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Abstract—We address the problem of agile and rapid locomo-
tion, a key characteristic of quadrupedal and bipedal robots. We
present a new algorithm that maintains stability and generates
high-speed trajectories by considering the temporal aspect of
locomotion. Our formulation takes into account past information
based on a novel history-aware curriculum Learning (HACL)
algorithm. We model the history of joint velocity commands
with respect to the observed linear and angular rewards using a
recurrent neural net (RNN). The hidden state helps the curricu-
lum learn the relationship between the forward linear velocity
and angular velocity commands and the rewards over a given
time-step. We validate our approach on the MIT Mini Cheetah,
Unitree Gol, and Go2 robots in a simulated environment and on
a Unitree Gol robot in real-world scenarios. In practice, HACL
achieves peak forward velocity of 6.7 m/s for a given command
velocity of 7m/s and outperforms prior locomotion algorithms by
nearly 20%.

I. INTRODUCTION

One key capability of bipedal and quadrupedal robots is to
maneuver rapidly and with agility in different scenarios. Mov-
ing fast allows the robot to traverse large distances quickly and
navigate diverse terrains effectively and efficiently. However,
performing fast locomotion on diverse terrains gives rise to
many challenges because we do not have accurate information
about the real world characteristics around the robot, e.g.,
dynamics parameters like friction, obstacles, uneven terrain,
slippery or inclined surfaces, etc. One possibility is to model
the environment parameters [47], [11]]. However, designing
robust techniques based on model-based control requires a
significant amount of expertise and creativity on the part of
the human designer.

Another possibility is to infer these parameters [22], [16].
The current paradigm is to train the robot in simulation and
use state-of-the-art techniques [38]] to deploy it on the real
robot in the physical world. These methods achieve either high
speed or stability, but not both. Although rapid locomotion is
highly desirable, it should not compromise the stability and
efficiency of the robot. Operation in the real world can result
in many challenges in the form of terrain diversity, such as
sudden slopes, slippery surfaces, icy patches, or obstacles. The
major issues in terms of using learning methods include sparse
rewards distribution, the exploration-exploitation dilemma, the
sim-to-real gap, and the non-Markovian nature of locomo-
tion [6], [46].

One way to overcome such challenges is to use a curricu-

lum [28], [22], [29], [18], [16]. These methods first train the

Fig. 1: Testing and parallelized training: Application of
HACL in the real-world on the Gol robot (above 2 rows).
Parallelized training of MIT Mini Cheetah, Gol, and Go2
quadrupeds with HACL in Nvidia IsaacGym using 4000
environments (bottom row).

robot on smaller velocity ranges. In the process, they gradually
increase the difficulty if the robot succeeds in performing
easier tasks, decrease difficulty if the robot performs worse,
and go to a random difficulty level if the agent performs
well on even the most difficult tasks. The objective of cur-
riculum learning is to improve training efficiency and final
performance, but it can result in overfitting[[3] or suboptimal
exploration [22]], [12].

Main Results: We present a new approach for fast and stable
locomotion that takes into account temporal dependencies
by incorporating history in the curriculum. Many approaches
for locomotion perform sequential decision-making and have
inherent temporal dependencies due to their non-Markovian
nature [6]], [46], [44]. We present a novel History-Aware Cur-
riculum Learning (HACL) algorithm, which addresses issues
of temporal dependencies and suboptimal exploration, and
improves the forward linear velocity computation and stability.
The novel components of our approach include:

e We present history-aware curriculum learning (HACL),
a curriculum approach that schedules the next episode
bins based on past observed training rewards for linear
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and angular velocities (i, Tang). Our formulation also
models temporal dependencies.

e« We show that by capturing historical information, we
can bridge the gap between non-Markovian dynamics
and curriculum learning by incorporating past state infor-
mation (h;—1). This leads to improved convergence and
learning.

o We have conducted an extensive evaluation of our method
in simulated environments on MIT Mini Cheeta, Unitree
Gol and Go2 robots in NVIDIA IsaacGym. We also
highlight the benefitson a Unitree Gol robot operating
in the real world. Our results show that HACL achieves
higher speed, stability, and improved efficiency. HACL
achieves velocity of 6.7m/s with a standard deviation of
1.73 m/s, which is significantly better than [22]]. The
stability score is around 2000 and energy efficiency is
—4000, which is much better compared to the current
RL methods. HACL consumes less energy for the higher
velocity output compared to fixed curricula, bandit-based
task sampling including UCB [3], Thompson [7]), and
non-history neural networks such as MLP [30] and
CNN [17].

II. RELATED WORK

A. Curriculum learning in Robotics

Bengio et al. [4] propose a method similar to continuation
methods where training happens in a progression, starting
with easier examples and gradually increasing the difficulty.
Wang et al. [39] discuss how to implement/design a predefined
curriculum or an automatic curriculum. Their work catego-
rizes automatic curriculum learning (CL) into 4 categories:
Self-paced Learning, Transfer Teacher, RL Teacher Matiisen
et al. [23], and Other Automatic CL. While [2] employs a
multi-terrain curriculum approach and similarly environment
progression based by curriculum [16] for learning locomotion
skills. And [8] ,[19] discuss hindsight curriculum learning,
Wang et al. [40] arm wheel curriculum, and Tidd et al.
[37] guided curriculum for terrains. While [22], employed a
fixed rule based curriculum update method for learning the
locomotion control policy, absence of history information was
common across all these works.

B. Model-based control and Reinforcement Learning for Lo-
comotion

Some of the earliest attempt to implement model-based
control can be dated back to DARPA’s learning research in
locomotion [48], [15], [24]. However, A key limitations of
these methods regarding fast locomotion is sim-to-real gap. To
reduce the gap between sim-to-real, several methods have been
proposed like domain randomization [38]]. Domain randomiza-
tion gives robust behavior, but it can result in a conservative
policy [20]]. Alternatively, one can design simulation environ-
ment as close as possible to the real world scenarios [[1L1]], [33].
But they would require extensive amount of real world data
and need to be setup for different configurations. One way to

Symbol(s) Description

Vg, Wy The linear velocity, and angular velocity of the robot base

vemd | yemd The forward command linear velocity, and angular velocity
of the robot base

Plin » Tang RNN predicted linear velocity rewards and angular veloc-
ity rewards

Tlin » Tang Observed linear velocity rewards and angular velocity
rewards

T The torque applied by the robot joint

g The projected gravity of the robot base

bi,b2,...,bn The discretized design space bins totaling 4000 bins

w1, w2, ..., Wy  The normalized probability weights distribution for bins

i(d) The predictions made by RNN

he_1 The RNN hidden state for the time-step ¢ — 1

Tt The one hot encoded bin index input to the RNN

W The probability distribution of each bins

frnn(he—1,2¢)  The RNN function with the hy—1 and x; as inputs

R(T) The cumulative regret over time step 7'

L(6, ) The loss function with variable 6, ¢

qt » Gt , qf“ The robot’s joint position, joint velocity and task parameter
joint command at time ¢

n, S Energy efficiency and the stability score of the robots

DOF Robot’s degrees of freedom

TABLE I: Symbols used and their descriptions.

avoid these issues is to infer the data during deployment [16],
[22]].

C. Non-Markovian nature of locomotion

As [6l 146l 44] have pointed out, locomotion has a non-
Markovian nature, where the state is not only dependent on
the immediate control inputs but also the previous states [46].
These researchers have used state space re-planning strategies
and robust bundles, implicitly acknowledging the importance
of history. While Byl [[6] suggests a non-Markovian or dis-
crete Markov chain, DeFazio et al. [9] suggests Markovian
challenges. Li et al. [19] hindsight curriculum learning also
addresses Markov property and Thuruthel et al. [36] implies
markovian nature of locomotion.

D. Neural network architectures and static reward strategies

Zhao and Gu [46] have used a neural net for legged
locomotion while Rodriguez and Behnke [27] used neural net
for capturing hidden state information. Some methods like
UCB [3l], Thompson sampling [35] are good for balancing
exploration and exploitation. Kasaei et al. [13|] explores into
exploration and exploitation. However these methods have not
been used to learn the hidden locomotion pattern.

ITII. HISTORY-AWARE CURRICULUM LEARNING (HACL)

In this section, we present our novel approach that takes
into account temporal aspect of locomotion. Our goal is to
shape our curriculum such that it takes the observed linear
velocity (ry;,) and angular velocity rewards (r4,4) and, based
on our HACL algorithm, outputs the task parameters (vS™?
, wgmd). We also want to learn a policy (my) that takes
sensory observation (o;) inputs like joint position (g;) and
joint velocity (¢;) and outputs the parameterized joint position
commands (g¢*), as shown in Fig.
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Fig. 2: HACL overview. Our receives the

and rewards from the IsaacGym environment.
HACL learns the hidden pattern between these reward distribu-
tions and the high-level sampled . The policy
model is optimized using PPO and generates the low-level
task parameter commands, which the robot executes in the
environment.

A. Design space

Curriculum learning is a popular method for learning loco-
motion skills [22], [18], [45]. In a simulated environment, the
design space is divided into a discrete set of bins, represented
using B (I). The curriculum design space is divided into the
bins (b;):

B = {b1,ba,...,bn}. (1)

Each individual bin carries command task parameters and
target linear (vS™9), and angular velocities (wS™?); HACL
aims to optimize the bins that can give the best rewards
to the agent over a period of time, capturing this temporal
information using RNN hidden state h;_;. Therefore, the
agent learns locomotion conditioned on a command linear and
angular velocity.

Based on this, our curriculum design method is similar
to [28], [22], [29], [18]. Moreover, it will: 1) increase difficulty
if the policy performs better; 2) decrease difficulty if the policy
performs worse; 3) go to a random difficulty if the policy
performs well on the highest difficulty.

As [22]], [16] , [11] have observed, robots learn better when
the velocities are selected from small probability distribution
in low range of [—1.0,1.0] and fails to learn when velocities
are selected from the large distribution, e.g., [—6, 6]. Learning
fails when velocity commands ((vS™?), (w™?)) are sampled
from large distribution, which could be caused by a lack
of initial curriculum or sparse rewards [22], a very large
exploration space and possible dynamics constraints [28]. We
have observed that this is the case regardless of the robot type
(e.g. MIT Mini Cheetah, GO1, or GO2) used in our simulated
environments.

B. Non-Markovian nature of legged locomotion

There are many challenges in locomotion like sparse re-
wards, poor learning, and human design errors [22], [28]], [42].
We have considered integrating the temporal aspect of loco-
motion in curriculum learning to overcome these challenges
and have highlighted its generalization in our results section.
Our approach also overcomes limitation of exploration and
exploitation faced by traditional curriculum approaches [22],
[16].

We frame our approach based on g-learning [41],which has
been proposed by others [34] for long-horizon, open-world
tasks. In g-learning, the agent learns a value function Q(s¢, a;)
given by equation (2), where s;, a; are the state and action
at time-step ¢, » and E, are the immediate rewards and
expectation over future actions from state s; and ~y is the
discount factor.

Q(st,ar) =r +vEy [Q(st41,4d)]. 2)

Equation (2) assumes the Markovian nature of state-action
dynamics [26], where the next state depends on the current
state s; and action a;. However, as [46], [44] , [6] have
observed, modeling past history can be crucial for rapid and
agile maneuvers and unmodeled history parameters can affect
the robot’s stability, speed, and energy efficiency. One way to
solve this is to model these history parameters. So the above
g-learning equation can be modified in order to capture the
non-Markovian dynamics of locomotion by slightly modifying
it (2) into (3) to incorporate the history or “hidden” state h;_1
given by (3).

Q(St, Av | him1) =1 +vEa [Q (Si41, A" [ )] . (B)

The hidden state (h;—1) captures the information from
previous time-steps and allows the learned policy to capture
the long-term effects of the actions on the joints and joint
velocities based on the rewards received (7;1,, T'ang), Which the
fixed update curriculum or other similar curriculum method-
ology are not able to capture [22], [28]. To model (h;—1), we
have incorporated the Recurrent Neural Network [30], using
() in our curriculum learning:

hy :f(htfhxt;a)- 4

C. RNN-based h;_1 updates

While neural nets have been used in locomotion for various
reasons such as training efficiency[32], the importance of
history in locomotion has not been explored, particularly not
along with a curriculum. While [22], [29], [[L1], [45], etc.
use curriculum, they do not use any method to track or
model history. Therefore, while such methods achieve the
desired outputs, they lack the skills to achieve a very high
velocity or good stability. To address this and model the history
or “hidden” state h;_; of the equation (3)), we propose a
Recurrent Neural Net (RNN) based History-Aware Curriculum
Learning (HACL).
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Fig. 3: Comparison of prior methods with HACL. As per (a), Margolis et al. [22] grid-adaptive curriculum reaches a
maximum velocity of 5.8 m/s for command velocity of 7 m/s and standard deviation of 1.94 m/s, while (b) HACL achieves a
higher velocity of 6.7m/s with a standard deviation of 1.73 m/s. In (c) we observ the chaotic nature of the joint position graph
with respect to time, indicating poor learning at higher command velocities. (d) The other HACL’s smooth joint position graph
indicates better control at a higher velocity along with a stable gait. Overall, HACL results in stable and faster locomotion as
compared to prior methods.

Metric UCB T i i gbo et al. [11 Kumar et al. [16 Margolis et al. [22]  Aractingi et al. [2] +Margolis et al. [22]  Aractingi et al. [2] + HACL HACL

vz m/s (1';'”d: 6) 0.23 0.16 1.5 1.8 545 53 55 6.0

vy m/s (1:;""": 7 0.2 0.11 1.5 1.8 5.70 548 58 6.7

w; rad/s 0 0 N/a N/a 1.8 0.9 0.8 1.25

Tlin 0.0745 0.0046 = - 0.02 0.014 0.07 0.087
History-aware Yes* Yes™* No No No No Yes Yes

Energy Efficiency ()  -6500 -7300 - - -6200 -6800 -5400 -4000

Stability (S) 749 640 - - 1200 1100 1150 2000

Robots Tested (Sim) Gol Gol AnyMal Al Mini cheetah Gol Gol Mini cheetah, Gol, Go2
Task Success Rate 20% 0% - - 70% 70% 80% 90%

TABLE II: Comparison of HACL with SOTA: HACL achieves the highest velocity for all the methods for a command
velocity of 7 m/s, and it reaches 6.7 m/s. While previous works such as Margolis et al. [22]], [2] + Margolis et al. [22], [2]
+ HACL achieve velocities of around 5.3-5.8 and Hwangbo et al. [11], Kumar et al. [16] are around 1.5-1.8, none of them
surpasses HACL. HACL is also very energy efficient (-4000) compared to other works, indicating they consume more energy
during locomotion while UCB and Thompson Sampling performs worse for locomotion tasks. Stability score (S) is highest
for HACL and lowest for the static reward strategies but Margolis et al. [22] and Aractingi et al. [2]] follows HACL in terms
of stability.

RNNs (whether LSTMs, GRUSs, or regular RNN) are better We feed the observed linear (r;,) and angular (rg,4) reward
suited for capturing long-term dependencies because they (r:(b:); each bin contains both the bin IDs BinID; at time-step
maintain a hidden stateh;_;, which captures the past infor- ¢ to the RNN (LSTM, GRU, or regular RNN).
mation. The curriculum can then adapt online to the robot’s
evolving performance over a period of time. In our discrete D- Predicted returns and curriculum updates

curriculum design bins, each bin has specific ID, and we define As [46], [44] suggested, locomotion is non-Markovian in
this input 2; (3) as one-hot encoding of bins at time-step ¢: nature, i.e., the current state is not only dependent on the
previous state but also the other states preceding it. Each bin

x; = one-hot(BinID,) € R*0% (5)  (b;)in equation (T)) is asssigned a respective probability weight

where 4000 represents the total number of discretized bins. (w:) distribution given in equation (§).

The RNN predicts (6) the expected linear and angular velocity

for the encoded bins. W = {wi,wa, ..., wp}. ®)
P1in (B The weights of bins which lead to better rewards are increased
(b)) = fran(hi—1,24) = [f " (bl,)] (6) using RNN predictions (@) and is given by the equation (9):
ang\ Vs
where h;_; is the hidden state from the previous time-step Wit (D) = wi(b) + o (Fri (B) & o (b 9
and 7in (b;), ang (b ) represents the predicted linear and angular e+1(5) +(b) (Fiin(0) ang(0)) ©)
rewards for the bin b;. As the training progresses, we collect more observed linear

(riin) and angular (rgns) rewards, which in turn improve
ht = LSTM(h¢—1, [z¢, 7(bt)], 6). (7) the predictions and minimize our loss function. This in turn



also affect the command sampling for the next timestep for
the given episode, given by (I0), indicating the sampling of
command from that particular bin:

Wp
~
Dpen Wy
Let the hidden state h; of our curriculum captures the non-

Markovian dynamics of locomotion by learning the hidden
pattern between sampled command and observed rewards.

Py(c €b) = (10)

E. Training Objective

The RNN specifically retains the information across time
using hidden layers, it is the ideal choice for making our
curriculum history-aware. We have compared our approach
with other approaches like fixed rule- based methods, static
reward methods, and other non-history neural networks. We
have defined our loss function (TI) as sum of minimizing the
difference between observed linear velocity r;;, and predicted
linear velocity 7y, plus the difference between observed angu-
lar velocity 74,4 and predicted angular velocity 7, Over a a
period of timestep 7'

L(0,¢) =

1 .
T Z ((Tlin - 71lin)2
t=1 i=1 .

an
e o)

FE. Comparison of HACL with Static Reward strategies and
non-history Neural Nets

Thompson Sampling: Thompson Sampling [7] tries to
balance exploration (potential rewards for the arms) and ex-
ploitation (final selection of an arm that gives you the highest
reward). It increases the training time (550 minutes) signifi-
cantly, as the curriculum is stuck balancing exploration and
exploitation and might not converge as fast as other methods.
One possible reason is it over explore without any concrete
convergence and it requires too much hyper-parameter tuning
without significantly improving the curriculum. In this case

equation (@) becomes (12):

wt+1(b) = Beta(ab, ﬂb)

UCB (Upper Confidence Bound): Strategies like UCB
and Thompson Sampling don’t consider history in a strict
sense like HACL, but they do assume a static nature of reward
distribution. The problem with UCB and Thompson sampling
is that they ignore the continuous rewards over time and only
count the success/failure rates. Since UCB counts only success
or failure, it might also over-penalize bins that might give some
good rewards later as the robot improves its gait and masters
balance. The bin weights in case of UCB is given by (13):

R 2Int
wiy1(b) = + 4/ :
ny

Non-History Neural Nets: We have analyzed the fixed
schedule, static reward strategies, and history-aware methods.

12)

13)

Out of curiosity we also explored the effect of non-history neu-
ral nets like Convolutional Neural Net (CNN) and Multilayer
perceptron (MLP). UCB and Thompson Sampling perform
worse than non-history methods like CNN or MLP. While
non-history methods like CNN or MLP perform better than
UCB and Thompson Sampling because, even though they
do not consider the history of the rewards or assume static
distribution, they are still better because they are good in
capturing the relevant information at each timestep and maybe
gradient updates leads to achieving better rewards (Table II).

IV. EXPERIMENTAL VALIDATION
A. Simulation environment:

We model the robot, with a total of 12 Degrees of Free-
dom (DoF), as an URDF file in the simulated environment
(IsaacGym Simulator [21]). Each RL episode lasts for 20s
with a total of 4000 parallel environments with a time-step
of dt = 0.005. The robot then receives a sampled linear
command velocity of vS™¢ € [—1, 1] and an angular command
velocity of w4 € [—1,1].

We have adapted our code mostly from the open-source
repositories [22]], [29]. Similar to [22], we have also trained
400 million timesteps in simulation using 4000 environments
of Gol, Go2, and MIT mini cheetah robots for validating
our history-aware curriculum. For training, we have used an
Nvidia RTX 4090 laptop-based GPU, which takes less than 2
hours to finish the whole simulation.

The design space of the IsaacGym simulator has dimensions
(X,Y, Z), where the X-axis is split into z = (—1,1) with 20
bins; the Y-axis is split into y = (—1,1) with 10 bins; and
the Z-axis is split into z = (—1,1) with 20 bins, thereby
creating a total of 4000 bins. In our HACL method, we have
kept our velocity ranges as follows: linear velocities as v, €
[—1.0,1.0] m/s during the initial phase and angular velocities
as w, € [—1.0,1.0] m/s.

B. Domain randomization and reward functions

We randomized joint friction , motor delays, and sensor
noise and achieved a total velocity of 5.3 m/s, which is slower
than the 5.45 m/s [22] achieved for command velocity of 6m/s.
Due to over randomization of parameters the policy became
conservative and hence this reduction in velocity [22]][33]] [43].
We therefore reverted to the original parameters with minor
modifications to their ranges. Reward functions are derived
from [22]] [29], with minor tweaking.

C. Teacher-student training and policy optimization

Similar to [22], [29], we also deploy the student policy
ws(xt,x[t,h:t,”) on the Gol robot and let the policy infer
the dt parameter using the state history of h time stamp,
which performs the online system identification [L6]J[18].
Our history-aware curriculum helps dynamically adjust the
difficulty based on the rewards signal received and thereby
avoids the pitfall of over-fitting. For policy optimization, we
have used Proximal Policy Optimization (PPO) [31]. Our
HACL is incorporated within this framework, so the policy



is refined based on the return for linear and angular velocities
and the curriculum adjusts the difficulty in order to maximize
the cumulative rewards over a period of time.

D. Hardware:

To validate our experiment, we have used a Unitree Gol
EDU robot. The robot has a weight of around 12 kg, a payload
of 5 kg, and a height of 40 cm. The robot has a total of 12
Degrees of Freedom (DOF), meaning it’s essentially composed
of 12 servo motors. The sensor suite of Gol EDU consists
of raspberry pi, an inertial measurement unit (IMU), a joint
position endorse, and an Nvidia jetson, on which our trained
policy incorporating HACL runs.

V. RESULTS AND EVALUATION
A. Evaluation metrics

One of the key metrics for our evaluation was the energy
efficiency (7)) of the Gol robot. While training the policy in
simulation and while doing sim-to-real, we want to make sure
that the robot does not consume too much power. The energy
or power consumed by each joint at each timestep is given by
the torque required for each joint at the timestep, i.e., 7;(¢)
multiplied by ¢;(4), the joint velocity for each joint at timestep
i. The distance traveled per timestep is given by v, time dt,

using (T4)

S () - d5()
V(- At

We have defined the overall stability score (S) as the cu-
mulative sum of key indicators that are important for stable
locomotion. In the given formula , r; maintains a de-
sired orientation, heights and safety constraints at any given
timestep.

n= (14)

S = Z (7'0rient(i) + Thase height(i) + /rang vel xy (l)

i=1
=+ Tlin vel 2(71) =+ Tdof pos limits(i) =+ Tdof vel limits (Z)

+ Tdof Vel(i) + rcollision(i) + Ttorque limits(i))

We have also defined the task success rate as the percentage
of successful runs divided by the total runs (unsuccessful runs
include any in which the robot crashes, tips, or touches the
ground) when the trained weights are run for 10 timesteps
after a fully trained policy. And most importantly the gener-
alization across multiple robots, in this case, we demonstrate
the performance on MIT Mini Cheetah [14]], Unitree Gol [1],
and Unitree Go2 [1]] robots.

B. History-aware curriculum lead to a very fast locomotion

HACL leads to a very rapid locomotion, achieving 6.7m/s
for a command velocity of 7m/s. While previous works such
as [22], [2]], achieve velocities within range [5.3, 5.8] m/s and
[L1], [16] are around 1.5 and 1.8, none of them surpasses
HACL. We also demonstrate how HACL can be generalized to

Metric RNN LSTM GRU CNN MLP
vy mfs (VS = 6) 6.0 6.0 6.0 0.6 0.56
vy mfs (vEME = 7) 6.62 6.58 6.72 0.62 0.5
w rad/s 1.25 1.2 1.28 0 0
Tlin 0.0823  0.0873  0.085 0.08 0.07
History-Aware Yes Yes Yes No No
Energy Efficiency (%)  -2600 -4000  -5200  -200,000  -250,000
Stability (S) 1400 2000 1900 2000 1100
Task Success Rate 80% 90% 90% 0% 0%

TABLE III: History-Aware Curriculum Learning (HACL)
vs. non-history methods: HACL enables adaptive learning by
utilizing history (h;—1) and significantly improving velocity
tracking, energy efficiency, stability and task success rate.
History-aware network (RNN, LSTM, GRU) outperform non-
history networks (CNN, MLP) achieving 5-10 times better
velocity, energy efficiecy and task success rate. HACL has
been validated across various robots like MIT mini cheetah,
Gol, Go2 in simulation.

quadrupeds like MIT Mini Cheetah [[14]], Unitree Gol [[L], and
Unitree Go2 [1]. HACL enables adaptive learning by utilizing
history (h;;) and significantly improving velocity tracking,
energy efficiency, stability and task success rate.

C. Testing in the real world on a Unitree Gol robot

Currently, We are testing our trained model weights on
the Unitree Gol robot and testing various use case scenarios
like for v™4 € [3,6] and wS™? € [2,6] rad/s. And we
are also testing on various terrains like grass, concrete and
smooth surface. We have limited our vS™? within 6m/s due to
hardware constraints. Our results have shown that Unitree can

achieve a real-world velocity in range of 3.2-4.4 m/s.

VI. CONCLUSION, LIMITATIONS AND FUTURE WORK

We have presented a novel approach (HACL) for fast
and stable locomotion of quadruped and bipedal robots. Our
approach exploits the temporal aspects of locomotion. The
main benefits of HACL include: () improved linear velocity;
(7i) better stability than the current methods [22], [16], [2;
(7i1) higher task success rate; (iv) improved learning (higher
r1in, tewards); (v) better energy efficieny and less consumption
even at higher velocities. We demonstrate that considering
a history-based curriculum approach for legged locomotion
improves the overall performance of the robot in terms of the
velocity, efficiency, and stability over a series of time-steps.
Most importantly, our methodology generalizes to different
robots and can also be combined with other methods like
[2l], [22] to improve their performance. The main limitation
of our work is that we have not considered the the robot
morphologies [25]], [10]], which also affects the overall learning
process. We plan to test the performance of our methods on
different robots operating in complex terrains with obstacles
and varying characteristics. As part of future work, we would
like to extend these history-aware methods to reinforcement
learning (RL) based locomotion algorithms.
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