑ8) to represent θ and
(ϕ̂, ϑ̂2, . . . , ϑ̂8) to represent θ̂ in Figure 3.

Encoder Decoder

Figure 3. Block diagram model of CVAE for pose optimization.

5. Experiments
In this section, we first show the efficiency of the CVAE in generating multiple joint

configurations while maintaining the same end-effector pose. We then evaluate our pro-
posed algorithm Pose Optimization with Human Uncertainty (PO-HU), which represents the
DARC framework, through simulation experiments in the Gazebo environment using a
Fetch robot [56].

5.1. Evaluation of CVAE Method

As discussed earlier, there are three parts in CVAE: encoder network, reparameter-
ization trick, and decoder network. In the encoder network, we set up the model as a
14-dimensional input layer (θ ∈ R8 and s ∈ R6) that maps to a hidden layer of 128 neu-
rons. This 14-dimension consists of an 8-dimensional θ and a 6-dimensional end-effector
pose s. The second layer maps the hidden layer to 64 neurons. This outputs the mean

https://github.com/ZebraDevs/fetch_ros/blob/ros1/fetch_description/robots/fetch.urdf
https://github.com/ZebraDevs/fetch_ros/blob/ros1/fetch_description/robots/fetch.urdf
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and log-variance of the latent distribution and maps from 64 to the l = 20 dimensional
latent space. We then use the reparameterization trick part to allow gradient backprop-
agation through the sampling process. In the decoder network, the first layer maps the
(20 + 14)-dimensional input to 64 neurons. Layer 2 maps the 64-dimensional hidden layer
to 128 neurons, and this outputs the reconstructed joint angle with a dimension of 8. We set
B = 64 and α = 10−4.

Figure 4a shows the training and validation loss curves. We can observe the conver-
gence of the loss from this plot. Figure 4b depicts the training and validation accuracy of
the model. We evaluate the trained CVAE by feeding it a specific end-effector pose s along
with its associated joint angles θ, represented by the row “Given” in Table 1. Using CVAE,
we first generate 100 samples and then choose 20 samples for the candidate set. To choose
these 20 samples, we consider the lowest reconstruction error, pose deviation, satisfaction
of joint angle limits, and an error tolerance setting of the Mean Squared Error (MSE) being
within 0.02 for the end-effector pose. If any of the generated joint configurations yields
an MSE higher than 0.02 or violates the joint angle limits, that configuration is dropped
from the candidate set. We observe that in sample 13 of Table 1, ϑ8 is 1.696 rad, but the
given ϑ8 is 2.1 rad. However, the generated end-effector pose is very close to the given
pose, with an MSE of only 0.00831. For that reason, it is still a valid candidate. Yet, these
higher differences in generated joint configurations may result in higher estimated costs
due to the “Pose Optimization” and “Joint Limit Penalty” terms in Equation (5). Thus, these
configurations have a higher chance of being discarded when we select a configuration
based on the lowest estimated costs for pose optimization.
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Figure 4. Visualization of CVAE model training metrics and outputs: (a–f) show various training and
evaluation plots including loss, accuracy, MSE, predicted vs. desired outputs, and joint variations.
(a) Training and validation loss of the CVAE model. (b) Training and validation accuracy of the
CVAE model. (c) MSE between predicted and desired end-effector pose. (d) Predicted vs. desired
end-effector position. (e) Predicted vs. desired end-effector orientation. (f) Variation in joint angles
from the given joint angle.

Overall, Table 1 illustrates that, for nearly the same end-effector pose, the CVAE can
produce different feasible joint angle combinations.

Figure 4c shows the MSE between each predicted end-effector pose and the desired
pose. It is observed that the error is very small and within a range of 0.002 to 0.014.
Figure 4d,e depict the end-effector position and orientation results, respectively. These
figures show that the generated angles yield very similar end-effector poses. Finally,
Figure 4f visualizes how the generated angles differ from the given joint angles. These
results demonstrate that the proposed approach effectively produces diverse joint angle



Electronics 2025, 14, 2480 15 of 24

solutions. Each of them satisfies the end-effector pose condition, along with exploring
alternative configurations close to the initial one. In addition, we compare the averaged
execution time and MSE with variations over 100 trials for generating the samples in
Table 2. We observe that, by increasing the number of samples, we reduce the MSE.
Although this increases the computation time, it remains within an acceptable range for
real-time implementation. The low latency stems from using a neural network model that
has already been trained offline, and we only perform the forward pass to produce the
joint configurations.

Table 1. Joint angles (8 DOF), end-effector positions, orientations, and MSE between generated and
given joint angles for 20 samples.

Sample
Joint Angles (rad) Position (m) Orientation (rad)

MSE
ϕ ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8 sx sy sz sroll spitch syaw

Given 0.0 0.2 −0.18 −0.5 −0.68 −0.24 0.95 2.1 0.987 0.201 1.105 1.266 −0.046 −0.093 -

1 0.017 0.177 −0.301 −0.528 −0.454 −0.129 0.814 1.788 1.003 0.185 1.103 1.198 −0.036 −0.064 0.00101
2 0.023 0.174 −0.199 −0.575 −0.497 −0.071 0.844 1.868 1.020 0.213 1.018 1.253 0.064 −0.033 0.00411
3 0.005 0.251 −0.275 −0.444 −0.428 −0.311 0.711 1.860 1.002 0.222 1.114 1.210 −0.122 −0.039 0.00586
4 −0.005 0.217 −0.197 −0.381 −0.379 −0.236 0.761 1.791 1.044 0.174 0.996 1.224 0.084 −0.075 0.00581
5 0.037 0.250 −0.155 −0.548 −0.579 −0.265 0.818 1.905 0.990 0.291 1.050 1.183 −0.065 0.006 0.00492
6 0.033 0.158 −0.251 −0.464 −0.456 −0.140 0.810 1.709 1.018 0.181 1.062 1.159 0.019 −0.054 0.00340
7 0.017 0.195 −0.110 −0.355 −0.444 −0.246 0.805 1.830 1.048 0.181 0.940 1.267 0.149 −0.075 0.01162
8 0.004 0.153 −0.169 −0.410 −0.405 −0.193 0.708 1.730 1.055 0.143 0.994 1.167 0.050 −0.074 0.00661
9 0.014 0.137 −0.181 −0.431 −0.451 −0.114 0.865 1.814 1.040 0.137 0.979 1.294 0.157 −0.100 0.01077
10 −0.005 0.145 −0.133 −0.379 −0.452 −0.136 0.829 1.748 1.053 0.127 0.947 1.252 0.175 −0.092 0.01397
11 0.011 0.199 −0.256 −0.352 −0.430 −0.098 0.818 1.691 1.020 0.196 1.046 1.275 0.082 0.011 0.00531
12 0.005 0.151 −0.175 −0.410 −0.383 −0.092 0.781 1.762 1.055 0.144 0.958 1.274 0.163 −0.061 0.01237
13 0.035 0.174 −0.279 −0.572 −0.463 −0.152 0.817 1.696 1.004 0.201 1.090 1.045 −0.040 −0.071 0.00831
14 −0.003 0.245 −0.184 −0.489 −0.475 −0.098 0.778 1.845 1.020 0.252 1.015 1.289 0.051 0.041 0.00661
15 0.022 0.273 −0.186 −0.548 −0.523 −0.174 0.807 1.832 0.993 0.301 1.041 1.171 −0.013 0.045 0.00721
16 0.003 0.112 −0.178 −0.636 −0.455 −0.126 0.757 1.812 1.048 0.127 1.007 1.092 0.013 −0.131 0.00900
17 0.032 0.238 −0.276 −0.448 −0.512 −0.050 0.863 1.701 0.980 0.276 1.087 1.237 0.026 0.086 0.00734
18 0.031 0.166 −0.142 −0.458 −0.479 −0.270 0.784 1.727 1.038 0.178 0.999 1.065 0.030 −0.099 0.01009
19 0.022 0.180 −0.232 −0.454 −0.477 −0.045 0.827 1.798 1.017 0.212 1.040 1.322 0.070 0.020 0.00576
20 0.015 0.182 −0.126 −0.376 −0.479 −0.114 0.747 1.762 1.043 0.206 0.975 1.294 0.092 0.028 0.00908

Table 2. Comparison of averaged execution time and MSE with standard deviation under varying
numbers of generated samples.

No. of Samples Computation Time (s) MSE

10 0.0011 ± 0.0001 0.0215 ± 0.0057

30 0.0027 ± 0.0004 0.0177 ± 0.0049

60 0.0047 ± 0.0011 0.0125 ± 0.0032

100 0.0061 ± 0.0019 0.0103 ± 0.0015

200 0.0112 ± 0.0031 0.0099 ± 0.0010

5.2. Evaluation of DARC Framework

We aim to validate the effectiveness of DARC under various levels of human dis-
turbances and trajectories. We assumed that human uncertainties are mathematically
equivalent to robot actuation disturbances, as discussed in Section 3.2. To model human
uncertainties, we use ϖ(k) ∼ N (αϖ, Σϖ), where αϖ = [0.0035, 0.0055, 0.0027]⊤ (in meters)
and Σϖ = η · diag(0.011, 0.02, 0.013) (in meters) and η ∈ {0.3, 0.6} represents the strength
of the disturbances. This reflects the tendency for disturbances along the y-axis to be more
pronounced than those in the x and z directions.

To evaluate the algorithm, we employ two representative trajectories, which are
trajectory A and B. Each of them is discretized with 500 waypoints and a time-step
interval of ∆t = 0.1 s. In one set of experiments, we assume that the future human poses
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are unknown to the robot. To address this, we incorporate an LSTM network for pose
prediction (cf. Appendix A). The algorithm predicts the next six poses based on the ten
previous poses. The experiments leveraging the LSTM-based prediction are denoted by
AP and BP . We consider a second set of experiments where we assume the future human
pose to be fully known a priori, though still subject to disturbances. The corresponding
experiments are denoted by AN and BN .

We adopt an MPC strategy as described in Section 3.3 and in Algorithm 1, where the
planning is repeated at every discrete time step. Within each planning horizon, we sample
twenty candidate robot poses, i.e., |Θ| = 20. To solve the optimization problem (5), we set
H = 4 for predictive experiments AP and BP , and H = 8 for the experiments AN and
BN . In the predictive cases, we forecast only six future steps. We chose H = 4 (< 6) to
keep the planning horizon shorter than the prediction window. For AN and BN , although
the robot knows the full reference trajectory, setting a very long horizon would increase
computational time and slow the solver. Thus, we select a moderate value H = 8, which
is double the predictive horizon. We examine two distinct settings for the tracking-error
weight Q—i.e., Q = 1500 · I6 and Q = 1100 · I6. These configurations allow us to investigate
the impact of reweighting the tracking error cost on the overall performance. A larger Q
emphasizes pose tracking by rescaling the pose error to a magnitude comparable to the
control inputs (unit-balancing). Moreover, it ensures the MPC actively suppresses the pose
errors that might twist the object. We set R = I9 to penalize all nine actuators evenly, which
avoids over-regularizing of any specific control input. We set κ = wθ = 1, which in our
case, is sufficient to penalize changes in joint configurations.

Although the algorithm is designed to minimize an expected cost, we quantify the
true cumulative cost over the full trajectory as follows:

Ctotal =
T

∑
t=1

[
e(t)⊤Q e(t) + u(t)⊤R u(t) + κ

∥∥θ̄∗(t)− θ(t)
∥∥2

2

]
, (20)

where the first term penalizes the end-effector tracking error, the second term penalizes the
control effort, and the third term is related to pose optimization. T = 500 denotes the total
number of steps.

To evaluate the effectiveness of our proposed PO-HU algorithm with |Θ| = 20, we
compare it against five baseline methods: (i) PO-HU (|Θ| = 1): single candidate pose
optimization, which corresponds to using a traditional inverse kinematics approach that
yields only one joint configuration; (ii) pPO-HU: periodic pose optimization every five
time steps, which reduces computation load while still considering human uncertainty;
(iii) NPO-HU: no pose optimization but considers human uncertainty while computing the
control inputs; (iv) PO-NHU: perform pose optimization without considering the impact of
human uncertainties; and (v) NPO-NHU: neither pose optimization nor human uncertainty
is considered in the computation of the control inputs.

Table 3 shows the mean with standard deviation of the total cost Ctotal over 100 trials
for each combination of trajectory type (AP , BP , AN , BN ), disturbance strength η, and
weighting matrix Q. Here, we observe that whenever pose optimization is performed
(i.e., PO-HU, PO-NHU, pPO-HU), it achieves a lower mean cost and often reduced stan-
dard deviation compared to methods lacking pose optimization (NPO-HU and NPO-NHU).
Notably, NPO-NHU yields the highest mean cost with the largest variance as it neither per-
forms pose optimization nor considers human uncertainties. This supports the importance
of selecting a better pose for improved performance.

Within pose optimization methods, PO-HU outperforms PO-NHU. This reflects how
explicitly accounting for human uncertainty yields advantages in all scenarios. While
comparing PO-HU (|Θ| = 1) and PO-HU (|Θ| = 20), we observe that even a single-
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candidate version of pose optimization can achieve better results than not performing pose
optimization at all, i.e., NPO-HU. However, when more candidate poses are considered
(|Θ| = 20), the algorithm better explores alternative joint configurations and achieves the
lowest average total cost in all cases. Moreover, the pPO-HU shows that pose optimization
at every five steps is still better than never performing pose optimization. Still, there exists
a slight performance drop compared to optimizing at every time step.

Table 3. Comparison of Ctotal across different algorithms (mean± standard deviation). †, ‡, § represent
larger differences for NPO-HU, PO-NHU, and NPO-NHU, respectively, from PO-HU(|Θ| = 20).

Traj Q η
PO-HU

(|Θ| = 20)
PO-HU

(|Θ| = 1)
pPO-HU

(|Θ| = 20) NPO-HU PO-NHU NPO-NHU

AP

1500I6

0.3 879.02 ± 32.1 1012.59 ± 43.2 993.12 ± 38.7 2467.55 ± 158.4 1289.69 ± 52.1 8421.79 ± 402.1 §

0.6 1008.45 ± 42.5 1289.51 ± 60.1 1217.44 ± 54.8 4664.03 ± 279.3 † 1855.11 ± 83.7 ‡ 9107.12 ± 445.6 §

1100I6

0.3 911.56 ± 29.8 986.14 ± 38.5 957.71 ± 35.2 2395.09 ± 142.1 1051.24 ± 63.2 7916.18 ± 365.9 §

0.6 994.99 ± 38.11 1079.52 ± 51.4 1042.36 ± 46.3 3674.88 ± 201.1 † 1102.45 ± 58.4 9363.44 ± 481.2 §

AN

1500I6

0.3 799.66 ± 26.4 891.38 ± 36.5 851.45 ± 31.8 1271.54 ± 81.2 983.87 ± 56.2 1591.42 ± 102.4

0.6 871.97 ± 36.1 968.91 ± 46.3 924.18 ± 42.6 1564.94 ± 104.8 1092.47 ± 64.9 3206.33 ± 189.7

1100I6

0.3 735.71 ± 30.1 809.48 ± 39.1 786.72 ± 35.6 1165.65 ± 75.4 869.09 ± 50.8 1778.19 ± 107.8

0.6 861.07 ± 36.2 953.16 ± 45.8 902.42 ± 42.9 1334.66 ± 88.2 1013.35 ± 59.4 1819.98 ± 119.2

BP

1500I6

0.3 852.84 ± 33.6 1091.48 ± 57.1 983.47 ± 43.4 1891.23 ± 127.4 1431.73 ± 71.3 5721.94 ± 314.5 §

0.6 976.77 ± 43.1 1186.40 ± 61.7 1098.75 ± 54.3 2880.69 ± 162.2 † 1569.67 ± 77.8 ‡ 6452.61 ± 338.4 §

1100I6

0.3 861.766 ± 30.2 1019.72 ± 49.1 971.33 ± 44.5 6407.73 ± 285.1 † 1260.28 ± 61.8 10531.81 ± 490.9 §

0.6 1001.92 ± 43.4 1218.77 ± 59.1 1179.25 ± 53.7 7243.09 ± 327.8 † 1461.87 ± 70.5 11355.08 ± 517.6 §

BN

1500I6

0.3 615.81 ± 26.1 701.63 ± 36.3 679.55 ± 33.7 1259.24 ± 92.1 764.59 ± 49.2 2558.78 ± 175.5

0.6 828.87 ± 38.3 897.28 ± 52.6 866.41 ± 48.1 2483.88 ± 150.7 927.36 ± 62.1 3495.15 ± 198.8

1100I6

0.3 651.76 ± 32.1 762.99 ± 48.2 711.81 ± 39.5 2214.90 ± 12.3 969.85 ± 59.4 5278.04 ± 261.9 §

0.6 778.93 ± 40.2 937.81 ± 59.4 894.11 ± 48.9 2758.48 ± 142.6 † 1172.75 ± 60.7 5661.65 ± 297.6 §

In addition, NPO-HU shows better performance than NPO-NHU. This highlights
that even without performing pose optimization, and only considering human uncertainty,
it can still increase the overall performance. Here, we use specific markers to highlight
significant differences with respect to PO-HU. We use “†” to mark large differences for
NPO-HU, “‡” for PO-NHU, and “§” for NPO-NHU. The fewer highlighted markers in
PO-NHU than in NPO-HU and NPO-NHU imply that pose optimization contributes more
to cost reduction than the characterization of human uncertainty.

Overall, the robot achieves better performance in the cases where future human poses
are known a priori to the robot (i.e., AN and BN ) compared to the cases where the robot
uses LSTM to predict the human future poses (i.e., AP and BP ). This stems from having
more accurate knowledge of human movements than predicting human poses.

Figure 5 visualizes the tracking performance along the x-, y-, and z-axes for trajectories
AN , BN , AP , and BP , with the weighting matrix Q = 1500 · I6 and η = 0.3 for 10 repre-
sentative trials. We observe that PO-HU tracks the human trajectory with disturbances
more closely, whereas methods lacking pose optimization comparatively deviate more.
Empirically, the performance of LSTM is good, as suggested by this figure. We observe
that the human trajectories with disturbances in Figure 5c,d are almost similar to those
in Figure 5a,b. We validated our trained LSTM model with trajectories AN and BN . The
validation accuracy of the model is 90.84% with an MSE loss of 0.0512. If the human follows
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a smooth trajectory, it is expected that the model can predict the future movements with
high accuracy. Theoretically, the accuracy of the LSTM-based model is not guaranteed. If
the human takes sharp turns, then the trajectory prediction accuracy will be lower. Conse-
quently, the control cost obtained from the MPC can be inaccurate, which further impacts
the pose selection. However, when the control input is implemented, the tracking accuracy
will not be significantly impacted, as we have a closed-loop control. Specifically, while the
MPC can plan for six future time steps, the execution applies to only one step.

Human Trajectory with Disturbances PO-HU NPO-HU PO-NHU NPO-NHU

(a)

(b)

(d)

(c)

Figure 5. Tracking across trajectories (a) AN , (b) BN , (c) AP , and (d) BP on the x-, y-, and z-axes,
where Q = 1500 · I6, R = I9, and η = 0.3 for 10 representative trials.

Figure 6 depicts the instantaneous (left) and accumulated cost (right) for trajectory
AN with Q = 1500 · I6, R = I9, and η = 0.3. We observe that, at each time step, the
cost associated with PO-HU remains the lowest, while NPO-NHU consistently shows
the highest cost. This reflects that incorporating pose optimization performs better than
ignoring it, both in terms of instantaneous and accumulated cost.

Table 4 represents the comparison of average tracking error (mean ± standard devia-
tion) across different planning horizons for the proposed PO-HU method. This tracking
error is averaged over 100 trials. We observe that a longer planning horizon may increase
tracking error if we execute the entire control input sequence. For example, when H = 8, ex-
ecuting all eight control inputs may incur a higher tracking error. In our method, although
we generate the eight control inputs for the future eight time steps, we only execute the
control input for the first time step, and then re-plan again for the next planning horizon.
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This strategy yields a lower tracking error, as shown in the case of a planning horizon of
H = 1.

Figure 6. Instantaneous and accumulated cost for trajectory AN with Q = 1500 · I6, R = I9, and
η = 0.3.

Table 4. Average tracking error with standard deviation of trajectories for different planning horizons
with PO-HU.

Trajectory H = 1 H = 4 H = 6 H = 8

AP 0.049 ± 0.027 0.072 ± 0.027 0.091 ± 0.031 0.104 ± 0.039

AN 0.034 ± 0.019 0.056 ± 0.034 0.072 ± 0.038 0.082 ± 0.043

BP 0.041 ± 0.024 0.062 ± 0.039 0.077 ± 0.045 0.085 ± 0.049

BN 0.031 ± 0.017 0.057 ± 0.031 0.065 ± 0.035 0.075 ± 0.038
Note: Bold entries represent the lowest average tracking error for each trajectory across planning horizons.

Table 5 presents the average execution time with standard deviation in evaluating
each candidate for different planning horizons. The time is averaged over 500 trials. In our
approach, we can parallelize steps 4–9 of Algorithm 1. As a result, the computation times
for methods with and without pose optimization differ slightly. This benefits from the
multiple computing threads of the AMD 5975WX on our test computer. The majority of the
computation time is spent on the one-time calculation of the Jacobian matrix. The minor
increase is due to the increasing number of planning horizons and thus more iterations
when solving the DARE (cf. Equation (8)).

Table 5. Average execution time with standard deviation in evaluating each candidate for different
planning horizons with |Θ| = 20 (in seconds).

Planning Horizon PO-HU NPO-HU PO-NHU

4 0.013286 ± 0.00116 0.010474 ± 0.00094 0.013164 ± 0.00102

8 0.013633 ± 0.00121 0.011300 ± 0.00109 0.013295 ± 0.00107

12 0.013866 ± 0.00119 0.012736 ± 0.00113 0.013668 ± 0.00115

16 0.014126 ± 0.00124 0.012807 ± 0.00119 0.014003 ± 0.00119

20 0.014951 ± 0.00128 0.013287 ± 0.00116 0.014205 ± 0.00124

24 0.015287 ± 0.00131 0.013888 ± 0.00125 0.014257 ± 0.00129

5.3. Hardware Demonstration

Besides Gazebo simulations, we implemented our proposed algorithm in real hard-
ware as a demo. A video of the hardware demo is available at https://www.youtube.com/

https://www.youtube.com/watch?v=QyR2NcSXhvY
https://www.youtube.com/watch?v=QyR2NcSXhvY


Electronics 2025, 14, 2480 20 of 24

watch?v=QyR2NcSXhvY (accessed on 16 June 2025). For this hardware demo, we used an
AprilTag marker on a board and placed a cup on top. We allowed the robot to capture the
marker’s pose with its built-in camera for end-effector tracking. We positioned the cup
so that the marker remained visible to the camera. The captured pose was first obtained
in the camera frame, and then it was transformed to the robot’s base frame using the tf
package. The human leads the robot by pulling the board along the x, y, and z axes. The
robot predicts six future poses using LSTM, and uses a planning horizon of H = 3. It then
plans three steps with MPC but executes only the first control input before re-planning to
adapt to the human. We used Q = 1100 · I6, R = I9, and κ = wθ = 1 in the demonstration.
As discussed in Section 3, each control input consists of the linear and angular velocity
of the base and seven joint angle velocities. The executions of these control inputs are
driven by an ROS publisher and then sent to the corresponding ROS topic on Fetch. From
the demonstration video, we observe that tracking is slower. This is primarily due to the
physical execution time required for the robot to move its base and arm. The computation
time does not significantly impact the slowness of the demonstration, as the generation of
the candidate set is achieved by the pre-trained CVAE model, and the evaluation of each
candidate was fully parallelized throughout the demonstration.

6. Conclusions and Future Works
We proposed and validated the Disturbance-Aware Redundant Control (DARC) frame-

work, which integrates disturbance-aware MPC with a proactive pose optimization strategy
for efficient human–robot co-transportation. The developed two-step iterative approach
effectively addresses the inherent uncertainties of human behavior and internal robot dis-
turbances by proactively generating and selecting robot joint configurations. To facilitate
this process, we utilized a Conditional Variational Autoencoder (CVAE) to generate candi-
date sets of joint configurations for pose optimization, while a Long Short-Term Memory
(LSTM) network was employed to predict future human poses. Theoretical derivations
and simulated experiments with a Fetch mobile manipulator demonstrate the enhanced
performance of our proposed framework compared to control methodologies that lack
disturbance characterization or pose optimization. Future work will aim to refine the mod-
eling of human behavior and decision-making processes and extend the proposed DARC
framework to complex scenarios involving multi-robot multi-human collaborative tasks.
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Appendix A
Human Trajectory Prediction Using LSTM: As mentioned in Section 3.1, we need

to predict human future poses during the co-transportation task. This is essential when
we consider that the reference trajectory is unknown. For the prediction of human future
movements based on previous poses, we use an LSTM-based model because of its ability
to capture the temporal dependencies in sequential data.

https://www.youtube.com/watch?v=QyR2NcSXhvY
https://www.youtube.com/watch?v=QyR2NcSXhvY
https://www.youtube.com/watch?v=QyR2NcSXhvY
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Standard LSTM Equations: We denote the input to our model by {r(k)}K
k=1, which is

a time-indexed sequence of observed human poses. Here, each r(k) ∈ R6 represents the
manipulator’s end-effector pose to be tracked. The goal is to predict a sequence of future
poses based on historic poses. This enables the manipulator to predict and adapt to human
movements. At each discrete time step k, the LSTM maintains a hidden state g6(k) ∈ Rϱ

and a cell state g5(k) ∈ Rϱ, where ϱ is the dimensionality of the state vectors. The LSTM
updates its states from time k− 1 to k through a series of gated operations defined by the
following standard equations:

g1(k) = σ(W1,r r(k) + W1,6 g6(k− 1) + b1), (A1a)

g2(k) = σ(W2,r r(k) + W2,6 g6(k− 1) + b2), (A1b)

g3(k) = σ(W3,r r(k) + W3,6 g6(k− 1) + b3), (A1c)

g4(k) = tanh(W5,r r(k) + W5,6 g6(k− 1) + b6), (A1d)

g5(k) = g2(k)⊙ g5(k− 1) + g1(k)⊙ g4(k), (A1e)

g6(k) = g3(k)⊙ tanh(g5(k)). (A1f)

where σ(·) is a sigmoid function constraining gate activations into [0, 1], tanh(·) introduces
non-linearity by mapping inputs to [−1, 1], and ⊙ denotes element-wise multiplication.
Input gate g1(k) regulates the contribution of the candidate cell state g4(k) to the current
cell state g5(k), forget gate g2(k) controls the extent to which the previous cell state g5(k− 1)
is preserved, and output gate g3(k) determines the exposure of g5(k) to the hidden state
g6(k). Trainable parameters include weight matrices W(·),r ∈ Rϱ×6, W(·),6 ∈ Rϱ×ϱ, and bias
vectors b(·) ∈ Rp, indexed by (1, 2, 3, 5) representing (g1, g2, g3, g5), respectively.

Network Structure: Our network architecture employs a single-layer LSTM. We use
ϱ = 128 hidden units to capture complex temporal dependencies in human movements.
The LSTM transforms each input pose r(k) ∈ R6 into hidden and cell states (g6(k), g5(k)):

(g6(k), g5(k)) = LSTM(r(k), g6(k− 1), g5(k− 1)). (A2)

After processing the final input, the last hidden state is passed to a dense output
layer. This output layer has 6× 6 = 36 units, which are then reshaped into six predicted
future poses:

[r̃(k + 1), r̃(k + 2), . . . , r̃(k + 6)] ∈ R6×6. (A3)

Here, each r̃(k + j) ∈ R6 represents position and orientation at future time k + j. By
generating multiple steps in a single forward pass, the model avoids iterative unrolling at
inference time. This still leverages the LSTM’s recurrent dynamics during training.

Input and Output Specification: The input to the model consists of a sequence
of 10 consecutive past human poses, {r(k − 9), r(k − 8), . . . , r(k)}. We fed these poses
chronologically into the LSTM layer. We designed the model in a way such that the
network outputs six future poses, i.e., {r̃(k + 1), r̃(k + 2), . . . , r̃(k + 6)}.

Data Collection and Normalization: We take the training data from different syn-
thetic human movement trajectories through simulation. We use this trajectory data as a
ground truth. Each trajectory is segmented into overlapping windows, where each sam-
ple consists of an input sequence {r(k− 9), . . . , r(k)} and a corresponding label sequence
{r(k + 1), . . . , r(k + 6)}. We normalize each dimension of r(t) (i.e., rx, ry, rz, rα, rβ, rγ) us-
ing a min–max scaling to the range [0, 1]. This is because it ensures numerical stability,
accelerates convergence, and mitigates scale differences between the position and orienta-
tion components.
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Loss Function and Optimization: We define the loss function as the MSE over the
6-step prediction horizon, and it is averaged across all training samples:

L =
1

6N

N

∑
i=1

6

∑
j=1
∥ri(k + j)− r̃i(k + j)∥2

2, (A4)

where N denotes total number of training samples, ri(k + j) is the ground truth pose at
time k + j for sample i, and r̃i(k + j) is its corresponding prediction. The model learns to
align its predicted trajectories closely with the ground truth by penalizing the deviations
in both position and orientation. All network parameters, weight matrices, and biases of
the LSTM and output layers are optimized with the Adam optimizer using a learning rate
of 10−3.
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