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ABSTRACT

Language models (LMs) are increasingly applied to robotic
navigation; however, existing benchmarks primarily empha-
size navigation success rates while paying little attention to
social compliance. Moreover, relying on large-scale LMs
can raise efficiency concerns, as their heavy computational
overhead leads to slower response and higher energy con-
sumption, making them impractical for real-time deployment
on resource-constrained robotic platforms. In this work, we
evaluate the social compliance of GPT-4o and Claude in
robotic navigation and propose E-SocialNav, an efficient LM
designed for socially compliant navigation. Despite being
trained on a relatively small dataset, E-SocialNav consis-
tently outperforms zero-shot baselines in generating socially
compliant behaviors. By employing a two-stage training
pipeline consisting of supervised fine-tuning followed by di-
rect preference optimization, E-SocialNav achieves strong
performance in socially aware and efficient navigation. The
source code will be released upon acceptance.

Index Terms— Motion and Path Planning, Task and Mo-
tion Planning, Small Language Models

1. INTRODUCTION

Mobile robots fulfill a wide range of functions, from assisting
in healthcare and eldercare to providing delivery and logis-
tics services, and supporting security and surveillance tasks.
These roles often require robots to interact effectively with
humans and to navigate seamlessly through public spaces
shared with pedestrians. In such dynamic environments, it
becomes crucial for robots to demonstrate socially compliant
behaviors in both interaction and navigation, ensuring safety,
efficiency, and user acceptance [1].

The primary challenges of this task lie in understanding
and predicting human intentions, managing uncertainty in dy-
namic and cluttered environments, and balancing efficiency
with safety and comfort. To achieve this, robots need to inte-
grate perception, prediction, and planning modules capable of
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producing socially compliant trajectories that adapt to diverse
interaction scenarios.

Existing methods include imitation learning (IL)-based [2],
reinforcement learning (RL)-based [3], and large language
model (LLM)-based approaches [4, 5]. Among these, LLM-
based methods are particularly promising because LLMs
provide strong contextual understanding and commonsense
reasoning, which align well with the requirements of socially
compliant navigation.

Despite recent progress, relying on LLMs may introduce
efficiency challenges. For example, VLM-Social-Nav [5] em-
ploys GPT-4v to generate navigation instructions; however,
due to its large parameter size and the inability to leverage
GPU acceleration, this results in significant inference latency.
In addition, there has been no systematic evaluation of the
zero-shot capabilities of existing LLMs (such as GPT-4 and
Claude) for socially aware navigation. Understanding how
well off-the-shelf models perform without task-specific train-
ing is essential for assessing their readiness for real-world de-
ployment. Building on these insights, it is also critical to de-
sign a trainable model that is GPU-accelerated and efficient.
Nevertheless, fine-tuning LLMs for this task faces a practical
obstacle: high-quality, large-scale datasets are scarce, mak-
ing it imperative to explore how limited data can be leveraged
effectively.

This paper addresses the above-mentioned issues. First,
we conduct a comprehensive zero-shot evaluation of GPT-
4o and Claude for socially compliant navigation. Second,
we proposed E-SocialNav, an efficient LM designed for so-
cially compliant navigation under small-data settings. The
main contributions are summarized as below:

• Evaluated GPT-4o and Claude, and developed E-
SocialNav for efficient navigation under small-data
settings.

• Built a multi-dialog SFT dataset and a single-dialog
DPO dataset for socially compliant navigation.

• Identified suitable Small Language Models (SLMs) and
Vision Towers (VTs) for this task.
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Fig. 1: The detailed structure of E-SocialNav. E-SocialNav is
trained in two phases: SFT on multi-turn dialogues, followed
by DPO on single-turn pairs. During SFT, only the projector
is updated; during DPO, only the LoRA adapter is updated.

2. RELATED WORK

2.1. Social Robot Navigation

For social robot navigation, safety is paramount [6]. Classi-
cal methods enforce collision constraints or fuse multi-sensor
data (2-D LiDAR, depth cameras) for smooth avoidance [6].

Safety alone, however, is insufficient in human-populated
spaces. Robots must also respect social norms (such as per-
sonal space, group dynamics, cultural conventions) to be per-
ceived as acceptable and trustworthy. Traditional methods of-
ten ignore these, reducing pedestrians to moving obstacles.

Learning-based approaches seek to encode both safety
and social awareness. Demonstration-driven motion learn-
ing [7] and RL in simulators [6] show promise but depend on
large datasets or highly realistic human simulations, which
rarely capture nuanced interactions, yielding policies with
poor generalization.

Recently, Large Multimodal Models (LMMs) have opened
new directions. LMMs generate high-level actions [1], evalu-
ate trajectories [8], and predict directions [5]. Datasets such
as SCAND [9] and MuSoHu [10] further enable socially com-
pliant, human-like navigation. However, research on small
language models (SLMs) for this task remains limited.

2.2. Small Language Models

Large Language Models (LLMs) have shown strong abilities
in reasoning, planning, and multimodal understanding. While
frontier models (e.g., GPT-4, Claude) achieve state-of-the-art
performance, their substantial computational demands hinder
deployment in robotics and edge devices due to higher infer-
ence latency and greater computational consumption.

Recent work therefore emphasizes small language mod-
els (SLMs) [11]. Three main directions have emerged: (1)
Efficient pretraining and distillation: transferring knowledge

Human: “<image> What should the
robot do?”

Chosen: “The robot should stop, wait for
clear path.”

Rejected: “The robot should continue
straight.”

Human: “<image> What should the
robot do?”

Chosen: “The robot should continue
straight at a moderate speed.”

Rejected: “The robot should stop and
wait.”

Fig. 2: Visualization of constructed DPO training pairs. The
chosen response is annotated by humans, whereas the rejected
response is generated by modifying certain facts in the chosen
response.

from large teachers via distillation or pruning [12] to retain
reasoning capacity with lower cost; (2) Parameter-efficient
fine-tuning: methods such as LoRA [13] and prompt-tuning
enable task specialization with minimal overhead; (3) Archi-
tectural and training innovations: lightweight models (e.g.,
TinyLLaMA [14]) and data-efficient recipes build compact
yet capable SLMs.

This reflects a shift from pure scaling toward deployabil-
ity. By aligning efficiency with contextual reasoning, SLMs
offer a practical path to bring language models into real-world
interactive systems where resources, cost, and latency are crit-
ical.

3. METHODS

Socially compliant navigation aims to generate trajectories
that are not only efficient and collision-free but also consistent
with human social norms. Conceptually, this can be viewed
as optimizing a composite objective that balances three fac-
tors: (i) progress toward the goal, (ii) safety in avoiding col-
lisions and maintaining appropriate distances from obstacles,
and (iii) adherence to socially compliant behaviors.

The overall framework of E-SocialNav is illustrated in
Figure 1. E-SocialNav consists of two training phases:
Supervised Fine-tuning (SFT): We optimize only the pro-
jector. To enhance robust multimodal understanding, we em-
ploy multi-dialog datasets in which each training sample con-
tains multi-turn conversations paired with corresponding im-
ages. This design enables the model to learn not only accurate
perception but also context-aware reasoning across dialogue
turns.

Formally, given an image I and T dialogue turns {(xt, yt)}Tt=1,
we encode I with a vision tower (VT) and a projector to ob-
tain visual tokens v(I), and form the multimodal context
xt = [ct; v(I)] by concatenating textual context ct and
v(I). Let yt,1:Nt be the tokenized assistant response and
yt,<n = (yt,1, . . . , yt,n−1).



Table 1: Experimental results comparing off-the-shelf models and variants of the proposed method. SFT(X) means the com-
ponents X are trainable in Stage I (supervised fine-tuning); DPO(Y) means Y are trainable in Stage II (direct preference
optimization). Components not listed are frozen. Best performance is bolded.

Model VT SLM BERTScore-P↑ BERTScore-R↑ BERTScore-F1↑ SBERT-cos↑ SMS↑ FPS↑

Off-the-shelf Claude - - -0.233 0.387 0.059 0.664 0.641 0.087
GPT-4o - - 0.076 0.443 0.254 0.672 0.651 0.212

E-SocialNav (Ours)

SFT(projector+lora+vision) SigLIP [15] Phi-2-2.7B [16] 0.585 0.434 0.509 0.744 0.802 0.978
SFT(projector+lora) SigLIP [15] Phi-2-2.7B [16] 0.640 0.545 0.592 0.756 0.813 1.553

SFT(projector) SigLIP [15] Phi-2-2.7B [16] 0.551 0.658 0.604 0.780 0.828 1.828
SFT(projector) + DPO(lora) SigLIP [15] Phi-2-2.7B [16] 0.706 0.671 0.688 0.814 0.846 2.354

User: “What do you perceive from the image?”
E-SocialNav: “The robot is moving forward on a sidewalk with a very
low crowd density. There is one human, a person wearing a black hat,
moving from the northwest to the southwest at a slow speed.”
Ground truth: “There is a human on the left side of the sidewalk
moving from the northwest to the southwest at a far distance, wearing a white
shirt.”

User: “What do you predict these humans will do next?”
E-SocialNav: “The person with a black hat walking from the northwest to the southwest will continue moving at a
moderate distance.”
Ground truth: “The human will continue walking from the northwest to the southwest.”

User: “What should the robot do?”
E-SocialNav: “The robot should continue moving forward at a moderate speed.”
Ground truth: “The robot should continue moving forward at a moderate speed.”

Fig. 3: Visualizations: E-SocialNav accurately captures social-compliance cues from the image.

Table 2: Experimental results across different VT and SLM configurations. Best performance is bolded.

VT SLM BERTScore-P↑ BERTScore-R↑ BERTScore-F1↑ SBERT-cos↑ SMS↑

E-SocialNav (Ours)

CLIP [17] Phi-2-2.7B [16] 0.555 0.658 0.605 0.803 0.768
Dino [18] Phi-2-2.7B [16] 0.692 0.663 0.677 0.801 0.833

SigLIP [15] TinyLlama-1.1B-Chat-v1.0 [14] 0.473 0.576 0.523 0.733 0.789
SigLIP [15] stablelm-2-zephyr-1 6b [19] 0.700 0.622 0.661 0.788 0.837
SigLIP [15] Phi-2-2.7B [16] 0.706 0.671 0.688 0.814 0.846

User: “What should the robot do?”
Gt: “The robot should turn left at a 
slow speed.”
E-SocialNav: “The robot should stop.”

User: “What should the robot do?”
Gt: “The robot should turn slightly to left.”
E-SocialNav: “The robot should continue 
moving forward at a moderate speed. It 
should maintain a safe distance from the 
group of people, keeping a slight turning 
radius.”

Fig. 4: Visualization of failure cases. Gt: Ground truth.

The SFT objective averages the next-token negative log-
likelihood over response tokens:

LSFT(θ) =
1∑T

t=1 Nt

T∑
t=1

Nt∑
n=1

[
− log πθ

(
yt,n | xt, yt,<n

)]
,

where πθ denotes the conditional probability distribution de-
fined by the model parameters θ. Loss is computed only on
assistant responses; prompts and image tokens are excluded.
Direct Preference Optimization (DPO): For each input, two
candidate responses are provided. The chosen response is the
human-annotated ground-truth answer, considered the most
reliable. The rejected response is constructed by modifying



the ground-truth answer with localized errors. Some exam-
ples are give in Figure 2:

Formally, for each input context xt (including visual to-
kens from I), we pair a chosen response y+t and a rejected
response y−t . The sequence log-likelihoods are computed by
summing token log-probabilities over supervised positions:

ℓ+θ (t) =
∑
n

log πθ

(
y+t,n | xt, y

+
t,<n

)
, (1)

ℓ−θ (t) =
∑
n

log πθ

(
y−t,n | xt, y

−
t,<n

)
. (2)

Let us define the log-likelihood advantage

∆θ(t) = ℓ+θ (t)− ℓ−θ (t).

The DPO objective is the average binary logistic loss:

LDPO(θ) = − 1

T

T∑
t=1

log σ
(
β∆θ(t)

)
, (3)

where σ(·) is the logistic sigmoid and β > 0 is an inverse-
temperature hyperparameter controlling the sharpness of pref-
erence learning. In practice, we set β = 0.1, which provides
stable gradients without over-amplifying preference margins.

4. EXPERIMENTS

4.1. Experimental Settings

The projector is a two-layer MLP. For evaluation, we use
BERTScore, SBERT-cosine, and Sentence Mover’s Similarity
(SMS), as they emphasize semantic similarity; metrics such
as BLEU and ROUGE mainly capture word overlap and are
less suitable for our task.

Based on the SNEI dataset [1], which is derived from
SCAND [9] and MuSoHu [10], we construct a multi-dialog
dataset comprising 325 egocentric video-derived samples,
each paired with five conversations. Among these, 60 sam-
ples are randomly selected for testing, while the remaining
265 are used for training. We also derive a DPO dataset (see
Section 3 Direct Preference Optimization (DPO)). Training
follows a two-stage schedule on four A100 GPUs and finishes
in under one hour. Stage I updates the projector for 20 epochs
with learning rate 5 × 10−5 and warm-up ratio 0.03 using
FlashAttention-2. Stage II applies DPO for 5 epochs with the
same settings.

4.2. Experimental Results

Accuracy. With GPT-4v deprecated, GPT-4o serves as the
GPT baseline. From Table 1, both Claude and GPT-4o exhibit
limited social compliance, while E-SocialNav aligns more
closely with human annotations, achieving higher semantic-
similarity scores. In the low-data regime (265 images for

training), SFT performs best when the backbone is frozen
and only the projector is trained (Stage I). Adding Stage II
DPO fine-tuning further improves performance.
Efficiency. E-SocialNav builds on the compact 2.7B Phi-2
backbone, with Stage I updates only the projector and Stage II
applies lightweight DPO. These choices keep training com-
pute modest and reduce inference memory and latency, en-
abling deployment on resource-constrained hardware.
Visualizations. As can be seen from Figure 3, the proposed
E-SocialNav produces responses that closely align with hu-
man annotations, reflecting both higher semantic fidelity and
stronger social compliance.
Variations on VT and SLM. We conduct experiments by
varying both the VTs and SLMs. The VTs evaluated include
CLIP [17], DINO [18], and SigLIP [15], while the SLMs con-
sidered are Phi-2-2.7B [16], TinyLlama-1.1B-Chat-v1.0 [14],
and StableLM-2-Zephyr-1.6B [19]. Among all combinations,
SigLIP paired with Phi-2-2.7B consistently achieves the best
performance across all evaluation metrics (Table 2).
Failure Analysis and Future Works. As shown in Figure 4,
E-SocialNav recommends “stop”, whereas the ground-truth
annotation prescribes “turn left at slow speed”. This diver-
gence reflects the inherently conservative bias often adopted
during human annotation and underscores the difficulty of es-
tablishing a universally valid social standard for navigation.
Moving forward, we plan to (i) conduct subjective user stud-
ies and (ii) construct a fine-grained, large-scale benchmark
dataset that captures diverse cultural norms and situational
contexts. Such efforts aim to provide a more balanced founda-
tion to mitigate annotation bias and advance the development
of socially compliant navigation models that are universally
adaptable.

5. CONCLUSIONS

In this paper, we first examined the effectiveness of off-
the-shelf LLMs, including Claude and GPT-4o, and found
that they exhibit limited social compliance in navigation
tasks. To address this limitation, we proposed E-SocialNav, a
lightweight model designed for socially compliant navigation
under small-data settings. By adopting a two stage training
pipeline consisting of SFT and DPO, E-SocialNav demon-
strates substantially improved social compliance compared
to zero-shot baselines. Notably, our framework leverages
an SLM, which, owing to its relatively small size, enables
faster response times, reduced energy consumption, and more
practical deployment.
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Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer-
nandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, et al., “Dinov2: Learning robust visual features
without supervision,” Transactions on Machine Learn-
ing Research Journal, 2024.

[19] Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy
Phung, Maksym Zhuravinskyi, Reshinth Adithyan,
James Baicoianu, Ben Brooks, Nathan Cooper, Ashish
Datta, et al., “Stable lm 2 1.6 b technical report,” arXiv
preprint arXiv:2402.17834, 2024.


	 Introduction
	 Related Work
	 Social Robot Navigation
	 Small Language Models

	 Methods
	 Experiments
	 Experimental Settings
	 Experimental Results

	 Conclusions
	 References

