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Abstract— Curriculum learning has emerged as a promising
approach for training complex robotics tasks, yet current ap-
plications predominantly rely on manually designed curricula,
which demand significant engineering effort and can suffer
from subjective and suboptimal human design choices. While
automated curriculum learning has shown success in simple
domains like grid worlds and games where task distributions
can be easily specified, robotics tasks present unique challenges:
they require handling complex task spaces while maintaining
relevance to target domain distributions that are only partially
known through limited samples. To this end, we propose
Grounded Adaptive Curriculum Learning (GACL1), a frame-
work specifically designed for robotics curriculum learning with
three key innovations: (1) a task representation that consistently
handles complex robot task design, (2) an active performance
tracking mechanism that allows adaptive curriculum generation
appropriate for the robot’s current capabilities, and (3) a
grounding approach that maintains target domain relevance
through alternating sampling between reference and synthetic
tasks. We validate GACL on wheeled navigation in constrained
environments and quadruped locomotion in challenging 3D
confined spaces, achieving 6.8% and 6.1% higher success rates,
respectively, than state-of-the-art methods in each domain.

I. INTRODUCTION

Curriculum learning has shown promise in training robots
for complex tasks such as navigating through highly con-
strained environments or maintaining quadruped locomotion
across challenging terrain [1], [2]. However, current applica-
tions of curriculum learning in robotics face a fundamental
challenge: they predominantly rely on manually designed
curricula, which demand significant engineering effort and
can suffer from subjective, suboptimal design choices. For
example, in quadruped locomotion tasks [2], roboticists must
carefully design progressive stages from basic jumping skills
to complex obstacle traversal and manually define success
metrics and progression conditions at each stage.

While automated curriculum learning (ACL) can reduce
manual design effort, current approaches have primarily
focused on simple domains like grid worlds and games
where tasks can be easily specified [3]. Recent advances
like PAIRED [4] and CLUTR [5] have improved upon
basic ACL by introducing teacher agents for task genera-
tion. However, these methods cannot be directly applied to
complex robotics problems, since their teacher agents use
simplified observation spaces that lack critical information
about task complexity and student learning progress. More
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Fig. 1: GACL creates an adaptive sequence of robot tasks
with progressively increasing difficulty through target do-
main grounding, task tracking, and performance monitoring.

fundamentally, robotics tasks present a unique challenge
overlooked by existing ACL approaches: open-ended cur-
ricula often move towards tasks that are not relevant to
target deployment domains. Every robotics problem has a
final deployment domain (like household environments for
home robots) whose complete distribution is unknown and
can only be partially observed through limited samples.
While generative models can approximate these distributions,
robotic curriculum learning requires generating tasks that not
only match the target distribution but also adapt to the robot’s
current learning capabilities. This creates a critical balance:
the curriculum must generate diverse training scenarios that
challenge the robot during learning while ensuring these
scenarios remain relevant to the target domain where the
robot will eventually operate.

To address these challenges, we propose Grounded Adap-
tive Curriculum Learning (GACL), a framework specifically
designed for robotics curriculum learning. This paper in-
troduces three key innovations: (1) a task representation
that consistently handles complex robot task design, (2) an
active performance tracking mechanism that allows adaptive
curriculum generation appropriate for the robot’s current
capabilities, and (3) a grounding approach that maintains tar-
get domain relevance through alternating sampling between
reference and synthetic tasks (Fig. 1).

We validate GACL on two challenging robotics do-
mains: wheeled robot navigation in highly constrained en-
vironments [6] and quadruped locomotion in confined 3D
spaces [7]. GACL demonstrates consistent improvements in
both domains, achieving 6.8% and 6.1% higher success rates,
respectively, compared to state-of-the-art curriculum learning
methods.

II. RELATED WORK

Curriculum learning, originally inspired by the way hu-
mans acquire skills, has been explored in robotics to structure
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Fig. 2: Overview of the Dual-Agent GACL Framework (top
left): student POMDP (bottom left) and teacher MDP (right).

learning from increasingly complex tasks [8]. Early work
often relied on carefully hand-crafted curricula, where ex-
perts define stage-by-stage task progression, such as denser
obstacle distributions [9], increased elevation changes [10],
and more complex locomotion strategies [2]. To address
these limitations, researchers have turned to ACL to reduce
human effort and automatically adapt training.

ACL enables a teacher agent to observe student progress
and adaptively propose new tasks [3]. However, most ACL
work targets simple domains like grid worlds [11], where
tasks can be represented in low-dimensional spaces. Recent
UED methods like PAIRED [4] use regret-based objectives
to generate challenging environments, while CLUTR [5]
adds learned latent representations for more efficient task
sampling. Despite these advances, existing methods face two
key limitations in robotics: (1) they focus on low-dimensional
task representations unsuitable for complex inputs like multi-
channel navigation maps or 3D terrain, and (2) their stateless,
multi-armed bandit approach cannot model the nuanced
relation between student performance and task complexity.

One critical yet underexplored challenge is ensuring gen-
erated tasks remain relevant to real-world deployment. Most
existing ACL methods, including PAIRED and CLUTR,
do not balance realistic task distributions with pushing
agent capabilities. In summary, existing solutions face three
central challenges: (1) scaling to high-dimensional tasks;
(2) monitoring student performance; and (3) preserving do-
main relevance. GACL addresses these by combining richer
task representations, active performance monitoring, and a
grounding mechanism for real-world relevance.

III. APPROACH

We propose GACL, a dual-agent framework designed for
adaptive curriculum learning in complex robotic tasks while
maintaining target domain relevance. As depicted in Fig. 2,
GACL involves two interacting components:

∙ A Partially Observable Markov Decision Process
(POMDP) for the student agent (·𝑆) learning the task.

∙ A fully informed Markov Decision Process (MDP) for
the teacher agent (·𝑇 ) generating a curriculum of tasks.

A. Dual-Agent (PO)MDP

1) Student Agent POMDP: The student agent op-
erates in a POMDP defined as a tuple ℳ𝑆 =
⟨𝒮𝑆 ,𝒜𝑆 ,𝒪𝑆 , 𝒯 𝑆 ,Ω𝑆 ,ℛ𝑆 , 𝛾𝑆⟩, where:

∙ 𝒮𝑆 is the state space of the robotic task,
∙ 𝒜𝑆 is the robot action space,
∙ 𝒪𝑆 is the robot observation space,
∙ 𝒯 𝑆 : 𝒮𝑆×𝒜𝑆 → 𝒮𝑆 is the POMDP transition function,
∙ Ω𝑆 : 𝒮𝑆 ×𝒜𝑆 → 𝒪𝑆 is the robot observation function,
∙ ℛ𝑆 : 𝒮𝑆 ×𝒜𝑆 ×𝒮𝑆 → R is the robot reward function

based on task execution performance, and
∙ 𝛾𝑆 ∈ [0, 1] is the student POMDP’s discount factor.

The Student agent’s goal is to learn a policy 𝜋𝑆 : 𝒪 → 𝒜 that
maximizes the expected cumulative reward in the partially
observable task environment generated by the teacher.

2) Teacher Agent MDP: In contrast to the student’s
POMDP, the teacher agent operates in an MDP defined as
ℳ𝑇 = ⟨𝒮𝑇 ,𝒜𝑇 , 𝒯 𝑇 ,ℛ𝑇 , 𝛾𝑇 ⟩, where:

∙ 𝒮𝑇 is the teacher state space, consisting of the compre-
hensive history of tasks and student performances,

∙ 𝒜𝑇 is the teacher action space representing all possible
tasks that can be assigned to the student,

∙ 𝒯 𝑇 : 𝒮𝑇 ×𝒜𝑇 → 𝒮𝑇 is the MDP transition function,
∙ ℛ𝑇 : 𝒮𝑇 ×𝒜𝑇 ×𝒮𝑇 → R is the teacher reward function

based on student performance, and
∙ 𝛾𝑇 ∈ [0, 1] is the discount factor for the teacher’s MDP.

𝑠𝑇𝑡 ∈ 𝒮𝑇 at time 𝑡 is defined as 𝑠𝑇𝑡 = {(𝑎𝑇𝑖 , 𝑟𝑆𝑖 )}
𝑡−1
𝑖=0 , where

𝑎𝑇𝑖 ∈ 𝒜𝑇 is the 𝑖-th task assigned by the teacher and 𝑟𝑆𝑖 is
the student’s performance (reward) for task 𝑖.

B. Grounded Adaptive Curriculum Learning (GACL)

GACL employs a hierarchical structure where a fully
informed teacher agent guides the learning of a student
agent, resembling a classroom setting (Fig. 2, top left). In
this metaphor, the teacher (right side of the figure) not
only determines the curriculum (i.e., the tasks) but also
monitors the student’s progress and compares it against an
antagonist agent (bottom left). This design mirrors real-world
educational scenarios, where teachers have comprehensive
knowledge of both course material and student performance.
Leveraging this vantage point, GACL introduces three key
innovations for complex robotics tasks: a latent genera-
tive model that consistently encodes and reconstructs high-
dimensional task environments, active performance tracking
to adaptively challenge the student at its evolving skill
level, and domain relevance maintenance via alternating
between synthetic tasks and limited real-world references.
Together, these elements ensure that GACL provides diverse
yet realistic training scenarios, prevents the learning process
from drifting into irrelevant tasks, and aligns the curriculum
with the student’s incremental improvements.

1) Task Representation via Latent Generative Model:
We employ a Variational Autoencoder (VAE) to learn a
continuous latent space 𝒵 for high-dimensional robotic tasks,
trained on a partially known real-world task set 𝒯real. The
encoder-decoder architecture compresses and reconstructs
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complex environments (e.g., 2D navigation maps or 3D
terrain heightmaps). During curriculum learning, the teacher
agent controls task generation by sampling latent vectors 𝒵 ,
which the VAE decoder maps to concrete tasks. This VAE is
pre-trained offline on 𝒯real prior to the main GACL training
loop, providing a stable latent representation throughout the
curriculum learning process.

2) Student and Antagonist Agents: The student agent
learns to perform a task using a reinforcement learning algo-
rithm (e.g., PPO [12]) in the partially observable environment
generated by the teacher. Its objective is to maximize the
expected cumulative reward:

𝐽𝑆(𝜋𝑆
𝜃𝑆 ) = E𝜏𝑆∼𝜋𝑆

𝜃𝑆

[︃
𝑇∑︁

𝑡=0

(𝛾𝑆)
𝑡
𝑟𝑆𝑡

]︃
, (1)

where 𝜏𝑆 is a trajectory sampled from the student policy 𝜋𝑆
𝜃𝑆 ,

parameterized by 𝜃𝑆 . To guide curriculum generation and
evaluate the student’s progress, we introduce an antagonist
agent, following the flexible regret setting from PAIRED [4].
The antagonist is trained with the same observability and
hyperparameters as the student, sharing the same objective
function (Eqn. (1)), with 𝐽𝐴 and 𝜋𝐴

𝜃𝐴
as the antagonist’s

objective and policy respectively.
3) Teacher Agent: The teacher agent in GACL moni-

tors two key elements to design adaptive curricula: student
performance and task history. The teacher maintains a his-
tory of student rewards, {𝑟𝑆𝑖 }

𝑡−1
𝑖=0 , stored in its state 𝑠𝑇𝑡 to

monitor student performance. By incorporating these past
performance metrics, the teacher can dynamically adjust the
curriculum to match the student’s evolving skill level. The
teacher also retains a history of previously assigned tasks
{𝑎𝑇𝑖 }

𝑡−1
𝑖=0 in 𝑠𝑇𝑡 and exploits the latent space 𝒵 learned by the

VAE trained on partially known real-world data to produce
teacher action based on the latent embedding 𝑧𝑡. Based
on both student performance and task history, the teacher
generates new tasks using 𝑧𝑡 for the student by sampling
from this latent space using the VAE decoder 𝐺 : 𝒵 → 𝒜𝑇 ,
which maps latent vectors to concrete tasks. The teacher then
aims to maximize the expected cumulative regret:

𝐽𝑇 (𝜋𝑇
𝜃𝑇 ) = E𝜏𝑇∼𝜋𝑇

𝜃𝑇

[︃
𝑇∑︁

𝑡=0

(𝛾𝑇 )
𝑡
REGRET𝑎𝑇

𝑡
(𝜋𝑆

𝜃𝑆 , 𝜋
𝐴
𝜃𝐴)

]︃
,

where:
∙ 𝜏𝑇 = (𝑠𝑇0 , 𝑎

𝑇
0 , 𝑠

𝑇
1 , 𝑎

𝑇
1 , ..., 𝑠

𝑇
𝑡 ) is a trajectory in the

teacher’s MDP,
∙ 𝜋𝑇

𝜃𝑇 is the teacher policy, parameterized by 𝜃𝑇 ,
∙ REGRET𝑎𝑇

𝑡
(𝜋𝑆

𝜃𝑆 , 𝜋
𝐴
𝜃𝐴
) = 𝑉𝑎𝑇

𝑡
(𝜋𝐴

𝜃𝐴
) − 𝑉𝑎𝑇

𝑡
(𝜋𝑆

𝜃𝑆 ) is the
regret for task 𝑎𝑇𝑡 , generated by the teacher at 𝑡, and

∙ 𝑉𝑎𝑇
𝑡
(·) is the value function (expected discounted re-

turn) of a policy when executing task 𝑎𝑇𝑡 .
4) Maintaining Domain Relevance via Alternating Sam-

pling: Ensuring that learned policies remain aligned with
the target deployment domain is crucial for real-world appli-
cability. To this end, GACL interleaves reference tasks from

Algorithm 1 Grounded Adaptive Curriculum Learning

1: Input: VAE decoder 𝐺, initial parameters 𝜃𝑆 , 𝜃𝐴, and 𝜃𝑇 ,
learning rates 𝜂𝑆 , 𝜂𝐴, and 𝜂𝑇 , real-world task set 𝒯real, and
grounding probability 𝜖

2: Output: Trained policies 𝜋𝑆
𝜃𝑆 , 𝜋𝐴

𝜃𝐴 , and 𝜋𝑇
𝜃𝑇

3: Pretrain 𝐺 with available real-world tasks 𝒯real
4: Initialize 𝜋𝑆

𝜃𝑆 , 𝜋𝐴
𝜃𝐴 , 𝜋𝑇

𝜃𝑇 , and 𝑠𝑇0 = {}
5: 𝑡← 0
6: while not converged do

7: 𝑎𝑇
𝑡 ←

{︃
sample from 𝒯real, with probability 𝜖,

𝜋𝑇
𝜃𝑇 (𝑠

𝑇
𝑡 ), with probability 1− 𝜖,

8: Collect student trajectory in task 𝑎𝑇
𝑡 and compute cumulative

reward 𝑟𝑆
𝑎𝑇
𝑡

9: Collect antagonist trajectory in task 𝑎𝑇
𝑡

10: Compute regret REGRET𝑎𝑇
𝑡
← 𝑉𝑎𝑇

𝑡
(𝜋𝐴

𝜃𝐴)− 𝑉𝑎𝑇
𝑡
(𝜋𝑆

𝜃𝑆 )

11: Update 𝑠𝑇𝑡+1 ← 𝑠𝑇𝑡 ∪ {(𝑎𝑇
𝑡 , 𝑟

𝑆
𝑎𝑇
𝑡
)}

12: 𝜋𝑆 ← 𝜋𝑆 + 𝛼𝑆∇𝜋𝑆𝐽𝑆(𝜋𝑆)
13: 𝜋𝐴 ← 𝜋𝐴 + 𝛼𝐴∇𝜋𝐴𝐽𝐴(𝜋𝐴)
14: 𝜋𝑇 ← 𝜋𝑇 + 𝛼𝑇∇𝜋𝑇 𝐽𝑇 (𝜋𝑇 )
15: 𝑡← 𝑡+ 1
16: end while
17: return 𝜋𝑆

𝜃𝑆 , 𝜋𝐴
𝜃𝐴 , and 𝜋𝑇

𝜃𝑇

𝒯real with synthetic tasks sampled by the teacher from its
latent space by augmenting teacher action 𝑎𝑇𝑡 :

𝑎𝑇𝑡 =

{︃
sample from 𝒯real, with probability 𝜖,

𝜋𝑇
𝜃𝑇 (𝑠

𝑇
𝑡 ), with probability 1− 𝜖,

where 𝜖 ∈ [0, 1] controls the probability of selecting a real-
world reference task at each step.

Algorithm 1 summarizes the GACL training loop. We
first pretrain the VAE on the available real-world tasks 𝒯real
(line 3). The teacher agent then alternates between sampling
reference tasks (𝜖 probability) and generating new tasks via
𝜋𝑇
𝜃𝑇 (line 7). Both student and antagonist collect trajectories

in the selected task (lines 8–9), after which the teacher
computes regret and updates its state (lines 10–11). Finally,
all three policies (student, antagonist, and teacher) update
their parameters according to their respective objectives
(lines 12–14). This process continues until convergence.

IV. EXPERIMENTS

In this section, we evaluate GACL against three base-
lines: Base RL (no curriculum), Manual (expert) Curricu-
lum Learning (Manual CL), and CLUTR [5]. We test on
two challenging domains: BARN Navigation [6], [9] and
Quadruped Locomotion [7]. We also conduct ablation studies
by removing each of our three main components to analyze
their contributions. Here, we describe our experimental setup,
evaluation metrics, results, and curriculum visualizations.

A. Experimental Setup

We conduct experiments in two challenging robotics do-
mains: (1) BARN Navigation in highly constrained envi-
ronments, and (2) Quadruped Locomotion in confined 3D
spaces. Both tasks are implemented in simulation, using
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TABLE I: Hyperparameters for GACL.

GACL Parameter Value

Parallel Environments 128
Latent Task Dimension 32
Training Epochs 5000

RL Parameter Teacher Student

Learning Rate 1e-4 3e-4
PPO Epoch 10 5
Discount Factor 0.99 0.99

partial domain knowledge to ground curriculum generation.
Specifically, we use procedurally generated environments to
represent the final target deployment domain, but the genera-
tion procedure is unknown to the teacher agent, which needs
to ground its curriculum through only partial knowledge.
Below, we detail each domain’s setup, instantiate the student
and teacher agent, and summarize the key hyperparameters.

1) BARN Navigation:
a) Environment: We adopt the BARN map generator

to produce highly constrained 2D navigation maps, featuring
narrow corridors and cluttered layouts [9]. For this experi-
ment, we simulate 128 parallel environments in IsaacGym
[13] to accelerate data collection and RL training.

b) Student Agent: The student POMDP’s observation
space 𝒪𝑆 includes the robot’s position and orientation,
270° field-of-view, 720-dimensional LiDAR scans, and the
relative goal orientation; action space 𝒜𝑆 comprises con-
tinuous linear and angular velocities; and reward function
ℛ𝑆 encourages progress towards the goal while penalizing
collisions and excessive time.

c) Teacher Agent: The teacher MDP’s action space 𝒜𝑇

is the task latent space, with 𝑠𝑇𝑡 = {(𝑎𝑇𝑡−1, 𝑟
𝑆
𝑡−1)} tracking

the most recent task and performance.
2) Quadruped Locomotion:

a) Environment: We simulate a quadruped robot mov-
ing in confined 3D environments with rugged terrain and
overhanging obstacles and maintain 128 parallel instances.

b) Student Agent: The student POMDP’s observation
space 𝒪𝑆 encompasses the robot’s base pose, joint states (an-
gles and velocities), partial terrain, and ceiling heightmaps;
action space 𝒜𝑆 consists of continuous torque commands
for each leg; and reward function ℛ𝑆 incentivizes stable
forward motion and penalizes falls, collisions, and undue
time expenditure.

c) Teacher Agent: The teacher MDP’s action space 𝒜𝑇

encodes both terrain and ceiling configurations in the VAE’s
latent space, with state representation 𝑠𝑇𝑡 = {(𝑎𝑇𝑡−1, 𝑟

𝑆
𝑡−1)}

following the same structure as navigation.
3) Hyperparameters: Table I summarizes the key hyper-

parameters used in our experiments.

B. Evaluation Metrics

For evaluation, we employ a comprehensive set of metrics
to assess both student performance and curriculum difficulty.

a) Student Performance.: In the BARN Navigation
domain, we measure (i) Success Rate (the percentage of
trials that reach the goal without collisions), (ii) Navigation
Progress (the proportion of the path traversed before failure),

(iii) Average Steps per successful episode, (iv) Average
Reward (summing forward progress and collision penalties),
and (v) Average Speed (m/s). For Quadruped Locomotion,
we track (i) Success Rate (no falls before reaching the
endpoint), (ii) Distance Traveled (m), (iii) Footstep Efficiency
(ratio of time steps with at least three legs in ground contact),
and (iv) Average Reward reflecting gait stability and forward
progress.

b) Curriculum Difficulty.: To quantify task complexity,
we define a domain-specific difficulty score. For BARN
Navigation, 𝐷nav = 𝛼 (path length) − 𝛽 (clearance),
where path length denotes the shortest collision-free path
in the map and clearance is the minimum distance to
obstacles along that path. For Quadruped Locomotion,
𝐷loc = 𝛾 (terrain slope) + 𝛿 (obstacle density),
where terrain slope measures elevation changes and
obstacle density measures how rough and bumpy the terrain
is, including the number of uneven features.

V. RESULTS AND DISCUSSION

A. Main Results

Table II presents the performance of four methods—Base
RL, Manual CL, CLUTR, and GACL—on both the BARN
Navigation and Quadruped Locomotion tasks.

a) BARN Navigation: GACL outperforms all baselines
in Success Rate (81.85%), Progress (68.89%), and Average
Reward (19.45), demonstrating superior navigation in com-
plex environments. While Base RL achieves the lowest Aver-
age Steps, it suffers more collisions due to prioritizing speed
over safety. Manual CL shows competitive performance but
is limited by its fixed progression schedule, and CLUTR’s
stateless teacher fails to adapt effectively to the student’s
developing capabilities.

b) Quadruped Locomotion: Similarly, GACL leads in
all metrics for the locomotion task: Success Rate (79.21%),
Distance Traveled (5.12 m), Footstep Efficiency (82.9%),
and Reward (18.41). The combination of domain-grounded
task tracking and active performance monitoring enables
GACL to generate appropriately challenging terrain varia-
tions. CLUTR moderately improves over Base RL but is
hampered by its lack of domain grounding, while Manual
CL provides minor improvements but cannot adapt to the
full spectrum of terrain difficulties.

Overall, these results demonstrate GACL’s effectiveness
in both domains through its adaptive curriculum scheduling
based on domain grounding, task tracking, and performance
monitoring.

B. Ablation Studies

We conduct ablation studies to evaluate the contribution
of each key component in GACL: (i) domain grounding,
(ii) task tracking, and (iii) performance monitoring. Each
variant removes one of these components from the full
GACL framework:

∙ GACL: The complete GACL framework.
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TABLE II: Performance Comparison on BARN Navigation and Quadruped Locomotion (mean ± std). ↑ indicates higher is
better; ↓ indicates lower is better.

BARN Navigation Quadruped Locomotion

Method Success(%) ↑ Prog(%) ↑ Steps ↓ Reward ↑ Success(%) ↑ Dist.(m) ↑ Footstep Eff. ↑ Reward ↑

Base RL 76.16 ± 4.47 64.06 ± 2.38 36.41 ± 0.15 18.36 ± 0.84 72.34 ± 3.26 4.41 ± 1.57 78.6 ± 2.5 16.74 ± 0.82
Manual CL 76.83 ± 5.02 66.17 ± 2.47 36.65 ± 0.22 19.19 ± 1.17 74.12 ± 4.89 4.67 ± 1.94 79.3 ± 2.7 17.02 ± 1.13
CLUTR 76.67 ± 2.74 66.52 ± 4.23 36.70 ± 0.28 18.39 ± 0.65 74.65 ± 2.31 4.76 ± 1.66 80.2 ± 3.1 17.28 ± 0.95
GACL (Ours) 81.85 ± 2.51 68.89 ± 2.77 36.99 ± 0.57 19.45 ± 0.77 79.21 ± 2.54 5.12 ± 1.80 82.9 ± 2.6 18.41 ± 0.77

TABLE III: Ablation Study: Success Rate (%) in Navigation
and Locomotion. All differences (Diff.) are relative to the
full GACL. Negative values are shown in red.

Navigation Locomotion

Variant Success(%) Diff. Success(%) Diff.

GACL 81.85 – 79.21 –
GACL w/o grounding 76.36 -5.49 74.10 -5.11
GACL w/o task 79.86 -1.99 77.31 -1.90
GACL w/o performance 77.69 -4.16 75.94 -3.27

∙ GACL w/o grounding: Removes domain ground-
ing. We discard reference task sampling, relying solely
on the teacher agent’s synthetic tasks: 𝑎𝑇𝑡 = 𝜋𝑇

𝜃𝑇 (𝑠
𝑇
𝑡 ).

∙ GACL w/o task: Removes task tracking. We replace
the latent task representation 𝑎𝑇𝑖 with a random vector
𝜉𝑖 in the teacher’s state: 𝑠𝑇𝑡 = {(𝜉𝑖, 𝑟𝑆𝑖 )}

𝑡−1
𝑖=0, where

𝜉𝑖 ∼ 𝒩 (0, 𝐼).
∙ GACL w/o performance: Removes performance

monitoring. We replace the student’s reward 𝑟𝑆𝑖 with
a random scalar 𝜂𝑖 in the teacher’s state: 𝑠𝑇𝑡 =
{(𝑎𝑇𝑖 , 𝜂𝑖)}

𝑡−1
𝑖=0, where 𝜂𝑖 ∼ 𝒰(0, 1).

Table III shows the Success Rate (%) for each ablation
variant in both BARN Navigation and Quadruped Locomo-
tion, along with the difference (Diff.) from the full GACL.
The full framework consistently outperforms its ablated vari-
ants, confirming that each component—domain grounding
(w/o grounding), task tracking (w/o task), and per-
formance monitoring (w/o performance)—is essential.
Removing domain grounding yields the largest performance
drop (−5.49% in Navigation and −5.11% in Locomotion),
showing that partial real-world references are key for main-
taining task relevance. Omitting performance monitoring or
task tracking likewise impairs curriculum adaptation, high-
lighting the importance of aligning generated tasks with the
robot’s evolving capabilities.

C. Curriculum Progression

Fig. 3 shows how task difficulty evolves during training.
Base RL maintains constant difficulty, Manual CL follows
a fixed increasing schedule, and CLUTR hovers mid-range
with limited adaptation. In contrast, GACL dynamically
adjusts: starting moderate (VAE’s mean initialization), de-
creasing when detecting student struggles, then progressively
increasing as proficiency improves. This adaptive scheduling
demonstrates GACL’s effective integration of task-awareness,
performance tracking, and domain grounding.

Fig. 4 visualizes the actual tasks generated by GACL at
25%, 50%, 75%, and 100% of training. Navigation tasks
progress from open layouts to narrow, cluttered corridors,

while locomotion environments evolve from gentle slopes
to complex terrain with obstacles, matching the student’s
growing capabilities.

D. Discussion

Our experiments demonstrate GACL’s effectiveness across
two distinct robotics domains with different sensing and
control requirements. The ablation studies confirm that all
three components—domain grounding, task tracking, and
performance monitoring—are essential to GACL’s success,
as removing any one significantly degrades performance.
These results highlight the potential of our unified framework
to automatically generate adaptive curricula for complex
robot tasks while maintaining focus on relevant target-
domain challenges.

VI. CONCLUSIONS

This paper introduces GACL, a framework specifically
tailored to complex robotics domains by actively maintaining
domain relevance, task awareness, and performance tracking.
Our experiments on two tasks—wheeled robot navigation in
the BARN challenge and quadruped locomotion in confined
3D spaces—demonstrate that GACL consistently outper-
forms both state-of-the-art automated curriculum methods
and carefully designed expert curricula. Notably, GACL
achieves 6.8% and 6.1% higher success rates in the nav-
igation and locomotion tasks, respectively, compared to
SOTA approaches, illustrating its ability to balance structured
curricula with flexible adaptation to the robot’s evolving
capabilities.

Through our ablation studies, we observed that each
GACL component is critical: (i) domain grounding prevents
the curriculum from drifting toward unrealistic scenarios, (ii)
task tracking enables the teacher agent to generate high-
dimensional tasks effectively, and (iii) performance monitor-
ing ensures the curriculum continually matches the student’s
learning progress. Together, these elements result in more
efficient and robust policy learning for real-world robot
deployment.
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Fig. 3: Curriculum difficulty trends for BARN Navigation (left) and Quadruped Locomotion (right). GACL initially lowers
difficulty from a moderate level as it detects the student’s struggles, then ramps up complexity once the student becomes
more proficient.

25% 50%

75% 100%

BARN Navigation Quadruped Locomotion

25% 50%

75% 100%

Fig. 4: Progression of tasks generated by GACL over train-
ing. Left: BARN Navigation maps sparse to complex. Right:
Confined 3D terrains for Quadruped Locomotion, increasing
in slope irregularities and obstacles.
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