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Abstract— Navigating large-scale outdoor environments re-
quires complex reasoning in terms of geometric structures,
environmental semantics, and terrain characteristics, which
are typically captured by onboard sensors such as LiDAR
and cameras. While current mobile robots can navigate such
environments using pre-defined, high-precision maps based
on hand-crafted rules catered for the specific environment,
they lack commonsense reasoning capabilities, especially the
traversability analysis, that most humans possess when navigat-
ing unknown outdoor spaces. To address this gap, we introduce
the Global Navigation Dataset (GND), a large-scale dataset that
integrates multi-modal sensory data, including 3D LiDAR point
clouds and RGB and 360° images, as well as multi-category
traversability maps (pedestrian walkways, vehicle roadways,
stairs, off-road terrain, and obstacles) from ten university cam-
puses. These environments encompass a variety of parks, urban
settings, elevation changes, and campus layouts of different
scales. The dataset covers approximately 2.7km?> and includes
at least 350 buildings in total. We also present a set of novel
applications of GND to showcase its utility to enable global
robot navigation, such as map-based global navigation, mapless
navigation, and global place recognition. GND’s website can be
found at https://cs.gmu.edu/~xiao/Research/GND/.

I. INTRODUCTION

Global navigation plays a critical role in enabling robots
to traverse large-scale outdoor environments [1]-[5]. It is
widely used in real-world tasks like last-mile delivery [6],
[7], remote exploration [8], [9], autonomous driving [3],
[10], etc. Unlike navigation in structured indoor spaces [11]—
[14], global navigation needs to reason about a variety of
environmental factors in complex outdoor scenarios [4],
[15]-[17], including recognizing terrain characteristics for
traversability analysis [18]-[22] and inferring navigational
cues to determine the shortest path in large-scale open
environments [2], [14].

One challenge of global navigation is the need of nav-
igational reasoning at a very large scale, e.g., trajectories
corresponding to hundreds or thousands of meters [1]-[5].
In practice, navigating from the south side of a university
campus to a cafeteria on the north side without a prior
map may require following major pedestrian walkways at
the beginning, while taking shortcuts close to buildings
later. Such a reasoning process requires not only geometric,
but also semantic understanding of the large-scale outdoor
scenes, which needs to be captured by various sensors like
3D LiDARs and RGB cameras.
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Fig. 1: Traversability maps of the Global Navigation Dataset
(GND): The legend shows five different categories of terrain
traversability with different colors. Inset (a) shows the 3D satellite
image of inset (b), an enlarged traversability map. GND contains
multi-modal sensory data including 3D LiDAR point clouds (c),
RGB images (d), and 360° images (e).

Another challenge is making navigation decisions by
reasoning beyond simple obstacles and free spaces, a com-
mon delineation of indoor workspaces, while considering
different robot morphologies. For example, pedestrian walk-
ways, vehicle roadways, and some off-road terrain may all
appear as free spaces, but they may correspond to different
categories of traversability in different scenarios [23], e.g.,
stairs should be treated as obstacles for wheeled robots, but
they can be regarded as free spaces for legged robots [2].

Although robotics practitioners have tackled these chal-
lenges with high-precision prior maps and hand-crafted nav-
igation rules for specific environments, recent research has
focused on leveraging machine learning to equip robots with
generalizable, human-like reasoning capabilities during out-
door global navigation. Imitation and reinforcement learning
techniques [15], [16] have been used for semantic under-
standing [8], [24]-[28], traversability analysis [8], [24]-[28],
topological modeling [17], [29], trajectory generation [4],
[5], heuristic estimation [14], [30], parameter tuning [31]—
[35], and policy learning [36], [37]. One common require-
ment of all these data-driven approaches is high-quality
ground truth or trial-and-error data for training.

Main Results: Motivated by such difficulties of global
navigation and research needs of training data, we present
a novel, large-scale Global Navigation Dataset (GND),
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TABLE I: Comparison of State-of-the-Art Navigation Datasets: Our GND dataset features the most comprehensive range of sensors
and provides multi-category traversability maps for global navigation in various campuses.

Traversability Distance Duration

Dataset Labels (km) (min.) Sensors Platform Purpose
3D LiDAR, RGB Camera, RGB-D Camera, . L
SCAND [38] X 40 522 Wheel Odometry, Visual Odometry Robot Social Navigation
3D LiDAR, RGB-D Camera, 360° Camera, . . L
MuSoHu [39] X 100 1200 IMU, Microphone, Visual Odometry Human Social Navigation
. . Social Navigation,
. 3D LiDAR, RGB Camera (covering 360°), ) L
SiT [40] v N/A 24.3 IMU, GPS, Wheel Odometry Robot Human Det'ectlon
& Tracking
3D LiDAR, 2D LiDAR, RGB Camera, RGB-D Human Detection
JRDB [41] X N/A 64 Camera, 360° Camera, IMU, GPS, Microphone, Robot .
& Tracking
Wheel Odometry
3D LiDAR, RGB Camera, Fisheye Camera, L
NCLT [42] X 147.4 2094 IMU, GPS, Wheel Odometry Robot Global Navigation
GND (Ours) v 53 668 3D LiDAR, RGB Camera, 360° Camera, Robot  Global Navigation

IMU, GPS, Wheel Odometry

which includes multi-modal perception and multi-category
traversability in outdoor campus environments (Fig. 1).
GND comprises almost 11 hours of navigation data captured
using two Clearpath Jackal robots, accompanied by 3D
LiDAR point clouds, RGB and 360° camera images, inertia
Measurement Unit (IMU) information, GPS data, as well as
robot odometry and actions, collected across 10 university
campuses in city and village areas, including a variety
of park areas, vegetation types, elevation changes, diverse
campus layouts and objects in the campuses. In total, We
covered around 2.7km? with at least 350 buildings in the
datasets over 11 hours of recorded data (in rosbags). All raw
perception data are post-processed into ten large-scale global
campus maps labeled with five categories of traversability
(pedestrian walkways, vehicle roadways, stairs, off-road
terrain, and obstacles) and associated with multi-modal
perception (e.g., first-person and 360° view) on the robot
trajectories. Some of our main contributions include:

o The first large-scale, long-range, across-campus global
navigation dataset with multi-modal perception data
and multi-category traversability maps;

o A standardized and streamlined data collection and
post-processing pipeline designed to encourage broader
contributions from all users to the dataset; and

o Novel dataset applications showing GND’s utility in
enabling outdoor global navigation tasks with different
types of robots (wheeled and legged robots), as shown
in Section IV, including global map-based navigation
(path planing), mapless navigation (trajectory and mo-
tion generation), and global place recognition.

II. RELATED WORK
In this section, we review related literature on global robot
navigation and state-of-the-art robot navigation datasets.
A. Global Robot Navigation

Navigating robots in large, outdoor environments presents
multiple challenges, including the need to assess terrain
traversability and perform large-scale navigational reason-
ing. Global robot navigation can be divided into two main

approaches: map-based and mapless. Map-based approaches
rely on a comprehensive cost map for path planning [43],
[44] and precise robot localization [45], [46] to ensure
accurate path execution. However, these methods can be
computationally expensive and require significant overhead
to maintain up-to-date maps. To address these limitations,
VINT [29] and NoMaD [47] proposed generating topolog-
ical maps and using vision-based images as subgoals for
navigation, though they still require initial runs to collect
subgoal images. On the other hand, mapless navigation
techniques eliminate the need for maps entirely. Adap-
tiveON [15] focused on generating actions in a mapless
fashion but was limited to local planning without addressing
long-distance navigation. More recent advancements, such
as MTG [5], enable long-distance navigation, while DTG [4]
further optimizes traversable trajectories in large-scale out-
door settings. Both map-based and mapless approaches
require extensive datasets with highly accurate traversability
maps and multi-modal sensory data for effective reasoning
and training.

B. Datasets for Robot Navigation

Over the past decade, large-scale navigational datasets
have proven invaluable across various research domains,
including social robot navigation [48], human trajectory
prediction [49], autonomous driving [3], [10], vision-based
navigation [50], and global navigation [4].

KITTI [51] was one of the first large-scale datasets that
emphasized the importance of well-organized, real-world
data for advancing machine learning and computer vision
research. It not only significantly impacted autonomous
driving but also influenced the broader field of computer
vision. Although many follow-up datasets have been in-
troduced [52]-[54], early efforts were predominantly fo-
cused on autonomous vehicle applications, particularly in
perception. Similarly, in robotics, multi-sensory datasets
have been released. However, current datasets focused on
perception or mapping tasks [41], [55], [56], considered
specific local navigation tasks [38]-[40], or were limited in
scale and sensor modalities [57]. As a result, there remains
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TABLE II: Five Example Campuses in GND: The table outlines details of five example campuses, including the University of Maryland
(UMD), George Mason University (GMU), Catholic University of America (CUA), Georgetown University, and George Washington
University (GWU). We list the covered areas, number of buildings, trajectory length, number of RGB and 360° images, number of
LiDAR point clouds, and ratio of different traversability categories in the campus map. P, O, V, and S represent pedestrian walkways,
off-road terrain, vehicle roadways, and stairs, respectively. For example, 0.84 km? is covered on the UMD campus with 60 buildings,
and the ratio of pedestrian walkways in the campus is 10.66% of the UMD campus map. More campus datasets are on GND’s website.

Campuses Covered # of Trajectory # of RGB  # of 360° # of LiDAR Ratio of Traversability (%)

P Areas (km?) Buildings Length (km) Images Images Clouds P (0] \Y% S
UMD 0.84 60 23.26 214768 N/A 146703 10.66 1629 2584 1.67
GMU 0.46 51 13.67 137948 137027 91500 1731 2504 17.11 041
CUA 0.40 32 2.87 29921 30266 20025 786 4229 1878 1.81

Georgetown 0.25 40 3.25 33244 33325 22050 7.16 2142 1396 151
GWU 0.15 39 3.00 33156 32714 22190 8.95 14.04 28.09 1.99
streets or accessing specific areas. As shown in Fig. 2, the
— K robot is equipped with the following sensors:
|, | ¢ 3D LiDAR: Velodyne VLP-16 with 16 channels or
m\ Ouster OS1-32 with 32 channels, both covering a 360-
\m degree field of view and operating at 10 Hz;

Wheel Odometry

Fig. 2: Robot Setup: We use a Clearpath Jackal for dataset
collection, which is equipped with various sensors, including 3D
LiDAR, RGB camera, 360° camera, IMU, and GPS. It is capable
of traversing diverse terrains, including pedestrian roads, roadways,
off-road areas, ramps, and woods.

a gap in the datasets among adequately covering large-scale
environments and traversability analysis across different
sensor and robot modalities. GND addresses this gap by
offering rich multi-modal robot sensory data collected in
outdoor campus environments, complemented by human-
labeled multi-category traversability maps. Table I compares
our work with relevant state-of-the-art datasets.

While previous datasets have proven to be valuable for
studying perception and various navigation challenges, they
fall short in providing demonstrations on global naviga-
tion, particularly regarding traversability information. While
SiT [40] offered 12-layered semantic maps, its primary focus
was on providing benchmarks and analysis for pedestrian
detection and tracking, falling short in demonstrating prac-
tical applications that leverage the semantic maps. We aim
to showcase applications of GND by utilizing various data
and methods to demonstrate their practical applications.

III. DATASET

In this section, we first describe the data collection proce-
dure. We then describe the details of our dataset, particularly
on the traversability map.

A. Data Collection

We manually operate the robot to navigate various campus
environments for data collection. We guide the robot con-
sidering the traversability of the road. The robot primarily
navigates pedestrian walkways; However, when necessary,
it also traverses vehicle roadways, such as when crossing

o« RGB Camera: ZED2 with image resolution of 1080p
facing front and operating at 15 Hz;

e 360° Camera: RICOH Theta V operating at 15 Hz;

« IMU: 6D 3DM-GX5-10 operating at 355 Hz; and

o GPS: u-blox F9P operating at 20 Hz.

Our robot operates on Ubuntu 20.04 and Robot Operating
System (ROS) Noetic. The data captured by the sensors
are recorded in the rosbag file format. We also provide
both intrinsic and extrinsic calibration parameters for the
LiDARs and the cameras. We gathered datasets from 10
university campuses with approximately 2.7 km? of campus
area, including at least 350 buildings, with over 11 hours
of recorded rosbag data. These campus datasets encompass
a variety of environments, such as parks, different types
of vegetation, elevation changes, diverse campus layouts,
and objects. As shown in Table II, we list five example
campus datasets with their details. The campus datasets
cover a various size of campus areas ranging from 0.15
km? to 0.84 km?, with 32 to 60 buildings. The table also
underscores the variety of traversability category ratios in
different campuses. For examples, the pedestrian walkways
range from 7.16% to 17.31% over the covered campus area.
More campus datasets are in the website in the Abstract.

B. Standardized Data Processing

To encourage broader contributions from dataset users,
we standardize our data processing workflow. First, the raw
rosbag data is processed using LIO-SAM [58] or FAST-
LIO [59] to generate both the trajectories and 3D local maps.
Next, we process the point cloud maps by removing the
ground, which enhances the visibility of significant features,
such as buildings, in a top-down view. This ground removal
also improves localization performance. Then, these local
maps are registered using TEASER++ [60] to create a
global map, where all trajectories and maps are transformed
into the global map’s coordinate system. For each campus,
we generate a single global map within the dataset. This
global map is a comprehensive 3D representation of the
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Fig. 3: Map-based Global Navigation using Multi-Category Traversability Map in GND: The white and yellow stars indicate the
start and goal positions, respectively. The orange line shows the path of the wheeled robot, and the purple line shows the path of the

legged robot. (a) and (b) shows Scenario 1, where there are stairs.

(c) shows Scenario 2, where the robot is going to the right bottom of

the figure. When the road is blocked and the legged robot can only go through the roadway due to narrow passages in off-road terrain.
(d) shows Scenario 3, when the road is blocked and the robots have to go around the path using the off-road terrain.

(a) Point Cloud Map

Fig. 4: Partial Map of the University of Maryland: Inset (a)
presents the processed point cloud map, featuring the robot’s
trajectory for data collection marked by a pink line; (b) illustrates
the multi-category traversability map corresponding to the dataset
shown in (a).

(b) Multi-category Traversability Map

entire campus, designed for use in map-based navigation
approaches and as ground truth for mapless ones.

To create 2D traversability maps, we project the 3D point
cloud global map onto the 2D plane along the Z-axis. A
standard annotation method is then applied to label five
distinct traversability types, each represented by different
colors. The standardized data processing pipeline is also
published with the paper.

C. Multi-Category Traversability Map

The multi-category traversability map consists of five
traversability types. White indicates areas traversable by
most robots, such as sidewalks, concrete surfaces, and brick
roads. Red represents areas that are non-traversable for all
robots, including buildings, rivers, construction sites, and
poles. Between these extremes, we define three additional
categories: green marks off-road or vegetated areas, yellow
represents stairs or curbs, and blue highlights roadways
and parking lots. Different types of robots can navigate
through different traversable areas. For example, legged

robots can handle stairs and curbs, while wheeled robots
cannot. However, fast-moving wheeled robots are capable
of traveling on roadways, whereas slow legged robots are
not safe in high-traffic environments.

Figure 4 shows an example of the multi-category
traversability map, alongside the point cloud map. It demon-
strates that GND provides not only geometric but also
semantic information about the environment, closely aligned
with real-world conditions.

IV. APPLICATIONS

In this section, we present three applications for the
GND dataset, emphasizing its unique characteristics: glob-
alness and traversability, which do not present in existing
navigation datasets. This dataset is collected mostly by
Jackal robot, but it can be used for navigation tasks with
different types of robots, such as legged robots and wheeled
robots. We implement map-based global navigation, mapless
navigation, and global place recognition.

A. Map-based Global Navigation

The primary objective of the GND dataset is to provide
precise map data for global robot navigation. To demon-
strate its utility, we conduct an experiment comparing the
navigation of two robots with different modalities and
traversabilities, wheeled and legged. Using the map, path
planning methods such as A* or RRT* can generate a
path based on the GPS coordinates of the start and goal
positions. As the robot moves, motion planning methods like
the classical approaches [61], [62], like Dynamic Window
Approach [61], or learning-based approaches [15], [63]—
[67] can be employed to observe the real-time environment
changes and guide the robot’s actions. Both robots will
initially navigate along the sidewalk, but if the path be-
comes non-traversable for a particular robot type, the motion
planner will select alternative traversable areas, adjusting
the robot’s course to reach the next waypoint along the
trajectory.
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Fig. 5: T-MTG Generated Trajectories: T-MTG generates trajectories to cover traversable areas across three levels:

[

basic, agile,

and legged traversability levels. Each level imposes different constraints and utilizes different types of robots for navigation. Basic
traversability level contains only pedestrian roads for all types of robots, agile traversability level includes both pedestrian roads and
vehicle roadways for fast-moving wheeled robots, and legged traversability level has pedestrian walkways and off-road terrains for legged
robots. For each cell, the left side displays the generated trajectories (red solid lines) overlaid on the robot’s RGB view image, while
the right side shows the generated trajectories (black dotted lines) overlaid on the cropped multi-category traversability map.

As shown in Figure 3, the traversability map illustrates
various scenarios during the robots’ navigation from the
white star to the yellow star. The purple trajectory represents
the path of the legged robot, while the orange trajectory
shows the wheeled robot’s path. When the path encounters
stairs, the wheeled robot deviates to a nearby ramp before
returning to the next waypoint, as depicted in the RGB
image (a) on the right side of the figure. Meanwhile, the
legged robot continues on its original path, walking directly
up the stairs. For other obstacles, such as construction cones
and groups of people blocking the sidewalk, as shown on the
right side of Figure 3, the legged robot steps down the curb
or navigates through off-road terrain to avoid the blockage.

B. Mapless Navigation with Traversability Analysis

To assess the efficacy of various traversability types in the
dataset for learning-based mapless navigation algorithms,
we extend the MTG algorithm [5] with multiple traversabil-
ity levels, referred to as T-MTG (Fig. 6). The problem
formulation in MTG is given by Equation 1:

1

5
~ g Z (1129, ¢), 2z ~ py(zlo), (1)

where 7 represents the generated trajectories under the
condition ¢ = f.(0). f.(-) is a sequence of linear layers,
and o denotes the observation information. Here, z = f,(c)
is the embedding vector of the encoded observation and
f=(-) represents a sequence of linear layers. During training,
z = {29} is sampled from the distribution py(z|o), where
po(+) is the distribution of z and 6 represents the parameters
of the encoder model. S indicates the number of waypoints.

Fig. 6: T-MTG: As shown in Equation 2, for different traversabil-
ities, we generate corresponding embedding vectors z¥ from z,
under the condition of observation o. The MTG Decoder is used to
decode the embedding vectors into trajectories. Finally, the output
of the model includes trajectories in all the traversability levels.

For different traversability levels, we aim for the obser-
vation embeddings to capture the current traversabilities.
To achieve this, a model is employed to reprocess the
traversability: z; = f¥(z;|z, 0), where o is reused to provide
residual information, enhancing the calculation of z;. k
represents the traversability level. Thus, the MTG model in
Equation 1 is extended to the T-MTG model in Equation 2:

g Zp (relzy) ),

z; Npg(zf|fz(z\0)7o), @)
()

p(1|c) =

where f,(-) represents the encoder and zf is the embed-
ding of the waypoint s in zF.

As shown in Fig. 5, we implement three traversability lev-
els: Basic traversability includes only pedestrian walkways,
where robots can move in various speed on in the areas; ag-
ile traversability level is designed primarily for fast-moving
wheeled robots and includes both pedestrian walkways and

vehicle roadways, where the robot is required to move fast
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Fig. 7: Vision-based Place Recognition using 360° images in GND: Inset (a) shows the application of 360° context images for goal
detection. In this particular example, when all four directional context images are available, the back context image is selected as the
closest to the goal image (green-bordered), highlighting the advantage of 360° images in goal detection. (b) represents how the average
dissimilarity between all directional context images and the goal (blue line) decreases compared to using only one directional context

image.

to keep up with traffic; and legged traversability level is
suited for legged robots, allowing traversal on pedestrian
walkways and off-road terrain, though it is not safe for
use on vehicle roadways. Our approach, T-MTG, generates
trajectories to cover the 200° field of view (FOV) in front of
the robot. In Fig. 5, the RGB images display the generated
trajectories from the front camera’s perspective (70° FOV),
and the traversability map highlights each waypoint of the
trajectories in their respective traversability regions. For
each traversability level, our approach successfully generates
trajectories that lie within the appropriate regions, effectively
covering the areas in front of the robot.

C. Vision-based Place Recognition

We collect both RGB and 360° camera images to offer
vision-based global navigation in the GND dataset. To
demonstrate the usability of 360° image data, we conduct
an experiment using the NoMaD [47] algorithm for goal
detection, which compares the current observation with
topological image nodes to recognize the best target to
follow the recorded topological nodes. For goal-directed
navigation, NoMaD [47] encodes images of the robot’s
current RGB observations as vectors, and then uses the
vectors to predict the temporal distance to the goal, by
calculating the similarities with the vectors of the sub-goal
images of the topological nodes. The sub-goal image with
the highest similarity is then chosen as the closest node for
goal-directed navigation.

We use images in four views (front, left, right, and
back) from the 360° camera to implement the NoMaD [47]
algorithm. Initially, we collect images with different time
intervals to generate a sparse topological map. The topo-
logical map is constructed using only the front view of
the 360° images. Then we use the four views from the

360° images as the robot’s current observations to generate
four embedded vectors. Among these vectors, we determine
the direction of the context images that has the closest
distance to the sub-goals and select the subgoal with the
highest similarity as the closest node for further navigation,
as shown in Fig. 7(a).

We notice that the average similarity score of all four
views from the real-time image observations and the goal
(blue line) is higher than the comparisons with only one
of the image, as shown in Fig. 7(b). Additionally, the
temporal distance between observed images and sub-goals
also increases with a sparser topological map. These findings
highlight the advantages of utilizing all available directional
information from 360° images for more accurate and effi-
cient goal-directed navigation.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduce GND, a large-scale, long-range, global
robot navigation dataset that includes multi-modal per-
ception data and multi-category traversability maps. This
dataset enables robots to undertake long-range navigation
while accounting for geometric and semantic traversability.
We are making all data available online, accompanied by
a standardized post-processing pipeline, and we encourage
contributions from the wider research community to enhance
the dataset. The primary features of GND—globalness and
traversability—are illustrated through three distinct exper-
iments, highlighting its potential applications. Although
GND offers valuable sensory data, we recognize that there
is still work to be done in providing benchmark scenarios
and evaluation metrics for global robot navigation, which
remain underexplored in the existing literature.
Acknowledgment: This work was supported in part by
ARO Grant W911NF2310046 and W911NF2310352 and
Army Cooperative Agreement W911NF2120076.
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