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Abstract— Most, if not all, robot navigation systems employ
a decomposed planning framework that includes global and
local planning. To trade-off onboard computation and plan
quality, current systems have to limit all robot dynamics
considerations only within the local planner, while leveraging
an extremely simplified robot representation (e.g., a point-
mass holonomic model without dynamics) in the global level.
However, such an artificial decomposition based on either
full or zero consideration of robot dynamics can lead to
gaps between the two levels, e.g., a global path based on
a holonomic point-mass model may not be realizable by a
non-holonomic robot, especially in highly constrained obstacle
environments. Motivated by such a limitation, we propose
a novel paradigm, Decremental Dynamics Planning (DDP)1,
that integrates dynamic constraints into the entire planning
process, with a focus on high-fidelity dynamics modeling at
the beginning and a gradual fidelity reduction as the planning
progresses. To validate the effectiveness of this paradigm, we
augment three different planners with DDP and show overall
improved planning performance. We also develop a new DDP-
based navigation system, which achieves second place in both
the simulation phase and real-world phase of the 2025 BARN
Challenge2. Both simulated and physical experiments validate
DDP’s hypothesized benefits.

I. INTRODUCTION

Navigation is a fundamental capability for autonomous
mobile robots, enabling them to effectively traverse complex
environments without collisions. As the demand for robotic
systems grows across various domains, such as industrial
automation, search and rescue, and autonomous delivery, the
need for efficient and robust navigation strategies becomes
increasingly important.

Traditionally, most robot navigation systems adopt a hi-
erarchical planning framework, decomposing the planning
process into global and local planning. Global planning aims
to quickly plan a high-level path from the robot’s current
position to the desired goal, while local planning focuses
on tracking the global plan while providing real-time, fine-
grained obstacle avoidance and path execution in the vicinity
of the robot [1]. To balance limited onboard computation,
existing systems typically only consider the robot’s dynamics
in the local planner, while using a simplified robot represen-
tation, such as a point-mass holonomic model, in the global
planner [2].
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1https://github.com/yuanjielu-64/barn_challenge_l
u.git

2https://cs.gmu.edu/~xiao/Research/BARN_Challeng
e/BARN_Challenge25.html#leaderboard

Fig. 1: Contrasting the traditional global and local planning
paradigm (top), where either full (green) or zero (white)
robot dynamics is considered, DDP starts with high fidelity
dynamics in the early part of trajectory rollout and gradually
decreases dynamics fidelity for computation efficiency (bot-
tom).

Although this decomposed architecture is widely used,
the artificial separation of global and local planning, based
on either full or no consideration of robot dynamics, can
lead to significant differences between the two levels. For
instance, a global path generated for a holonomic, point-
mass robot may guide it through a narrow corridor with lots
of turns. However, the real, physical robot, with its specific
kinodynamic constraints, might struggle to navigate through
this passage. More generally, since the global planner fails
to incorporate robot dynamics, it often produces non-smooth
paths with sharp turns, routes passing through challenging
areas, or plans that are infeasible.

To overcome this limitation of traditional navigation plan-
ning, we propose Decremental Dynamics Planning (DDP),
a novel paradigm that seamlessly integrates dynamic con-
straints into the entire planning process, eliminating the
need for a decomposed framework. Specifically, DDP starts
with high-fidelity dynamics modeling in the early trajectory
rollout stages, capturing essential dynamic properties of
the robot, e.g., velocity, acceleration, and turning radius
constraints, and ensuring that the robot can precisely nav-
igate complex environments and avoid highly constrained
obstacles. As the trajectory rollout progresses, the fidelity
of dynamic modeling gradually decreases by simplifying the
model to improve computational efficiency while ensuring
that dynamic feasibility is not significantly compromised
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(Fig. 1).
To validate the feasibility and effectiveness of this

paradigm, we use DDP to enhance three different planners,
namely DWA [3], MPPI [4], and Log-MPPI [5]. Experimen-
tal results demonstrate that, compared to the baseline meth-
ods, DDP significantly improves planning success rates and
efficiency, in both simulated and physical experiments. In ad-
dition, we develop a new standalone DDP-based navigation
system, which achieves second place in both the simulation
and real-world phases of the 2025 BARN Challenge.

II. RELATED WORK

A. Autonomous Robot Navigation

Autonomous robot navigation involves several research
areas: perception, state estimation, motion planning, and mo-
tion control. Most navigation systems follow a hierarchical
planning paradigm: global planning and local planning.

Global planning typically employs grid-based meth-
ods [6]–[8] or sampling-based methods [9], [10] to construct
tractable environment representations. To further simplify
computations considering the long-horizon, expensive global
planning problem being solved onboard a mobile robot,
the robot is often modeled as a holonomic point mass
without considering dynamics [11]. Based on this assump-
tion, common search algorithms, e.g., A∗ [12], Dijkstra’s
algorithm [13], and their variants [14]–[16] compute the
shortest path. However, this simplification overlooks robots’
dynamic constraints, potentially resulting in infeasible or
suboptimal paths.

Given a coarse global path, local planning takes a local
goal or a small local portion of the global path as input
and refines the trajectory based on current sensory data,
generating real-time motion control commands that ensure
obstacle avoidance. By forward-simulating the robot’s dy-
namics, methods like DWA [3], [17] and MPPI [5], [18]
generate real-time motion commands by sampling feasible
low-level actions to ensure obstacle avoidance. Although
local planning considers dynamic constraints, the high com-
putation demand of unfolding robot dynamics limits its
planning to short horizons. Therefore, coordination between
the artificially separated global and local planning becomes
a challenge. The prevalent binary treatment of zero or full
dynamics in global and local planning respectively often
leads to significant gaps between the two levels and makes
navigating complex areas difficult [19]–[21], e.g., a global
path may erroneously lead the robot into a narrow, twisting
passage which the local planner cannot maneuver through.

B. Robot Dynamics

Robot dynamics studies how forces and torques influence
a robot’s motion, considering factors such as mass, inertia,
friction, and external forces. Unlike kinematics, which fo-
cuses solely on describing motion, dynamics ensures that
the planned movements are physically feasible and realis-
tic. However, generating optimal trajectories under dynamic
constraints presents significant computational challenges.

Commonly-used ground robot dynamics models include
bicycle, snake-like, Ackermann-steering, and differential-
drive models [22]–[25]. More sophisticated dynamics models
that consider environment features have also been developed
for high-speed navigation [26]–[28] and mobility on verti-
cally challenging terrain [29]–[33] in off-road operations.
These approaches combine classical and machine learning
methods [2] to enable more precise trajectory prediction. Al-
though high-fidelity dynamics models can precisely predict
future robot states so planners can confidently generate ac-
tions, they also demand substantial computational resources,
posing challenges for real-time onboard applications.

DDP aims to address the binary treatment of robot dy-
namics in classical decomposed navigation systems and to
efficiently integrate dynamic constraints into the entire plan-
ning process. DDP maintains high-fidelity dynamic modeling
in the early stage of trajectory rollout, strictly adhering to the
robot’s dynamic characteristics to ensure precise navigation
through complex environments and effective obstacle avoid-
ance. As the trajectory progresses, the fidelity of dynamic
modeling gradually decreases, eventually reaching a point
where path planning is performed entirely based on a holo-
nomic point-mass model without considering dynamics.

III. DECREMENTAL DYNAMICS PLANNING

We first present a motion planning problem with robot
dynamics, which is usually intractable to solve for long-
horizon navigation tasks in real time. We then illustrate
current practice to solve this, i.e., decomposing the problem
into global and local planning. Our presentation reveals the
limitations of such a decomposition. DDP aims to mitigate
these.

A. Original Motion Planning Problem Formulation

We define the robot state space S = Sfree ∪ Sobs, where
Sfree and Sobs denote free spaces and obstacle regions. The
robot control space is defined as U and the robot dynamics
model f is expressed as forward dynamics in the form

st+1 = f(st, ut; θ), st ∈ S, ut ∈ U , (1)

where θ represents the parameters of the robot’s dynamics
model, e.g., mass, inertia, wheelbase, axle length, integration
interval, or, in the case of a learned dynamics model, param-
eters of the learned model. Some of these parameters in θ
determine how precise f is in representing the physical robot.
In most cases, θ balances a tradeoff between the fidelity and
query speed of f , which significantly affects the efficiency of
a navigation planner onboard a computation-limited mobile
robot platform.

Using ground robots as an example, the state st =
(x, y, ψ) is defined by the translations along the x and y axis
(x and y) and the rotation along the z = x×y axis (yaw ψ)
of a fixed global coordinate system at time step t. For some
robot models (e.g., Ackermann-steering), the state may also
include additional dimensions such as steering angle δ and
linear velocity v. The control ut is defined by the robot’s
physical characteristics. If the robot is a differential-drive
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robot, the control ut can be defined as the linear velocity
v and angular velocity w. In contrast, if the robot is based
on Ackermann-steering, the control ut can be defined as the
acceleration µacc and steering rate µsteer.

Finally, given an initial state s0 and a goal region Sgoal ⊂
S, the motion planning problem is to find a control func-
tion u : {t}T−1

t=0 → U that generates a collision-free and
dynamically-feasible trajectory st ∈ Sfree,∀t ∈ {t}Tt=0 from
the initial state s0 to the goal region Sgoal and minimizes a
given cost function Γ(s), which maps from a state trajectory
s : {t}Tt=0 → S to a positive real number. The minimum-cost
state trajectory according to the cost function Γ over time
step T is the optimal solution to the original motion planning
problem. However, given that performant navigation requires
solving this optimisation at 20Hz or higher, it is impractical
to find an optimal trajectory which fully satisfies the robot
dynamic constraints in all time steps. Therefore, approximate
solutions are necessary to ensure real-time performance. This
is often done by decomposing the problem and simplifying
robot dynamics when appropriate.

B. Conventional Decomposition of Global & Local Planning
Facing the intractable nature of solving the above problem

on a mobile robot in real time, conventional navigation
systems typically decompose the original problem into global
and local planning, which consider robot dynamics differ-
ently. We represent this decomposition as a choice between
parameters θ for local planning (including dynamics), and ∅
for global planning (simplified model):

st+1 =

{
f(st, ut;∅), if t > τ or ||st − s0|| > d (global),
f(st, ut; θ), if t ≤ τ or ||st − s0|| ≤ d (local),

(2)
where the decomposition happens either at τ , a time step
threshold, or d, a distance threshold. Both time step or
distance threshold define the computational window within
which the robot’s dynamic model is considered with static
parameters θ. In general, τ or d is manually determined based
on the deployment environment and platform.

Most conventional navigation systems perform global
planning first, then use its output as input for local plan-
ning, which, e.g., follows it closely using the dynamics
model. However, this artificial separation of global and
local planning leads to dynamically infeasible paths right
beyond τ or d, which may cause problem for local planning
and reduce overall navigation performance. For example, in
highly constrained environments, the global plan without
considering dynamics may lead the robot into a narrow
and twisty passage, which is impassable when adhering
to dynamic constraints. DDP is designed to mitigate the
challenges caused by such artificial problem decomposition
and binary dynamics consideration by efficiently infusing
dynamics into the entire planning process.

C. Generalization by Decremental Dynamics Planning
In order to more effectively approximate the full dynamics

in the original navigation problem (Eqn. (1)), DDP general-
izes the decomposed dynamics model (zero or full dynamics,

Eqn. (2)) as:
st+1 = f(st, ut; θt), (3)

where θ, instead of being a constant set of parameters (as
in Eqns. (1) and (2)), becomes a function θ : {t}T−1

t=0 →
Θ where Θ is the space of dynamics parameters for f .
Notice that Eqn. 2 is a special case of Eqn. 3, where
only two parameter sets (θ and ∅) are chosen based on
a manually chosen threshold (τ or d). To efficiently uti-
lize limited onboard computation, higher fidelity dynamics
models should be utilized at the beginning of the trajectory
rollout to ensure precision. As trajectory rollout progresses,
the dynamics model can be gradually simplified to reduce
computation and reach a longer planning horizon within the
same computation budget. Different strategies to decrement
the dynamics fidelity can be designed to efficiently balance
the tradeoff between dynamics precision and computation
overhead. We present our DDP implementation in Sec. IV.

IV. IMPLEMENTATION

Our implementation of DDP balances dynamics fidelity
and onboard computation by adjusting both (1) the dy-
namics integration interval and (2) the number of robot
state points for state-space collision checking at each time
step. We augment our SE(2) robot state (xt, yt, ψt) to
(xt, yt, ψt, x

1
t , y

1
t , . . . , x

n
t , y

n
t ), where (xit, y

i
t)

n
i=1 are n state

points on the robot boundary for collision checking at step t.
The robot dynamics parameters are θt = (∆t, c

1
t , c

2
t , ..., c

n
t ),

where ∆t denotes the dynamics integration interval at step t
and {cit}ni=1 are binary indicators of whether the position of
the i-th state point (xit, y

i
t) should be calculated and collision-

checked at step t (cit = 1) or not (cit = 0).
To gradually increase the dynamics integration interval

over the rollout time T (in seconds) we use the function:

∆t = T ·
[(

t+1
T

)p − (
t
T

)p]
, (4)

where T is the number of time steps, and p is a hyperparame-
ter that controls the rate of change in the integration interval.
At each integration interval, only the subset of the collision
points defined by {cit}ni=1 are checked. To gradually reduce
the number of points checked along the trajectory (Nt) we
use the function:

Nt = n ·
(
1−

(
t
T

)p)
. (5)

Only {cit}
Nt
i=1 state points are calculated and collision-

checked to decrement dynamics and save computation.
Using this DDP design, we augment three different

sampling-based motion planners with DDP: DWA [3],
MPPI [4], and Log-MPPI [5]. We also design a navigation
system based solely on DDP.

A. DDP-Augmented Planners

DWA samples control sequences of linear and angular
velocities based on the current state. It then generates tra-
jectories using robot dynamics and evaluates them with a
cost function using a set of collision points determined. In
the original algorithm the dynamics and collision points are
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Goal GoalLaser data Rollout trajectories Obstacle
Fig. 2: An example of our standalone DDP-based system navigating a BARN environment. Left: Visualization in RViz.
Right: Visualization in Gazebo.
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Fig. 3: Standalone DDP-based Navigation System.

defined with a static θ. In the DDP-augmented version θ is
dynamic.

MPPI optimal control that leverages the path integral
formulation to stochastic optimal control. It generates multi-
ple trajectory samples using random perturbations of control
inputs and evaluates their costs. Finally, the control input is
computed as a weighted average based on these trajectories.
When augmented by DDP, the trajectories are integrated with
varying integration intervals, and different boundary points
of the robot are utilized for collision checking,

Log-MPPI applies a logarithmic transformation to the cost
function of MPPI, which combines stochastic sampling with
model predictive control for real-time trajectory optimiza-
tion. In Log-MPPI, the robot’s center point and local costmap
are used for collision checking with a binary obstacle
cost. DDP augmentation adapts the integration interval and
costmap resolution to check collisions at varying boundary
points.

All these planners and their DDP-augmented versions are
run by themselves without any other complementary mech-
anisms, such as backup planners and recovery behaviors.

B. Standalone DDP-based Navigation System

Our DDP-based system allows the robot to operate in high-
speed, low-speed, braking, and recovery modes (including
rotation and reverse). The robot starts in high-speed mode
and shifts to low-speed when its linear velocity stays below
a threshold for a set time, i.e., reducing the maximum linear
and angular velocity limit for safe obstacle avoidance. If the
linear velocity remains too low, it brakes before entering

recovery behavior. Similarly, when the robot’s speed exceeds
a specified threshold, it transitions from recovery to low-
speed mode and then back to high-speed mode if necessary.

The navigation system’s framework is shown in Fig. 3.
For each planning iteration, the robot first randomly samples
linear and angular velocities with added noise. When the
trajectory rollout begins, the system uses these velocity sam-
ples and the robot dynamics parameters to predict potential
future trajectories and evaluate them against a comprehensive
cost function. The cost function considers multiple factors:
proximity to the goal, distance from obstacles, total path
length, trajectory smoothness, and orientation relative to the
goal. After all trajectories are evaluated, we retain only
the N = 10 collision-free trajectories with the lowest cost
and use their linear and angular velocities to generate robot
actions using a weighted average based on the trajectory cost.

V. EXPERIMENTS AND RESULTS

Experiments are conducted in both simulated and physical
environments using a four-wheeled differential-drive Jackal
robot equipped with a 2D Hokuyo LiDAR (270◦ field-of-
view). We evaluate the three DDP-augmented planners and
the standalone DDP-based navigation system, demonstrating
that DDP significantly enhances planning performance.

A. Experimental Setup

1) Methods for comparisons: We implement DWA and
MPPI in C++ and enhance them with DDP. Instead of using
global or local costmaps in the ROS move_base navigation
stack, we construct the environment solely based on the
current 2D laser scan. The cost function for these four
planners considers progress toward the goal, the distance to
the nearest obstacle along the trajectory, and the magnitude
of angular velocity. In addition, our MPPI samples control
inputs and evaluates all generated trajectories, selecting the
best N collision-free trajectories for weighted averaging. For
the Log-MPPI planner, we use the public Python implemen-
tation3 and augment it with DDP. These methods rely on
costmaps to build the environment, and their cost function
incorporates goal progress, a binary cost for collision avoid-
ance, control effort, and trajectory smoothness.

3https://github.com/IhabMohamed/log-MPPI_ros
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TABLE I: Navigation Performance Comparison: Benchmarking the DDP-Based Navigation System and DDP-Augmented
Planners across 300 Pre-Generated BARN Challenge Environments.

Method Task Success (%) ↑ Avg. Time (s) ↓ Avg. Score ↑ Avg. Collision (%) ↓ Avg. Timeout (%) ↓

1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0

DWA 90.75 81.83 62.73 10.00 07.14 05.89 0.454 0.409 0.313 9.25 18.17 37.27 0.00 0.00 0.00
DWA-DDP 92.42 83.61 68.56 10.13 07.57 06.66 0.462 0.418 0.343 7.58 16.39 31.44 0.00 0.00 0.00

MPPI 86.06 82.72 71.01 10.98 07.64 06.10 0.430 0.414 0.355 13.82 17.28 28.99 0.12 0.00 0.00
MPPI-DDP 89.13 86.18 79.26 11.33 08.37 07.12 0.446 0.431 0.396 10.76 13.71 20.74 0.11 0.11 0.00

Log-MPPI 40.58 27.65 20.85 13.80 08.84 06.93 0.203 0.138 0.104 52.40 71.68 72.58 7.02 0.67 6.57
Log-MPPI-DDP 50.61 44.59 40.47 12.72 08.39 06.49 0.253 0.223 0.202 43.37 54.52 54.29 6.02 0.89 5.24

DDP 93.98 94.75 86.06 12.97 10.81 10.75 0.463 0.478 0.429 2.01 2.90 1.67 4.01 2.35 12.27

Each experiment in each environment is performed three times; 1.0, 1.5, and 2.0 indicate the maximum linear velocity in m/s. Bold indicates best result.

Fig. 4: Two Physical Test Environments.

2) Simulated environments: The BARN dataset [34] com-
prises 300 simulated navigation environments generated by
cellular automata. For the BARN challenge [19], [20], [35],
an additional set of 50 unpublished environments is intro-
duced for testing. Fig. 2 illustrates an example of our stan-
dalone DDP-based system navigating a BARN environment.

3) Physical environment: We deploy in different physical
environments to evaluate our DDP approaches, as shown
in Fig. 4. The blue box represents the starting point, while
the red box indicates the goal. We calculate the robot’s
success rate, navigation progress, and running time. Fig. 5
shows another type of physical environment, where we test
whether our DDP-based navigation system can navigate
through obstacles in real-world, natural cluttered spaces.

4) Computing Resources: The experiments are conducted
on an AMD Ryzen 9 5900X processor (3.7 GHz) running
Ubuntu 20.04 with ROS Noetic onboard the robot. All code,
except for the Log-MPPI implementation, is written in C++
and compiled using g++ 9.4.0.

B. Simulation Result

We compare DWA-DDP, MPPI-DDP, and Log-MPPI-DDP
against their respective baseline methods to validate the
effectiveness of DDP. Additionally, we compare our DDP-
based system with those on the 2025 BARN Challenge

Fig. 5: Experiments in Real-World, Natural Cluttered Spaces.

leaderboard, where it ranks first in the simulation phase. The
navigation score si for each environment i is computed as:

si = 1success × OTi
clip(ATi, 2OTi, 8OTi)

where 1success is an indicator variable set to 1 if the robot
successfully reaches the navigation goal without collisions,
and 0 otherwise. ATi represents the actual traversal time,
while OTi denotes the optimal traversal time [19], [20], [35].

In Table I, we compare the performance of DDP-
based planners (DWA-DDP, MPPI-DDP, Log-MPPI-DDP,
and DDP) against their baselines (DWA, MPPI, and Log-
MPPI). The results demonstrate the effectiveness of our
DDP paradigm, showing significant improvements in task
success rates, navigation scores, and collision reduction
across all speed settings (1.0 m/s, 1.5 m/s, and 2.0 m/s).
While the performance gain varies among different plan-
ners and speed configurations, all DDP-augmented versions
consistently outperform their baselines. A notable trade-off
observed is the longer traversal time of the standalone DDP-
based navigation system. A notable trade-off observed is the
longer traversal time of the standalone DDP-based navigation
system. This increased duration stems from its integrated
safety mechanism, which dynamically reduces speed when
navigating near obstacles—a critical safety feature absent
in other planners. This deliberate design choice prioritizes
collision avoidance and operational stability over raw speed.
Regarding Log-MPPI’s suboptimal performance, we identify
two primary reasons: First, its reliance on costmap-based
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TABLE II: Performance in the 25 Most Challenging BARN
Challenge Environments.

Method Success (%) ↑ Avg. Time (s) ↓ Avg. Score ↑

DWA 36.67 7.60 0.183
DWA-DDP 38.33 8.75 0.192
MPPI 26.67 8.96 0.133
MPPI-DDP 40.00 10.70 0.200
Log-MPPI / / /
Log-MPPI-DDP 3.33 8.78 0.020

DDP 45.67 11.21 0.301

The maximum linear velocity for all approaches is 1.5 m/s.

TABLE III: Leaderboard Performance Comparison in the
2025 BARN Challenge in the 50 Unpublished Environments.

Method Success (%) ↑ Avg. Time (s) ↓ Avg. Score ↑

INVENTEC 98.20 14.13 0.4206
KUL+FM 99.60 12.32 0.4641
AIMS 96.00 9.70 0.4723
LiCS-KI [36] 95.40 7.55 0.4762
DDP 99.00 7.67 0.4873
FSMT 98.20 8.65 0.4878

obstacle detection introduces perception errors, as nearby
obstacles may be imprecise or prematurely cleared from
its representation. Second, its cost function applies uniform
weighting to all obstacles during trajectory averaging, result-
ing in poor planning outcomes when all sampled trajectories
encounter collisions. Despite these inherent limitations, our
DDP framework still enhances Log-MPPI’s overall perfor-
mance, further validating the robustness and adaptability of
our approach across different planning architectures.

Table II presents our second experiment, which evaluates
the performance limits of these algorithms in the most
challenging scenarios. We select the 25 most difficult BARN
environments. The results further confirm the superior ro-
bustness of our DDP-augmented planners. Notably, Log-
MPPI fails in all 25 environments and is therefore denoted as
"/" in our results. To conclusively demonstrate the effective-
ness of our standalone DDP-based system, we benchmark it
against the top-performing algorithms on the 2025 BARN
Challenge leaderboard, as shown in Table III. Our DDP
approach demonstrates strong performance, securing second
place in both the simulation and real-world phases of the
2025 BARN Challenge.

C. Physical Environment

For real-world experiments (Fig.4), we design two types
of complex environments and test five navigation methods:
DWA, DWA-DDP, MPPI, MPPI-DDP, and DDP. Due to the
poor performance of Log-MPPI in previous experiments and
safety considerations, we exclude it from physical testing.
Each method is evaluated five times in each environment.
For successful task completions, we calculate the average
time; for failed attempts, we measure the average navigation

TABLE IV: Performance in Two Real-World Environments.

Method Success ↑ Avg. Progress (%) ↑ Avg. Time (s) ↓

DWA 0/10 70.52 ± 2.17 /
DWA-DDP 0/10 77.13 ± 3.25 /
MPPI 0/10 76.25 ± 2.54 /
MPPI-DDP 2/10 80.70 ± 4.52 27.05 ± 2.12

DDP 10/10 100.00 ± 0.00 28.04 ± 1.23

The maximum linear velocity for all approaches is 1.5 m/s.

TABLE V: Parameter Sensitivity Study: Impact of Integra-
tion Interval on DDP Performance.

Method Success (%) ↑ Avg. Time (s) ↓ Avg. Score ↑

DDP-P = 1.2 98.30 7.52 0.481
DDP-P = 1.4 98.32 7.37 0.484
DDP-P = 1.7 97.31 9.24 0.478
DDP-P = 2.0 98.65 8.11 0.481

The maximum linear velocity for all approaches is 1.5 m/s.

progress. As shown in Table IV, our DDP-augmented meth-
ods demonstrate superior ability to make significant progress
even in failed attempts. For the scenarios in Fig. 5, we con-
duct experiments exclusively with our DDP method, which
successfully navigates through both natural environments.

D. Parameter Sensitivity Study

Table V presents an parameter sensitivity study on our
standalone DDP system, focusing on the p value to determine
the integration interval (Eqn. 4). We find that adjusting the
integration interval has minimal impact on the experimental
results, as all variations still achieve strong performance.

VI. CONCLUSION

In this work, we introduce DDP, a novel paradigm that
integrates dynamic constraints into the entire planning pro-
cess, overcoming the limitations of traditional decomposed
navigation frameworks. Unlike conventional approaches that
either fully incorporate or completely ignore robot dynamics
at different planning levels, DDP starts with high-fidelity
dynamics modeling and gradually reduces its complexity to
balance computational efficiency and dynamic feasibility. We
validate the effectiveness of DDP by augmenting multiple
planners, including DWA, MPPI, and Log-MPPI, demon-
strating improved success rates and efficiency in both simu-
lated and real-world experiments. Additionally, we develop
a standalone DDP-based planner, which secures first place
in the 2025 BARN Challenge simulation phase, achieving
superior performance in the most challenging navigation
scenarios. The consistent improvements observed across all
tested planners highlight DDP’s potential as a general frame-
work for enhancing robot navigation systems. Future work
will focus on extending DDP to more challenging real-world
scenarios, incorporating adaptive fidelity reduction strategies,
and exploring its integration with learning-based methods to
further optimize motion planning for autonomous robots.
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