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Abstract— Service robots operate in household environments
shared with humans, pets, and everyday objects, where they are
highly susceptible to failures such as software crashes, hardware
degradation, or unpredictable interactions. While roboticists
strive to minimize failures, some remain inevitable, making
it critical to mitigate their potential consequences for safe
and reliable deployment. This paper introduces a novel safety
formulation that evaluates both the probability of impactful
interactions between robots and surrounding entities during
failures, and the severity of their outcomes. By quantifying the
impact of failures on different entities, our approach enables
robots to make informed planning decisions that balance safety
with task efficiency. To support systematic evaluation, we also
present FailBench, a MuJoCo-based simulation framework
for studying robot-environment interactions under diverse fail-
ure modes, including sensing issues and actuator malfunctions.
Together, our safety formulation and FailBench provide a
foundation for developing safer and more robust motion plans
and learned policies in real-world household environments.

I. INTRODUCTION

Household robots are expected to perform diverse tasks
such as cleaning, fetch-and-deliver, and cooking. These tasks
require operation in dynamic environments shared with hu-
mans, pets, and cluttered objects, where robots are highly
susceptible to failures such as falling, dropping objects,
or spilling liquids. Such failures may arise from hardware
degradation, software bugs, or unpredictable conditions. For
example, a spilled drink can short-circuit electronics and
create a slippery floor that risks human injury; a dropped
object may break fragile items; and a fall can injure a nearby
person or pet. Ensuring safety in the presence of failures
is therefore crucial for the widespread adoption of service
robots in our homes.

Most existing work emphasizes failure prevention and
recovery strategies [1]–[5], but often lacks systematic failure
categorization and overlooks the consequences of inevitable
failures. In household settings, failures extend beyond incom-
plete tasks (e.g., getting stuck at a doorway) to hazardous
events that can damage property or endanger people. While
previous failure prevention and recovery strategies can lower
the chance of failures, they do not consider the consequences
if an inevitable failure occurs in the planning process. One
naive way to mitigate failure impact is through inflating
objects or defining “no-go zones”. But by trimming down the
workspace to stay away from everything unnecessarily limits
where the robot can operate and compromise task efficiency.

Another major bottleneck in studying such failure con-
sequences is the scarcity of real-world data during real-
world service robot deployment and the lack of a standard
benchmark to evaluate how robots can mitigate failure im-
pact. Without sufficient data and a benchmark, it is difficult

Fig. 1: Robot failure mitigation example. Left (red): Carrying
a bottle of hot water close to a human poses a higher risk of
spilling and causing injury if dropped. Right (green): A safer
strategy positions the bottle farther away from the human to
reduce potential harm in the event of failure.

for robots to analyze diverse failure consequences to plan
motions or to learn policies that distinguish minor and severe
failures to simultaneously maintain efficiency and safety.

To enable robots to reason about and mitigate failure
consequences, we propose a novel problem formulation that
explicitly accounts for the consequences of failures during
planning. Our framework evaluates potential interactions
between robot components and environmental entities when
failures happen, quantifies the severity of each interaction,
and aggregates them into an overall impact measure. Achiev-
ing this requires reasoning not only about when failures
occur, but also what they impact and how severe the resulting
consequences are. For example, in Figure 1, a robot carrying
a bottle in a hallway may position the bottle at a lateral offset
from humans, not only to prevent collisions, but to limit the
impact on the person if the bottle is accidentally dropped.

To provide failure data and benchmark, we present
FailBench, a MuJoCo-based simulation framework de-
signed to study how robots interact with their environ-
ments under sudden unexpected failures such as hardware
shutdowns, sensor degradation, or actuator malfunctions.
FailBench enables systematic analysis of failure-induced
behaviors, supporting the development of safer motion plans
and more robust learned policies. The framework provides:
(1) a curated library of scenes and objects household robots
may commonly encounter, (2) a suite of Python implemen-
tations of common motion planners for both navigation and
manipulation, and (3) a novel failure injector that introduces
controlled perturbations to the robots and its environments to
collect failure data and benchmark failure mitigation strate-



gies. By offering a controlled yet diverse environment for
benchmarking, FailBench facilitates rigorous evaluation
of robot safety and resilience in the presence of failures,
ultimately guiding safer real-world deployment.

In summary, this paper makes the following contributions:
• A novel formulation for failure impact assessment with

a new safety metric, combining interaction modeling
and severity metrics to quantify safety risks;

• FailBench, a MuJoCo-based benchmark to study
failure mitigation by generating diverse failure data and
systematically evaluating failure impacts; and

• Demonstration that our new formulation can reflect
failure consequences simulated in FailBench, paving
the way toward future research into failure mitigation
for service robots.

II. RELATED WORK

Robot Failure is a critical consideration for the
widespread adoption of robotic systems, with prior work
aiming to reduce failure likelihood and develop robust risk
formulations [1], [6]–[8]. Failures have been categorized
as physical (e.g., power loss, sensor errors, communication
faults, end-effector issues, and control faults) or man-made
(e.g., design flaws and user mistakes) [6], [7], and fur-
ther characterized by repairability (field vs. non-field) and
impact (terminal vs. non-terminal) [7]. Extensions include
Guo et al.’s classification into system, operational, design,
and safeguarding errors [9]. Most existing approaches treat
failure primarily as a problem of task incompletion, arising
from suboptimal planning or policy decisions. For example,
the RoboFail dataset [10] focuses on reinforcement learning
policies and defines failure as the inability to successfully
complete a manipulation task. While this framework is valu-
able for evaluating policy robustness, it largely overlooks the
critical question of what happens when failures occur during
execution due to hardware faults, unexpected dynamics, or
other low-level disturbances that are impossible to predict or
prevent in advance.

Safety Filtering for Robotics represents a control-
theoretic approach designed to ensure system safety in-
dependently of task-driven base policies. These methods
operate by monitoring policies and intervening with safe
control actions when systems approach unsafe states, in-
cluding control barrier functions [11]–[13], HJ reachabil-
ity [14], [15], and model-predictive shielding. However,
traditional safety filtering approaches primarily focus on
preventing failures through collision avoidance and constraint
satisfaction. While prevention is crucial, these methods be-
come insufficient when dealing with sudden, unpredictable
hardware failures—such as joint degradation or actuator
malfunctions—that cannot be easily detected or avoided in
real-time. In household environments, the consequences of
such failures extend far beyond direct collisions, potentially
causing spilled liquids, dropped fragile objects, or cascading
hazards that endanger both surroundings and humans.

Fault Injection for Risk Analysis has emerged as a
complementary approach, focusing on understanding system

behavior under various failure conditions. Yuliang et al. [16]
presented a ROS-based failure injection framework using
six different failure parameters and randomization capabil-
ities. Their approach targets sensor signal faults (bias and
noise) injected into position signals, demonstrating that fault
phase (planning vs. execution) critically determines failure
outcomes. Christensen et al. [17] investigated hardware fault
detection using back-propagation neural networks trained on
normal and faulty operational data, demonstrating robust
fault identification with low false positives. While these
approaches provide valuable insights into fault detection and
system vulnerabilities, they primarily focus on identifying
when failures occur rather than quantifying the consequences
of failures that cannot be prevented or detected in time.

This work shifts the focus from preventing failures to
assessing their impact. When robot joints degrade suddenly
or hardware fails unexpectedly—scenarios where detection
or avoidance is impossible—the critical question is: what are
the potential consequences at a given moment? We introduce
a framework to estimate failure impacts across robot states
and actions, enabling robots to make decisions that account
for the severity of failures and to choose actions that mitigate
consequences when failures are unavoidable.

III. PROBLEM FORMULATION

Fig. 2: Illustration of the components within the robot’s
workspace.

A service robot operating in human environments must
minimize risks to people and objects, particularly during
inevitable failures. For instance, a robot carrying a bowl
of hot soup must navigate around furniture and people,
as even a minor misstep could spill hot liquid and cause
injury or damage. Failure-aware planning should not only
enable smooth task execution but also explicitly account
for the potential consequences of failures, integrating safety
considerations directly into decision-making.

A. Robot Components and Environment Entities

We focus on robots operating in a household environment,
representing tasks that may require both navigation and
manipulation. The robot, denoted as R, is divided into three
primary components that can pose hazards: the robot body
(r1), the object being carried (r2), and, if the object is a
container, its contents (r3). Each component rj ∈ R may



present distinct risks when interacting with environmental
entities. An entity ei ∈ E, static or dynamic, represents any
object or agent in the environment that could be affected
by the robot. Figure 2 illustrates the division of the robot’s
workspace into components and surrounding entities.

B. Interaction between Robot Components and Entities

We define an interaction as an accident following a failure
that results in damage or harm to an environmental entity.
At time step t, the probability of an interaction is denoted
as

Pt(xt, ei, rj | Failure = True),

representing the likelihood that a robot component rj inter-
acts with an environmental entity ei at robot state xt when
a failure occurs.

Since failures are assumed inevitable and undetectable, our
framework does not attempt to minimize—or explicitly rea-
son about—the probability of failure itself. Instead, it focuses
on minimizing the impact of failures on the environment.
Importantly, Pt captures the likelihood that a failure will
negatively affect a specific entity, rather than the overall
probability of failure.

C. Severity of Interaction

Not all interactions carry equal consequences. For exam-
ple, spilling hot coffee is more hazardous than spilling iced
water, even if the probabilities of interaction are similar. To
capture this, we define a severity factor S(ei, rj), quantifying
the potential impact of an interaction between an environ-
mental entity ei and a robot component rj during a failure.
This factor enables the robot to adjust its behavior according
to the potential severity of interactions.

D. Optimization Objective

We define the impact of a failure as the product of the
probability of a harmful interaction and its severity. Using
this, the motion planner minimizes the following objective:

argmin
x1,...,xT

T∑
t=1

[
V (xt, xt−1)

+w ·
∑
rj∈R

∑
ei∈E

Pt(xt, ei, rj |F ) · S(ei, rj)

]
,

(1)

where V (xt, xt−1) is the cost of transitioning from state xt−1

to xt, and w is a weighting parameter that balances motion
efficiency against failure impact considerations.

This formulation allows the robot to evaluate the risk
associated with its states and actions, balancing operational
efficiency with safety. By considering both the likelihood of
causing harm and the severity of potential consequences, the
robot can make informed, risk-averse decisions that minimize
the impact of inevitable failures.

IV. FAILBENCH

We introduce FailBench, a MuJoCo [18] simulation
framework for studying how robots interact with their en-
vironments under sudden, unexpected failures. FailBench
enables systematic analysis and data generation of failure-
induced behaviors, providing insights for developing proac-
tively safe motion plans or robust learned policies. It also
provides a standardized benchmark for evaluating, compar-
ing, and developing robot planning and control strategies
under various failure conditions, ultimately enhancing safety
and resilience in real-world deployments.

A. Simulation

FailBench leverages MuJoCo as its core simulator, of-
fering high-fidelity physics essential for accurately modeling
failure behaviors. To facilitate perception-driven analyses,
it provides interfaces to access ground-truth states, con-
tact forces, and other environment metrics. Our framework
incorporates scenes and object meshes curated from prior
work [19], [20], and supports a variety of robot embodiments
such as Clearpath Jackal, Fetch mobile manipulator, and
Franka Panda Arm. Unlike existing platforms that primarily
target at providing training environments for learning-based
approaches, FailBench emphasizes failure-aware planning
and policy evaluation.

B. Motion Planning

1) Navigation: Our framework provides an interface to
generate floor maps for high-level path planning, supporting
both search-based algorithms such as A* and Dijkstra’s, as
well as sampling-based planners. For low-level control of
wheel-based robots, we implement the Dynamic Window
Approach [21] and differential-drive controllers.

2) Manipulation: We leverage Mink [22], a Python library
for differential inverse kinematics built on MuJoCo. Our
framework supports arm planning in both joint-space and
task-space, integrating a variety of motion planners:

• Sampling-based planners: PRM (Probabilistic
Roadmaps) [23], RRT (Rapidly-exploring Random
Trees) [24], RRT* [25], RRTConnect [26], and TRRT
(Transition-based RRT) [26], and

• Optimization-based planners: STOMP (Stochastic Tra-
jectory Optimization for Motion Planning) [27] and
CHOMP (Covariant Hamiltonian Optimization for Mo-
tion Planning) [28].

This setup enables researchers to leverage, evaluate, and
compare a wide range of navigation and manipulation strate-
gies within the same simulation platform. We plan to con-
tinue expanding the library of planners in future releases.

C. Failure Injector

A key feature of FailBench is its failure injector,
which introduces controlled perturbations to the robot and its
environment. Injecting failures enables systematic evaluation
of robot safety across a variety of failure modes, including
sensor noise, hardware malfunctions, and performance degra-
dation. By simulating such scenarios, FailBench helps



TABLE I: Failure Injector for FailBench

Failure Type Description Onset

Actuator Failures

Complete Shutdown Total loss of joint control authority Instant
Loose Joint Reduced damping and control Gradual

Limited ROM Restricted range of motion Instant
Partial Degradation Reduced control authority Gradual

Gradual Degradation Slow deterioration of performance Gradual
Stuck Position Joint locked at current position Instant

Increased Friction Higher resistance in joint motion Gradual

Sensor Failures

Noisy Sensor Added measurement noise Gradual
Bias Drift Accumulating systematic errors Gradual

Control Delay Network/computational latency Gradual
Sensor Dropout Intermittent loss of measurements Instant

Scale Factor Error Incorrect measurement scaling Gradual
Dead Zone No response in measurement range Instant

End-Effector Failures
Gripper Failure End-effector malfunction Instant

Weak Grip Reduced grasping force Gradual
Stuck Open/Closed Gripper locked in position Instant

Power System Failures
Battery Degradation Reduced available power Gradual

Voltage Drop Insufficient power delivery Gradual
Power Loss Complete system shutdown Instant

researchers assess and improve the robustness of both motion
plans and learned policies. Currently, we support actuator
failures such as complete shutdown and loose joint, sensor
failures including noisy sensor and bias drift, and end-
effector failures such as gripper failure. More failures will be
expanded in future work based on the community’s feedback.

1) Overview: Our failure injection framework provides
a comprehensive taxonomy of three primary categories:
actuator, sensor, and end-effector failures (Table I). Each
failure type is characterized by its onset pattern (instant or
gradual), failure degrees, and configurable parameters that
control the failure’s magnitude and duration. Instant failures
occur immediately upon injection, while gradual failures
develop or persist over time during execution.

The injector operates by modifying the underlying Mu-
JoCo simulation parameters in real-time, enabling realistic
physical simulation of robot malfunctions. Unlike approaches
that only add noise to control signals, our framework directly
alters actuator gains, joint constraints, sensor feedback, and
mechanical properties to accurately represent the physics of
actual hardware failures. This approach ensures that failure
propagation and system responses mirror real-world behav-
iors for maximum failure fidelity.

Failures can be injected at any point during trajectory
execution, with precise timing control and the ability to affect
single joints, multiple joints simultaneously, or the entire
system. The framework supports both deterministic failure
scenarios for controlled testing and stochastic failure injec-
tion for robustness evaluation under uncertain conditions.

2) Failure Types: Table I summarizes the various failure
modes currently included for injection in our simulation.

Actuator Failures represent loss or degradation of motor
control authority across multiple failure modes. Complete
shutdown removes all control from specified joints, sim-
ulating motor driver failures or emergency stops. Loose
joint failures model reduced damping and control precision

from mechanical backlash or worn components. Limited
ROM restricts joint movement ranges, simulating mechanical
constraints. Progressive failures include partial degradation
and gradual degradation, which reduce control authority
over time, while stuck position locks joints at their current
configuration. Increased friction models wear-related resis-
tance in joint mechanisms.

Sensor Failures affect the robot’s perception of its own
state and environment. Noisy sensor failures add measure-
ment noise to joint position feedback. Bias drift introduces
accumulating systematic errors that model sensor calibration
drift over time. Control delay simulates network latency or
computational delays in the control loop. Additional failure
modes include sensor dropout for intermittent measurement
loss, scale factor error for incorrect measurement scaling due
to calibration issues, and dead zone failures where sensors
become unresponsive within specific ranges.

End-Effector Failures specifically target manipulation
capabilities. Gripper failure encompasses complete end-
effector malfunction, while weak grip models progressive
reduction in grasping force. Stuck open/closed scenarios
simulate mechanical failures that lock the gripper in fixed
positions, directly impacting object manipulation success.

Power System Failures model energy-related degrada-
tion common in mobile robots. Battery degradation reduces
available power over time, voltage drop causes insufficient
power delivery affecting actuator performance, and power
loss simulates complete system shutdown scenarios.

Each failure type includes configurable failure degrees
(minor, moderate, severe, and critical) that scale the failure’s
impact proportionally. Duration parameters allow for tempo-
rary failures that automatically restore after a specified time,
or permanent failures that persist until explicitly restored.
This flexibility enables researchers to study both transient
disturbances and persistent fault conditions.



Fig. 3: Visualization of contact detection after shoulder joint
complete shutdown failure. The robotic arm has collided
with the table, generating multiple contact points (shown
in yellow) with associated force vectors, demonstrating how
FailBench quantifies physical interaction during failure
scenarios.

D. Data generation

In FailBench, failure aftereffects are quantified through
contact events, which serve as measurable proxies for the
physical impact of robot failures. This approach directly
aligns with the interaction framework defined in our problem
formulation (Section III). Leveraging the MuJoCo physics
engine, FailBench captures both contact point positions
and their corresponding contact forces, providing compre-
hensive data for failure impact assessment. Figure 3 il-
lustrates how contact events are detected and measured
following a robot failure.
FailBench provides a comprehensive open-source

framework with pre-configured robots, planners, environ-
ments, and object assets to streamline experimentation and
accelerate research in robot safety.

V. FAILURE IMPACT ANALYSIS

To evaluate the failure impact formulation proposed in
Section III, we develop computational techniques that quan-
tify the potential impacts arising from robot–environment
interactions during failure events.

A. Interaction Probability Estimation

Algorithm 1 outlines a general procedure for estimating
interaction probabilities under joint failures in robotic manip-
ulators. The algorithm models both individual joint failures
and complete system collapse scenarios, where disabled
joints cause downstream components to move freely under
gravitational forces. Interaction likelihood is computed based
on geometric overlap analysis in the horizontal plane be-
tween the robot’s swept volume and environmental entities.

In MuJoCo, rigid bodies are represented as collections of
geoms, so Algorithm 1 is applied at the geom level. For

Algorithm 1 Generalized Probability of Interaction Compu-
tation
Require: Robot component rj , environment entity ei, robot

state xt

1: Compute brj ∈ R8×3, the axis-aligned bounding box
corners of rj in global coordinates

2: Extract min(brj ) ∈ R3,max(brj ) ∈ R3, the minimum
and maximum coordinate values over the 8 corners and
compute projected area on the X-Y plane, Arj

3: Compute bei ∈ R8×3

4: Extract min(bei) ∈ R3,max(bei) ∈ R3 and compute
Aei

5: Compute overlap area Aoverlapi,j in X-Y plane :
5a: min maxsi,j = min(max(brj ),max(bei))

5b: max minsi,j = max(min(brj ),min(bei))

5c: ax ovi,j = max(min maxsi,j − max minsi,j , 0)
5d: Aoverlapi,j =

∏2
a=1 ax ovi,j [a]

6: Compute probability:

Pt = max

(
Aoverlapi,j

Arj

,
Aoverlapi,j

Aei

)
7: if min(brj )[3] > max(bei)[3] or ax ovi,j [3] > 0 then
8: return Pt

9: else
10: return 0
11: end if

a robot component rj , let {gjk}
Nj

k=1 denote its associated
geoms, where Nj is the number of geoms. Similarly, {gil}

Ni

l=1

denotes the geoms of environment entity ei.
Steps 1–4 of the algorithm are computed for each geom:

for each gjk and gil , we calculate the 8 corners of their axis-
aligned bounding boxes, bgj

k
and bgi

l
, extract minimum and

maximum coordinates, and compute the projected area on
the X-Y plane, Agj

k
and Agi

l
.

In Step 5, the overlap area between geom pairs (gjk, g
i
l)

is computed in the X–Y plane. Specifically: (5a) finds the
smaller of the two maximum coordinates, (5b) finds the
larger of the two minimum coordinates, (5c) computes the
difference along each axis, treating negative values as zero
to get ax ovl,k, and (5d) multiplies these differences along
the X-Y axis to obtain the total overlap area Aoverlap

gi
l
,g

j
k

.
Body-level areas are then obtained by summing over

geoms:

Arj =

Nj∑
k=1

Agj
k
, Aei =

Ni∑
l=1

Agi
l
,

Aoverlapi,j =

Ni∑
l=1

Nj∑
k=1

Aoverlap
gi
l
,g

j
k

.

Finally, the probability of interaction between rj and ei is
computed using Step 6. Step 7 ensures that ei is below rj
along the Z axis by comparing minimum and maximum Z
coordinates over all geoms.



While Algorithm 1 is general and capable of handling
arbitrary failure types (including joint or actuator failures),
in this paper we focus exclusively on object drop failures.
That is, we simulate the scenario where the robot slips the
object it is carrying, without considering full manipulator
collapse. This simplifies the experiment while still allowing
us to evaluate the impact of failures on the environment.

B. Trajectory Analysis

We evaluate our failure impact framework on four trajecto-
ries for a tabletop pick-and-place task in FailBench using
the Franka Emika Panda robot arm.

1) Experimental Setup: The manipulation task requires
the robot to pick up an object (green) from the table and place
it on top of another object (blue), as shown in Figure 4. We
sample intermediate waypoints and employ RRT-Connect to
generate feasible trajectories for the Franka Emika Panda
robot arm. To assess the risk of object dropping during
trajectory execution, we evaluate interaction probabilities
using Algorithm 1. Object severity values are predefined
in this analysis, with red objects representing high severity
entities (value 10) and white objects indicating standard
severity levels (value 2).

For each trajectory, we compute the motion cost as the
cumulative Euclidean distance between consecutive config-
urations,

∑N−1
i=1 ∥qi − qi+1∥2, where ∥ · ∥2 denotes the Eu-

clidean norm and N is the number of waypoints. Safety cost
represents the cumulative expected impact across potential
drop interactions during failure scenarios, as defined in our
optimization objective (Eq. (1), with weight w set to 1). To
validate our framework, we simulate each trajectory 60 times
with a 25% probability of failure occurrence per trajectory
execution, as shown in Figure 5. When a failure occurs, the
timestep for object dropping is randomly sampled from the
trajectory duration. The observed safety (OBS) represents the
average measured safety cost across all simulation runs for
each trajectory.

2) Analysis: Table II reveals distinct trade-offs between
motion efficiency and safety across the four evaluated trajec-
tories. Trajectory 4 (green) achieves the lowest safety cost
(0.236) but incurs the highest motion cost (1.958), resulting
in the highest total cost (2.194). Conversely, trajectory 2
(orange) provides optimal balance, achieving both the lowest
motion cost (1.280) and total cost (1.71) despite higher safety
cost than trajectories 3 (pink) and 4 (green). Trajectory 1
(light blue) demonstrates suboptimal performance with the
second-highest motion cost (1.567) and total cost (1.914),
while trajectory 3 (pink) serves as a reasonable middle-
ground solution with moderate performance across all met-
rics.

The observed safety (OBS) results from simulation vali-
dation generally align with our theoretical safety cost pre-
dictions, validating the framework’s predictive capability.
Trajectory 4 demonstrates both the lowest theoretical safety
cost (0.236) and observed safety (0.27), confirming its su-
perior safety performance. Similarly, trajectory 3 shows low
observed safety (0.4) consistent with its moderate theoretical

Fig. 4: Trajectories carrying an object during pick-and-place
execution. Trajectory 1 (light blue), 2 (orange), 3 (pink), and
4 (green) tradeoffs safety and efficiency.

safety cost (0.363). However, trajectory 2 exhibits higher
observed safety (5.6) than expected from its theoretical
cost (0.430), while trajectory 1 shows intermediate observed
safety (3.33) despite having a lower theoretical safety cost
(0.347) than trajectory 2. These discrepancies highlight the
complexity of real failure scenarios and suggest opportunities
for refining the interaction probability models.

This analysis demonstrates the practical utility of our
failure impact assessment framework for evaluating trajec-
tory safety in the presence of inevitable robot failures.
While traditional planners optimize solely for geometric
objectives, our framework reveals failure impact costs that
could inform future failure-aware planner design. Such quan-
titative insights could guide the development of planners
that explicitly mitigate failure consequences while balanc-
ing efficiency objectives. The framework’s ability to assess
different trajectory candidates provides a foundation for
integrating failure impact mitigation into motion planning
algorithms, enabling principled decisions that minimize harm
when failures occur based on application requirements and
environmental vulnerability.

TABLE II: Trajectory comparison showing theoretical safety
predictions versus empirical validation through simulation.

Trajectory Motion Cost Safety Cost Total Cost OBS

1 (light blue) 1.567 0.347 1.914 3.33
2 (orange) 1.280 0.430 1.71 5.6
3 (pink) 1.359 0.363 1.722 0.4
4 (green) 1.958 0.236 2.194 0.27

VI. FUTURE WORK

While we demonstrate the potential of our safety mitiga-
tion framework and FailBench to evaluate robot safety
through our proposed failure impact assessment, integrating



Fig. 5: Visualization of object drop failure during pick-and-
place execution. The robot has released the green object mid-
trajectory, demonstrating the type of failure scenario in our
analysis.

such evaluation capabilities into practical planning systems
presents several key challenges for future work.

Environmental Knowledge Requirements. Our frame-
work assumes complete environmental knowledge, including
object identity, material properties, and vulnerability char-
acteristics that determine failure impact severity. However,
such comprehensive prior knowledge is rarely available in
practice. Visual-Language Models (VLMs) offer a promising
solution by automatically estimating interaction severity from
visual input. VLMs can perceive and annotate unlabeled
3D objects with semantic descriptions including material
properties, fragility, and estimated significance [29]. This
visual grounding enables more reliable assessment than
textual descriptions alone, as VLMs observe actual object
appearance, size, and context. Future work could leverage
VLMs to automatically infer vulnerability parameters, en-
abling practical deployment of failure impact assessment.

Failure Interaction Modeling. Our interaction proba-
bility model relies on geometric analysis and lacks the
complexity needed for realistic failure impact prediction in
dynamic environments. Addressing this limitation requires
accurate modeling of robot failure behaviors, physical dy-
namics of manipulated objects, and interactions with dy-
namic agents [30]. Since FailBench enables systematic
simulation of post-failure states, future work can leverage
this capability to collect comprehensive contact data between
robot components and environment entities, enabling learn-
ing of probability distributions using neural networks. Phys-
ical world models [31] present another promising direction
for predicting failure outcomes and component interactions.

Recent advances in latent-space Hamilton-Jacobi reachabil-
ity [32] offer valuable insights for learning failure interaction
representations directly from raw observations.

Integration with Motion Planning. A critical challenge
lies in effectively incorporating failure impact assessment
into motion planning algorithms. Traditional sampling-based
planners excel at finding feasible paths but struggle with
complex cost landscapes inherent in failure-aware planning.
Optimization-based approaches face convergence challenges
due to irregular cost surfaces created by discontinuous failure
events. Future work should explore planning in latent spaces
to achieve smoother cost representations and improved
computational efficiency, enabling practical deployment of
failure-aware trajectory generation.

Task-Level Failure Awareness. Ultimately, intelligent
systems should consider failure impact not only during
trajectory generation but throughout high-level task planning.
Systems should prioritize actions that mitigate failure impact
across entire task sequences [33]. For example, when trans-
porting fragile objects, optimal strategies might first acquire
protective equipment to minimize damage risk. Extending
our evaluation framework to Task and Motion Planning
(TAMP) [34] represents a natural progression toward com-
prehensive failure-aware robotics, where our benchmarking
capabilities can guide the development of safer autonomous
systems.

VII. CONCLUSIONS

This paper presents a comprehensive framework for eval-
uating robot safety by explicitly accounting for failure con-
sequences in robotic systems. We introduce a novel for-
mulation that quantifies both the probability and severity
of robot-environment interactions during failures, provid-
ing a systematic approach to assess how robots handle
inevitable malfunctions while protecting their surroundings.
Our method evaluates the impact of failures on different
entities in the environment, establishing rigorous metrics for
safety assessment in service robotics.

To enable systematic evaluation of failure scenarios,
we also develop FailBench, a MuJoCo-based simula-
tion framework that facilitates controlled study of robot-
environment interactions under diverse failure modes, in-
cluding sensing issues, hardware malfunctions, and actu-
ator degradation. FailBench serves as a comprehensive
benchmarking platform for robot safety research, featur-
ing curated household environments, standardized motion
planning implementations, diverse failure injection modes,
and quantitative metrics for failure impact assessment. This
framework enables researchers to systematically assess robot
failure data and compare different approaches to failure
handling and safety-aware robotics.

Our evaluation demonstrates the framework’s capability
to assess robot safety across various scenarios and planning
algorithms. To integrate our framework into motion planning,
we identify several challenges and pathways for advanc-
ing failure-aware robotics. Integration with Visual-Language
Models for automatic scene understanding, learning-based



probability models trained on FailBench data, and ex-
tension to Task and Motion Planning represent promising
directions enabled by our benchmarking foundation.

These contributions establish a critical foundation for
safer, more reliable service robots operating in dynamic
household environments. By shifting focus from pure failure
prevention to systematic consequence evaluation, our work
provides the tools and metrics necessary for developing
robots that can be rigorously assessed for their ability to
gracefully handle inevitable failures while maintaining safety
and user trust.

REFERENCES

[1] X. Xiao, J. Dufek, and R. R. Murphy, “Robot risk-awareness by formal
risk reasoning and planning,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 2856–2863, 2020.

[2] L. De Filippis, G. Guglieri, and F. Quagliotti, “A minimum risk
approach for path planning of uavs,” Journal of Intelligent & Robotic
Systems, vol. 61, pp. 203–219, 2011.

[3] M. Zabarankin, S. Uryasev, and P. Pardalos, Optimal risk path algo-
rithms. Springer, 2002.

[4] M. Ono and B. C. Williams, “An efficient motion planning algorithm
for stochastic dynamic systems with constraints on probability of
failure.” in AAAI, 2008, pp. 1376–1382.

[5] C. Cornelio and M. Diab, “Recover: A neuro-symbolic framework
for failure detection and recovery,” in 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2024,
pp. 12 435–12 442.

[6] S. Honig and T. Oron-Gilad, “Understanding and resolving failures in
human-robot interaction: Literature review and model development,”
Frontiers in psychology, vol. 9, p. 861, 2018.

[7] J. Carlson, R. R. Murphy, and A. Nelson, “Follow-up analysis of
mobile robot failures,” in IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5. IEEE,
2004, pp. 4987–4994.

[8] X. Xiao, J. Dufek, and R. Murphy, “Explicit motion risk representa-
tion,” in 2019 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR). IEEE, 2019, pp. 278–283.

[9] B. H. GUO, Z. Yonger, Y. M. Goh, and J.-Y. Lim, “Errors in
human-robot interaction accidents: A taxonomy and network analysis,”
in International conference on construction engineering and project
management. Korea Institute of Construction Engineering and
Management, 2024, pp. 1088–1095.

[10] Z. Liu, A. Bahety, and S. Song, “Reflect: Summarizing robot ex-
periences for failure explanation and correction,” arXiv preprint
arXiv:2306.15724, 2023.

[11] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC). IEEE, 2019, pp.
3420–3431.

[12] K. P. Wabersich and M. N. Zeilinger, “Predictive control barrier
functions: Enhanced safety mechanisms for learning-based control,”
IEEE Transactions on Automatic Control, vol. 68, no. 5, pp. 2638–
2651, 2022.

[13] M. Gupta and X. Xiao, “T-cbf: Traversability-based control barrier
function to navigate vertically challenging terrain,” in 2025 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2025.

[14] K. Margellos and J. Lygeros, “Hamilton–jacobi formulation for reach–
avoid differential games,” IEEE Transactions on automatic control,
vol. 56, no. 8, pp. 1849–1861, 2011.

[15] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Transactions on automatic control, vol. 50, no. 7, pp.
947–957, 2005.

[16] Y. Ma, P. Grimmeisen, and A. Morozov, “Case study: Ros-based
fault injection for risk analysis of robotic manipulator,” in 2023 IEEE
19th International Conference on Automation Science and Engineering
(CASE). IEEE, 2023, pp. 1–6.

[17] A. L. Christensen, R. O’Grady, M. Birattari, and M. Dorigo, “Fault
detection in autonomous robots based on fault injection and learning,”
Autonomous Robots, vol. 24, no. 1, pp. 49–67, 2008.

[18] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

[19] S. Nasiriany, A. Maddukuri, L. Zhang, A. Parikh, A. Lo, A. Joshi,
A. Mandlekar, and Y. Zhu, “Robocasa: Large-scale simulation of ev-
eryday tasks for generalist robots,” arXiv preprint arXiv:2406.02523,
2024.

[20] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework and
benchmark for robot learning,” arXiv preprint arXiv:2009.12293,
2020.

[21] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE robotics & automation magazine, vol. 4,
no. 1, pp. 23–33, 2002.

[22] K. Zakka, “Mink: Python inverse kinematics based on MuJoCo,”
May 2025. [Online]. Available: https://github.com/kevinzakka/mink

[23] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 2002.

[24] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects: Steven m. lavalle, iowa state university, a
james j. kuffner, jr., university of tokyo, tokyo, japan,” Algorithmic
and computational robotics, pp. 303–307, 2001.

[25] J. Nasir, F. Islam, and Y. Ayaz, “Adaptive rapidly-exploring-random-
tree-star (rrt*)-smart: algorithm characteristics and behavior analysis
in complex environments,” 2013.

[26] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
conference. IEEE international conference on robotics and automa-
tion. Symposia proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.

[27] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
2011 IEEE international conference on robotics and automation.
IEEE, 2011, pp. 4569–4574.

[28] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International
journal of robotics research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[29] R. Kabra, L. Matthey, A. Lerchner, and N. Mitra, “Leveraging VLM-
based pipelines to annotate 3d objects,” in Forty-first International
Conference on Machine Learning, 2024. [Online]. Available:
https://openreview.net/forum?id=5Pcl5qOOfL

[30] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human motion trajectory prediction: A survey,”
The International Journal of Robotics Research, vol. 39, no. 8, pp.
895–935, 2020.

[31] G. Zhou, H. Pan, Y. LeCun, and L. Pinto, “Dino-wm: World models on
pre-trained visual features enable zero-shot planning,” arXiv preprint
arXiv:2411.04983, 2024.

[32] K. Nakamura, L. Peters, and A. Bajcsy, “Generalizing safety be-
yond collision-avoidance via latent-space reachability analysis,” arXiv
preprint arXiv:2502.00935, 2025.

[33] R. Dhakal, D. M. Nguyen, T. Silver, X. Xiao, and G. J. Stein, “Antic-
ipatory task and motion planning,” arXiv preprint arXiv:2407.13694,
2024.

[34] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
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