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Dom, cars don’t fly!—Or do they?
In-Air Vehicle Maneuver for High-Speed Off-Road Navigation

Anuj Pokhrel, Aniket Datar, and Xuesu Xiao

Abstract— When pushing the speed limit for aggressive off-
road navigation on uneven terrain, it is inevitable that vehicles
may become airborne from time to time. During time-sensitive
tasks, being able to fly over challenging terrain can also save
time, instead of cautiously circumventing or slowly negotiating
through. However, most off-road autonomy systems operate
under the assumption that the vehicles are always on the
ground and therefore limit operational speed. In this paper, we
present a novel approach for in-air vehicle maneuver during
high-speed off-road navigation. Based on a hybrid forward
kinodynamic model using both physics principles and machine
learning, our fixed-horizon, sampling-based motion planner
ensures accurate vehicle landing poses and their derivatives
within a short airborne time window using vehicle throttle
and steering commands. We test our approach in extensive in-
air experiments both indoors and outdoors, compare it against
an error-driven control method, and demonstrate that precise
and timely in-air vehicle maneuver is possible through existing
ground vehicle controls.

I. INTRODUCTION

Off-road navigation presents various challenges that
sharply contrast those encountered in on-road or indoor
scenarios. In unstructured off-road environments, robots must
detect and avoid obstacles, evaluate the traversability of
varied terrain, and continuously adapt to complex vehicle-
terrain interactions. Tackling all these challenges is essential
to prevent terminal states that can jeopardize the mission and
damage the robot, such as vehicle rollover and getting stuck.

One particular challenge of off-road navigation is address-
ing terrain unevenness. Current state-of-the-art approaches
typically rely on perception-based [1] traversability esti-
mation [2]-[5] to avoid uneven terrain or enforce slow
speed [6]-[9] to prevent catastrophic failures. By circum-
venting or slowing down on uneven terrain, these approaches
have yet to push the limits of off-road vehicles’ capabilities to
quickly traverse through challenging off-road environments.

During time-sensitive off-road missions where achieving
the physically feasible maximum speed is necessary, inter-
acting with uneven terrain will cause robots to become air-
borne from time to time. Additionally, leveraging appropriate
terrain structure to take off the vehicle can also efficiently
circumvent difficult terrain (in the z direction instead of on
the x-y plane) without compromising path length or traversal
time. However, after air time, deviations from an appropriate
landing pose, depending on the receiving terrain geometry
(e.g., nose- or tail-down pitch and sideways roll on a flat
terrain, or vice versa), can significantly impact landing safety
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Fig. 1: In-air vehicle maneuvers are critical in ensuring safe
vehicle landing during high-speed off-road navigation. Top:
Precise and timely maneuvers prepare the robot to land
with minimal impact. Bottom: Improper maneuvers cause
the robot to land on its back, terminating mission execution
and risking vehicle damage.

(see examples in Fig. 1). A critical yet often overlooked
aspect of high-speed off-road navigation is the maneuver of
a robot during these aerial phases. Despite limited work on
planning before losing ground contact [10], to the best of our
knowledge, no prior work has investigated ground vehicle in-
air maneuver to facilitate safe landing.

To this end, we ask the question how can we control the in-
air attitude of a ground robot in a short amount of airborne
time only with existing vehicle controls? To address this
question, we present a novel in-air vehicle attitude planning
and control approach by re-purposing existing throttle and
steering actions. Our novel forward kinodynamic model uses
the inertial and gyroscopic effects of the spinning wheels to
derive the robot’s angular accelerations. These accelerations
are used in a Newtonian physics model to calculate the
robot’s future states. Leveraging our model, we also develop
a fixed-horizon, sampling-based motion planner specifically
designed for quick in-air goal convergence to prepare the
vehicle orientation for proper landing. Our experiment results
on a gimbal platform demonstrate the ability of our method
to perform precise and timely in-air maneuvers, showing
a significant improvement compared to a traditional error-
driven approach. Furthermore, our outdoor demonstration
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shows our method’s ability to generalize under real-world
disturbances like air resistance and uneven weight distribu-
tion. Our contributions can be summarized as:

o A hybrid dynamics model combining physics principles
and data-driven learning for in-air vehicle maneuver
driven only by the vehicle throttle and steering actions;

o A fixed-horizon, sampling-based motion planner that
converges to an appropriate goal state for safe landing;

« A set of real-world robot experiments on a gimbal plat-
form and outdoors to demonstrate the effectiveness of
our kinodynamic model along with our motion planner.

We review related work in modeling off-road robot dy-
namics and motion planning for off-road navigation.

A. Dynamics Modeling for Off-Road Robots

Accurate dynamics modeling is fundamental to effective
robot control, particularly in complex and uncertain off-
road environments [11]. Classical wheeled robot dynamics
models [12], such as the Ackermann steering and the bicy-
cle model, have demonstrated their utility for conventional
ground vehicle navigation through SE(2) formulations that
effectively describe planar motion [13].

Off-road navigation demands models to also address the
challenges posed by vertically challenging terrain [6], [14],
wheel slippage [15], and ditch crossing [4]. Consequently,
data-driven approaches have gained prominence, leveraging
sensor data to capture complex dynamics that is difficult to
model analytically. Yet, purely data-driven methods can be
limited by scarce training data and challenges in generalizing
across diverse terrain. To address these issues, recent work
has focused on physics-informed learning [16], [17], which
integrates prior physics knowledge into the learning process
to regularize model behavior. Our work also incorporates
fundamental physics principles directly into the model struc-
ture, thereby combining the benefits of physical consistency
with data-driven flexibility.

When pushing vehicle mobility limits for time-sensitive
tasks, high-speed off-road navigation underscores the need
for dynamics models operating in SE(3) as aggressive ma-
neuvers introduce rapid state changes and complex, dynamic
vehicle-terrain interactions [18], [19].

II. RELATED WORK

We review related work in modeling off-road robot dy-
namics and motion planning for off-road navigation.

A. Dynamics Modeling for Off-Road Robots

Accurate dynamics modeling is fundamental to effective
robot control, particularly in complex and uncertain off-
road environments [11]. Classical wheeled robot dynamics
models [12], [20], [21], such as the Ackermann steering and
the bicycle model, have demonstrated their utility for conven-
tional ground vehicle navigation through SE(2) formulations
that effectively describe planar motion [13], [22].

Off-road navigation demands models to also address the
challenges posed by vertically challenging terrain [7], [8],

[14], [23], wheel slippage [15], and ditch crossing [4]. Con-
sequently, data-driven approaches have gained prominence,
leveraging sensor data to capture complex dynamics that
is difficult to model analytically. Yet, purely data-driven
methods can be limited by scarce training data and challenges
in generalizing across diverse terrain. To address these issues,
recent work has focused on physics-informed learning [16],
[24], which integrates prior physics knowledge into the
learning process to regularize model behavior. Our work also
incorporates fundamental physics principles directly into the
model structure, thereby combining the benefits of physical
consistency with data-driven flexibility.

When pushing vehicle mobility limits for time-sensitive
tasks, high-speed off-road navigation underscores the need
for dynamics models operating in SE(3) as aggressive ma-
neuvers introduce rapid state changes and complex, dy-
namic vehicle-terrain interactions [18], [19]. Recognizing
that safety is essential for high-speed navigation, CAH-
SOR [9] restricts the robot’s action to the maximum permis-
sible limit for a given terrain using a SE(3) model to ensure
continuous wheel-terrain contact. Furthermore, other models
assume airborne dynamics dictated simply by gravity and
therefore pre-plan the aerial trajectory before taking off [10],
but they lack strategies for controlled landing with in-air
control. Unlike any prior work, this paper investigates high-
speed in-air vehicle maneuver with existing controls in order
to safely land with appropriate vehicle configurations.

B. Motion Planning for Off-road Navigation

Off-road navigation presents unique challenges due to the
complex and dynamic nature of the terrain. To address these
challenges, a motion planner can take advantage of proprio-
ceptive and exteroceptive sensors to generate traversability
estimation [3], [5], [25], [26] and cost maps [1], [27]
that can enable online adaptation of control strategies [28]
and risk-aware trajectory planning [29], [30]. Despite their
theoretical optimality, using search-based planners like A* to
generate trajectories can be computationally expensive when
addressing the non-convex optimization problem in off-road
navigation. Error-driven strategies, like PID controllers, are
often employed due to their simplicity and low computational
overhead. However, when lacking an explicit robot dynamics
model, error-driven methods are ill-equipped to tackle the
complex and non-linear aggressive maneuvers, especially
considering coupled state dimensions and actuation limits.

In contrast, model-based approaches such as the Model
Predictive Path Integral (MPPI) planner [18] have been used
extensively in off-road navigation [4], [7], [9], [10]. MPPI
leverages sampling to address the non-convex solution space
while incorporating robot dynamics and biases its sampling
based on the previous best action. With its ability to explore
non-convex regions and the use of GPU parallelization [31]
to accelerate the evaluation of candidate trajectories, it is
well-suited for off-road navigation. Nonetheless, those plan-
ners do not consider the limited time horizon for in-air
maneuvers which is unique and paramount for our problem
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as an airborne off-road ground robot has a strict and short
time window to prepare its configuration for safe landing.

III. APPROACH

In this section, we first define the in-air vehicle maneuver
problem with airborne kinodynamic modeling. Then, we
discuss the physics principles of why and how in-air vehicle
maneuver is possible through existing vehicle controls, i.e.,
throttle and steering, based on the inertial and gyroscopic
effects of the spinning wheels. Motivated by the difficulty
in accurately and analytically modeling changing quantities
purely based on physics, we present PHysics and Learning
based model for In-air vehicle maneuver (PHLI, pronounced
as “fly”), a precise and efficient hybrid modeling approach.
Finally, we introduce our Dom Planner (named after Dominic
Toretto, who makes cars fly. So does our planner.) for vehicle
trajectory planning to reorient the robot from its current
configuration to the goal precisely at when a limited airborne
time window expires.

A. Problem Formulation

We first formulate a discrete-time forward kinodynamic
modeling problem based on a bicycle model, where the
subsequent state, s;11 € S, is derived from the current state,
s; € S, and current action, a; € A, with S and A as the state
and action spaces respectively. Considering that during aerial
phases a conventional ground vehicle does not have control
over the three translational components in SE(3) (which is
determined solely by gravity), we include in the vehicle state
s¢ a tuple of the three angles in SO(3), i.e., roll, pitch, and
yaw, together with their corresponding angular velocities. We
also include rotation per minute of the wheels, rpm, and the
front steering angle, v, in the state space, i.e., S C R8. The
state at time ¢ is denoted as

Sy = (rollt,rdllt, pitcht,pit'cht,yaw,57 yaw,, rpm,, i) € S.

The vehicle action, a;, comprises the rate of change in
wheel rpm (throttle) and in steering angle ), which are
common controls available for ground robots. The action
in the action space, A C R?, is thus defined as a two-
dimensional tuple:

a; = (fP.th/.)t) €A

A forward kinodynamics model is defined as a function,
fo: S x A — S, parametrized by 6, such that:

St41 = fG(Staat)' (D

After an aerial phase, the vehicle should land on the
ground with an appropriate configuration. Unlike traditional
navigation planning problems, in which the goal is to achieve
a desired state with certain notion of minimal cost (shortest
path, lowest energy, etc.), for our in-air maneuver problem
the goal is to achieve a goal configuration precisely when a
small airborne time window expires, i.e., the landing time,
T'. Therefore, the goal is to achieve:

s = (rollZ, réllf}, pitch?., pifch?, yaws, yaws., rpm%., 5.).

2

#RIDEFOY
=

7-precession

Fig. 2: Simplified Bicycle Model with Torques Acting on the
Wheels and Chassis due to Wheel Acceleration and Steering.

Notice that sf. must be achieved precisely at 7', not later. If it
is achieved at ¢t < T, the vehicle needs to assure it maintains
the same state at the landing time 7. For example, when
the landing region is horizontal, rollJ. and pitch. become
zero, while rdll% and pit'ch? should be as close to zero as
possible to minimize impact. yaw?. and ydw?. are often less
crucial since they do not cause significant impact during
landing. rpm. mostly needs be positive to avoid flipping over
the vehicle upon ground contact with forward momentum,
and 9. depends on what the immediate ground maneuver
necessary for the vehicle to execute right after landing is,
e.g., to quickly swerve to avoid an upcoming obstacle.

Therefore, the in-air vehicle maneuver problem for safe
landing can be formulated as

T

* * _ : g
ag,...,ap_; = argmin E c(s¢,s7),
a0,--AT—1 4

s. t. Siy1 = fo(se,a), sois given, and sp = s.
3)
c is a state-wise cost function to be minimized, subject to the
constraints by the forward kinodynamics, given initial state,
and achieving the goal state at the end of the aerial phase 7.
Notice the difference of Problem (3) to traditional receding-
horizon planning problems, where 7" is a receding horizon
which gradually moves towards the goal. Here 7" is the end

of the entire horizon of the problem, i.e., the landing point.

B. Physics Principles

We discuss the physics principles of why and how in-air
vehicle maneuver of s;; is possible with a; = (rpm,, ’(/Jt)

1) Inertial Effect: During aerial phases, the only exter-
nal force acting on the vehicle is gravity (air resistance
is overlooked for simplicity). Therefore, with a constant
wheel speed, the vehicle maintains its angular momentum
by the principle of conservation of angular momentum. All
four wheels are rotating at the same speed, because the
differentials will not differentiate left and right wheel speed
due to a lack of ground contact. Therefore they can be
simplified as a front and a rear wheel (FW and RW, bicycle
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model) with their angular momentum magnitude given by

Lewrw = Irwrw - w,

and direction given by either wheel’s spin axis, where Irw/rw
is each wheel’s moment of inertia along their spin axis and w
is their angular velocity. When the wheels are accelerated by
applying a motor torque, equal and opposite reaction torques,
Trw and Trw, are applied on the chassis by the wheels along
their spin axes. These torques are dependent on the change
in angular momentum of the respective wheel dLgw/rw:
TFWRW = — Ahrwmw _ Tewm - dw_ *IFW/RW'i'rP'm-
dt dt 60

We can resolve these two torques in individual components,
TEW/RW, roll a0d Trw/RW, pitch» aligned with the vehicle’s princi-
ple axes. The rear wheel’s contribution to roll, Trw, ron, Will
always be zero as the rear wheel’s spin axis is always per-
pendicular to the vehicle’s roll axis. Its contribution to pitch
is TrRw, pith = Trw. For the front wheel turned at a steering
angle v, Tew, ol = Trw- Sin(¢¥) and Tew, pitch = Trw-COS(1)).
TEW/RW, roll/picch around the front or real wheel has a resultant
torque around the pitch and roll axis passing through the
vehicle center of gravity (as the free-flying vehicle body will
rotate around the axis with minimum moment of inertia):

. . 2T
Tchassis, roll — TFW * Sln('l/)) = *IFW . sm(d)) . % - rpm,

TFW * COS(LZJ) —+ TRW
Tchassis, pitth = 9

T .
= —(Ipw - cos(v)) + Irw) - 50 P,

considering the roll axis of the front wheel and of the vehicle
chassis align for a bicycle model and assuming the front and
rear wheels are equal distance away from the vehicle center
of gravity. These torque components will cause the vehicle
to rotate around the roll and pitch axis based on the chassis
moment of inertia around each of these axes, Ichassis,roll/pitch:

- Tchassis, roll —Irw - 8171(1#) 27 g
roll = = - Tpm,
Ichassis,roll Ichassis,roll - 60
pltCh _ Tchassis, pitch _(IFW : COSW) + IRW) s

Ichassis,pilch Ichassis,pitch - 60

“4)
We deduce that roll and pitch are proportional to rpm and
dependent on the sin or cos of the steering angle 1) due to
the inertial effect. See Fig. 2 for a graphical illustration.

2) Gyroscopic Effect: Precession describes a phenomenon
observed in spinning objects when an external torque is
applied perpendicular to the spin axis. This perpendicular
torque causes a change in the axis of rotation and there-
fore angular momentum to rotate towards the axis of the
applied torque while keeping the magnitude of the angular
momentum constant. This rotation of the spin axis is called
precession. For our case of in-air vehicle maneuver, the
spinning object is the front wheel, and the external torque
perpendicular to the wheel spin axis is from the steering
servo to steer the front wheel.

During in-air maneuvers, the front wheel spinning with
angular velocity w has angular momentum

L = Ipw - w- Zrw,

where Zpw is the unit vector of the front wheel’s spin
axis. When steering the front wheel at a rate 1, the spin
axis rotates towards the steering axis. This steering motion
introduces a precession angular velocity

Q= (N 2steering7
where Zeering 15 the unit vector along the steering axis. The
reaction torque on the vehicle chassis because of precession
is determined by
Tprecession — LxQ=1Ipw-w-Zpw X 9P - Z?sleering-

Since Zrw and Zgieering are orthogonal, the magnitude of their
cross product is 1 and the resultant direction is Zprecession (S€€
Fig. 2). Tprecession has a component on both roll and pitch axes:
= COS(¢) * Tprecession — COS(¢) Tpw - w - P,

Tprecession,pitch = SZ’I’L(’(Q) * Tprecession — Sln(¢) Apw - w - .

Tprecession,roll

The Tprecession,picch component is around the front wheel (away
from the pitch axis at vehicle center of gravity), hence the
resultant tOrque Tepassis, pitch 1S given by:
Tprecession,pitch
Tchassis, pitth = — 5
2

as the rear wheel does not contribute to precession. Similar
to the inertial effect, the direction of Tyrecession,roll aligns with
Tchassis,roll» thus Tchassis,roll = Tprecession,roll - Therefore,

r(')'ll _ Tchassis,roll _ Tprecession,roll
Ichassis, roll Ichassis, roll
_cos(Y) - Ipw-w- 1 COS(’lp)'IFW'Qﬂ'. -
B Ichassis, roll B Ichassis, roll * 60 ’
pltC h— Tchassis, pitch _ Tprecession, pitch
Ichassis, pitch 2- Ichassis, pitch
_sin(y) - Ipw w1t sin(Y) - Ipw T m- o
B 2. Ichassis, pitch B Ichassis, pitch * 60 .
&)

We deduce that roll and pifch are proportional to rpm and ¥
and dependent on v due to the gyroscopic effect. The final
roll and pifch are a combined effect of Eqns. (4) and (5).

3) Lack of Yaw Control: In theory, the vehicle action
a; = (rp'mt,d}t) does not have direct control over the yaw
acceleration, yaw. But in practice, yaw can be affected by
system noises such as air resistance and weight distribution.
Furthermore, initial yaw position, yaw,, and yaw rate, yaw,,
will still affect yaw, based on its inertia.

C. PHLI

Calculating roll and pitch requires accurate moment of
inertia measurements for the vehicle chassis and for the
wheels. These measurements are difficult to analytically
derive or precisely measure due to changes in the center of
gravity and weight distribution by steering and as a result of
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suspension movement. Furthermore, expansion of the tires
at high speeds due to centrifugal forces changes the moment
of inertia of the wheels as well. Hence, we decompose the
forward kinodynamics model s;+1 = fy(s¢,a;) into two
parts, gy and he, i.e., s¢41 = he(gg(se, ar),st, a;), and then
employ a data-driven and a physics-based approach to derive
gs and hg respectively.

ge takes the state and action as input and derives the
resultant acceleration of roll, pitch, and yaw

roll,, pitch,, yaw, = gy (ss, ar), (6)

where model parameters ¢ are learned in a data-driven
manner by minimizing a supervised loss. The ground truth
acceleration values are derived from the recorded Inertial
Measurement Unit (IMU) data via differentiation over time.

Once g, is trained, its output angular accelerations are fed
into he, along with the state s; and action a;. For s,y =
he ((volly, pitch,, yédw, ), s¢, a;), we have

roll; 1, = roll; + roll, - dt,
. 1 -
roll; 4y = roll; + roll; - dt + irollt - dt?,

rpm, | = rpm, + rpm, - dt,
Yep1 = Yy + Yy - dt,

with analogous update equations for pitch and yaw. The only
parameter for h¢ is the integration interval dt. This completes
PHLI’s transition to next state s, given current state s, and
action a, through g4 and he.

D. Dom Planner

Given the short airtime, we adopt a fixed-horizon, instead
of receding-horizon, planning approach, where the horizon is
determined by the discretized time remaining until landing.
The planner samples action sequences over this fixed horizon
and uses the learned PHLI to rollout the corresponding
state trajectories. Each trajectory is then evaluated using a
cost function. The planner selects the trajectory with the
minimal cost, executes its first action, and replans with the
updated (and reduced) remaining time. The next planning
cycle samples around the best action from the last cycle.

One critical consideration of Dom Planner is that, in addi-
tion to general physical actuation limits (e.g., limited motor
current and torque causing that the actions can never exceed
certain thresholds), the under-actuated vehicle controls of
rpm and 1/) are further constrained due to state-dependent
actuation limits:

- _feasible
rpm,;, — rpm; < rpm, < TpMy,,, — TpMy,

'l/]min - 'wt S wgeamble S wmax - wt,

which means if rpm, (¢/;) is at the minimal value, rpm;

wfe““ble) cannot be negative, and if rpm, () is at the
maximal value, rpm{®*®!® (feasibley cannot be positive. This
limited range of feasible rpm and 1 reduces possible in-air
maneuver options and makes simple error-driven controllers,
like PID controllers, inappropriate to enable complex in-air
vehicle maneuvers.

feasible

To enable goal convergence within a short aerial phase, the
state-wise cost function defined in the fixed-horizon, instead
of receding-horizon, problem in Eqn. (3) is formulated as:

sz

which is a combination of the costs of K state dimensions (in
our case, i{ = 8). A key difference from conventional state-
wise cost function is that each state dimension is dynamically
weighed by a weight term w;(t) as a function of time t.
For example, for initial time steps, it iS more important to
quickly align the vehicle angles to prepare for a safe landing
pose, while the focus will gradually shift to the angular
velocities, wheel rpm, and steering components later on to
ensure landing with minimal impact on the vehicle.

Additionally, based on the sampled trajectory with the
lowest cost, Dom Planner checks its feasibility of reaching
the goal state within the time remaining till landing by
computing the difference between the final state s; and goal
state s%.. This feasibility check allows the system to either
choose a viable trajectory or, if necessary, select an alternate
goal to mitigate landing impact.

c(st,s7) - ci(st,87), @)

IV. IMPLEMENTATIONS

We present the implementation details of our PHLI and
Dom Planner onboard a 1/5th-scale vehicle.

A. PHLI Implementations

The learnable function of PHLI, g4, is a 4-layer multi-layer
perceptron that produces a three-dimensional output of pre-
dicted angular accelerations, (roll; 1, pitch, L1 YAW, ). g
is trained to minimize the difference between the predicted
angular accelerations and the derived ground truth from IMU.
The outputs of g4 is fed into h¢ to calculate the next state
of the vehicle s;1.

B. Dom Planner Implementation

Dom Planner’s implementation is shown in Algorithm 1.
Line 1 first defines Dom Planner’s parameters, including
integration interval, sample count, actuation limits, sampling
range, and PHLI. Actuation limits include rpm rate limit
rpm,;, and rpm,,,, (=5000), rpm limit rpm,;, (0) and rpm,
(1980), steering rate limit ¥, and ¢max (£6.5 rad/s), and
steering limit i, and ¥m.x (£0.65 rad). Line 2 specifies the
algorithm input. Given gravity, time till landing is determined
by the initial take-off velocity and terrain geometry. Initial
state is the robot state at take-off. Goal state can be defined
by the geometry of the receiving terrain. Last best action is
the action executed in the last planning cycle. The planning
cycle is initiated as soon as the vehicle becomes airborne.
The planner calculates the fixed landing horizon H = %
by discretizing the time till landing with the interval dt in
line 3. For each planning cycle, the algorithm uniformly
samples 4000 candidate input pairs (rpm,, 1@-) within the
ranges determined by o, and oy centered around the
last best action (rpmy,, Ybest) in lines 4 and 5. For each
sample (line 6), the planner rolls out a trajectory over the
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Algorithm 1 Dom Planner

1: Parameters: integration interval dt¢ (0.2), sample count
N (4000), actuation limits A, sampling range osm (2000)
and 0,,(0.2), and PHLI fy

2: Input: Time till landing 7', initial state s, goal state si},

and last best action (rpmy., Upest)

Compute fixed landing horizon: H = £

rpm,, rpm;, = rpmy . &+ opm > sampling range for rpm

%, w.h = wt;est + oy > sampling range for w

for (rpm,, @‘), i € [1,N], sampled from range [rpm,,

rp'mh] and [’lﬁlﬂﬁh] do

7 T, = {So}

8: U, = (rpmz,wl)

9. forte[0,H —1] do

A A

10: s¢ = CLAMP_STATE(S;, \)

11: a; = CLAMP_ACTION(rpin,, 15, S¢, A)
12: st+1 = fo(St,at)

13: Ti.add(sﬂ_l)

14:  end for

15 C; = CALCULATE_COST(T},s%)
16: end for

17: Thest = Targ min; (Cj)
18: Upest = Uarg min; (C;)
19: Return Thesi, Upest

> minimal-cost trajectory
> best action of this cycle

horizon H (line 9) using our PHLI fp to compute the
state transition dynamics (line 12). At every time step, the
functions CLAMP_STATE and CLAMP_ACTION enforce the
state and action limits (lines 10-11). After rolling out the full
trajectory, CALCULATE_COST evaluates each trajectory’s
cost according to Eqn. (7) (line 15). For w;(t) in Eqn. (7),
we simply use higher and lower weights for the angular
position and velocity components respectively in the first
half of the rollouts, and vice versa in the second half. We
select the best trajectory corresponding to the minimum cost
(line 17) and execute the corresponding action (line 18), The
best trajectory and action is returned to initialize the last best
action (rpm, ., Yest) for the next planning cycle. We re-plan
at 50 Hz and update the time horizon at every cycle based
on the remaining time.

C. Robot, Gimbal, and Dataset

We implement PHLI and Dom Planner on a 1/5-scale
Losi DBXL E2, 4WD Desert Buggy platform, with a top
speed of 80+ km/h. The vehicle is equipped with a 9-
DoF IMU, Intel RealSense D435i, NVIDIA Jetson Orin NX
for perception and planning, two wheel encoders for front
and rear wheels respectively, and an Arduino Mega micro-
controller for all low-level actuators and the wheel encoders.
For simplicity, we only allow the wheels to rotate forward,
ie., rpm € [0, rpm,, ].

To collect a dataset while ensuring the safety of the robot,
we construct a 2-axis 1.3 mx1 mx0.65 m aluminum gimbal
platform capable of rotating in the roll and pitch axis. The
purpose of the gimbal is to simulate weightlessness and in-

TABLE I: Quantitative Comparison of Dom Planner and PID.

Metric Dom PID
TT Error (rad) | 0.23+0.13  0.6940.82
TT Completion Time (sec) | 12.41+5.60 23.7+14.1

TT Success Rate T 5/5 2/5

RSC Time (sec) | 233 +11.2 51.2 + 16.6
RSC Difference (rad) | 0.18 041 0.79 + 0.81
RSC Success Rate T 5/5 4/5

TGR Time Difference (sec) | 0.36 £+ 1.80 -
TGR State Difference (rad) | 0.13 4 0.29 -

0.74 £0.74  1.20£0.98
0.18+£0.13  0.65+0.22

0.08 + 0.13 -
0.13 £ 0.21 -

SS Correction Time (sec) |
SS Reaction Latency (sec) |

Outdoor Landing Roll (rad) |
Outdoor Landing Pitch (rad) |

air dynamics. When mounting the robot on the gimbal with
robot’s center of gravity aligned to the roll and pitch axis
of the gimbal, the robot can freely rotate around the roll
and pitch axis. Because existing vehicle controls do not have
a direct effect on vehicle yaw acceleration and the gimbal
introduces significant extra moment of inertial along the yaw
axis, we do not include the yaw angle on the gimbal.
While the robot is mounted on the gimbal, the robot is
commanded with a diverse range of rpm and ¥ to capture
all possible ways to change the roll and pitch of the vehicle,
including behaviors at the extremes of rpm and steering
1. The robot configurations during the execution of these
commands are recorded and processed to create our tuple of
current state, current action, and next state ground truth of
the angular accelerations to train g,. Our dataset includes one
hour of gimbal data, split 85/15 for training and validation.

V. EXPERIMENTS

Our proposed method is validated through extensive exper-
iments conducted in both indoor and outdoor environments.
For practical reasons, the majority of our experiments are
performed indoors on the custom-built gimbal, with addi-
tional real-world validation provided by outdoor experiments.

A. Indoor Experiments

We design four test scenarios on the gimbal to evalu-
ate different aspects of our approach. Trajectory Tracking
(TT) follows a predefined continuous trajectory. Rapid State
Change (RSC) switches quickly to a random state and hold
it for two seconds. Timed Goal Reaching (TGR) assesses
the ability to reach a goal at a defined time. State Stability
(SS) assesses the ability to maintain a goal state when facing
external disturbances. We compare our method against a PID
controller as the baseline and report the results in Table 1. For
each experiment, we manually set the initial launch angles,
angular velocities, wheel rpm, and steering angle ).

a) Trajectory Tracking Experiment: We define a con-
tinuous, closed-loop path as a sequence of goal states
that involve continuous variations in both roll and pitch.
Fig. 3 (left, top and middle) compares the desired trajectory
(blue) with our method (green) and the PID baseline (red).
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Fig. 3: Qualitative Comparison of Roll and Pitch Angle Achieved by Dom Planner vs PID w.r.t. Goal Angle for Trajectory
Tracking, Rapid State Change, Timed Goal Reaching, State Stability, and Outdoor Experiments

Dom Planner tracks the desired trajectory closely, while the
baseline PID controller deviates significantly and sometimes
exceeds state limits, resulting in failure cases where the robot
becomes stuck. We report the mean and standard deviation
of the state error, the average time to complete the trajectory
(for successful trials), and the overall success rate in Table
L

b) Rapid State Change Experiment: The planner ran-
domly selects a new goal state from a predefined set of
goal states. After reaching this state, the robot holds it for
two seconds before selecting the next random goal. Fig. 3
(middle, top and middle) show Dom Planner achieves the
new state in a more precise and timely manner than the PID
baseline. We measure the mean and standard deviation of
the time taken to reach each goal and the difference between
the achieved state and the goal state along with the overall
success rate as reported in Table 1.

c) Timed Goal Reaching Experiment: This experiment
tests the planner’s ability to arrive at a specified goal state
exactly at a predefined time. Fig. 3 (right, top and middle)
qualitatively shows Dom Planner precisely reaches the goal
at the right time (pitch) or reaches the goal earlier and stays
there (roll). We report the mean and standard deviation of
the difference between the desired and the actual arrival time
and the difference between the achieved final state and the
goal state in Table I.

d) State Stability Experiment: The planner first brings
the robot to a goal state and holds it for ten seconds.
During the holding phase, we manually disturb the vehicle
by applying downward or upward force. Fig. 3 (left, bottom)
demonstrates the Dom Planner reacts to three disturbances
(vertical dashed lines) and quickly recovers from them,
whereas the PID controller struggles to maintain the steady

state even without its two disturbances. We quantify recovery
performance by measuring the mean and standard deviation
of the correction time as well as the reaction latency. Table
I shows, Dom Planner with PHLI consistently stabilizes the
system at the goal state faster and with lower reaction latency
compared to the PID baseline.

B. Outdoor Experiments

To validate our method in real-world scenarios, we accel-
erate the vehicle to about 14 m/s (50+ km/h) and launch
it off a ramp set at 45° to the ground. The steering is
manually controlled to align the vehicle with the ramp and
control is passed to the planner as soon as the vehicle is
airborne. We estimate time till landing using the equations
of projectile motion and pass these inputs to the planner,
which controls the vehicle mid-air for a safe landing at state
s (0.0,0.0,0.0,0.0,0.0,0.0,1000,0.0), setting wheel
rpm to 1000 to reduce impact at landing. The trials are
conducted seven times with different launch poses and ve-
locities. We record the entire trajectory until landing and
report the average state upon landing in Table I. Fig. 3
(middle and right, bottom) presents two outdoor trials with
their corresponding time step for ramp entry, take-off, and
landing annotated as vertical dashed lines. In both cases, our
Dom Planner is able to prepare the roll and pitch angles
in-air to land the vehicle flat right at the landing time. To
ensure the safety of the vehicle, PID is only used for indoor
experiments.

C. Discussions

Based on our experimental observations, while the PID
controller can reach the goal state under limited configura-
tions, it often becomes stuck upon exceeding state limits—an
issue that can lead to catastrophic failures during landing.
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In contrast, our Dom Planner with PHLI, which leverages
forward simulation until the final state with the help of an
accurate dynamics model, achieves successful maneuvers by
reliably reaching the goal state within the predefined time.
Future work will focus on integrating the Dom Planner and
PHLI into a full off-road navigation system.

VI. CONCLUSIONS

In this paper, we present the Dom Planner and PHLI to
enable in-air vehicle maneuver for high-speed off-road nav-
igation. Based on the precise in-air forward kinodynamics
enabled by the hybrid PHLI model using physics-based and
data-driven approaches, Dom Planner is able to accurately
and timely maneuver the vehicle roll, pitch, yaw, and their
velocities to desired states. Extensive experiments showcase
that our method allows existing ground vehicle controls, i.e.,
throttle and steering, to prepare the vehicle in-air for safe
landing during a short airborne period. So, cars do fly.
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