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Abstract— Team Coordination on Graphs with Risky Edges
(TCGRE) is a recently proposed problem, in which robots find
paths to their goals while considering possible coordination
to reduce overall team cost. However, TCGRE assumes that
the entire environment is available to a homogeneous robot
team with ubiquitous communication. In this paper, we study
an extended version of TCGRE, called HPR-TCGRE, with three
relaxations: Heterogeneous robots, Partial observability, and
Realistic communication. To this end, we form a new combina-
torial optimization problem on top of TCGRE. After analysis,
we divide it into two sub-problems, one for robots moving
individually, another for robots in groups, depending on their
communication availability. Then, we develop an algorithm that
exploits real-time partial maps to solve local shortest path(s)
problems, with a A*-like sub-goal(s) assignment mechanism
that explores potential coordination opportunities for global
interests. Extensive experiments indicate that our algorithm is
able to produce team coordination behaviors in order to reduce
overall cost even with our three relaxations.'

I. INTRODUCTION

Team Coordination on Graphs with Risky Edges (TCGRE)
is a recently proposed problem [1], in which robots need to
schedule trajectories while considering possible coordination
on the move to reduce overall team cost. Compared with
the classical Multi-Agent Path Finding (MAPF) problem [2]—
[8], where robots attempt to avoid collisions (and inter-
actions) on their journeys, TCGRE strives to exploit such
opportunities, in terms of support between agents. This new
problem possesses great practical value because it empowers
robots with teamwork potential, which is especially useful
in environments too complicated for a single robot to travel
through, or in tasks so demanding that one robot may need
assistance from others.

Most solutions to TCGRE assume that the entire envi-
ronment is available to a homogeneous robot team, with
ubiquitous communication. However, these assumptions may
not hold in real-world scenarios. Robots may be deployed
in unfamiliar environments and possess different capabilities
to support or to be supported, while communication cannot
happen anytime anywhere at no cost. Therefore, in this paper,
we study an extended version of TCGRE, called HPR-TCGRE,
which relaxes all three assumptions: 1) Heterogeneous team:
different types of robots are involved, inducing a different
edge cost, support cost, and risk reduction for each (pair
of) robot type; 2) Partial observability: each robot can only
observe the graph around it by sensors, while building up
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Fig. 1: An HPR-TCGRE Example: A ground and an aerial
robot gradually sense the environment as they traverse the
graph, while exchanging knowledge and coordinating with
each other when they are in communication range.

the entire graph in their memory as they move in the envi-
ronment; and 3) Realistic communication: robots coordinate
with one another via local communication channels to make
coordination decisions and exchange environment knowledge
only with their neighbors.

We first complete a mathematical formulation of this
problem, as a combinatorial optimization problem similar
to TCGRE [9]. After analysis, we base our solution on
dividing the problem into two sub-problems: 1) Individual
movement: robots operate on their own when there are no
nearby teammates; 2) Coordination: robots coordinate on
the run when teammates are available. For the individual
movement sub-problem, we then break it into two parts:
i) each individual robot schedules a path to its sub-goal,
solvable by any shortest path algorithm. ii) the robot decides
a new sub-goal every time its partial map is updated, where
A* can provide a good solution. Similarly, the coordination
sub-problem is also separated into two parts: i) robots in
the same partial map schedule their paths to their sub-
goals, which is almost TCGRE, solvable by algorithms for
TCGRE. ii) every robot in the same partial map decides
a new sub-goal every time its partial map is updated, for
which we develop a new algorithm that solves it as a multi-
choice knapsack problem. Extensive experimental results are
presented and discussed to evaluate the performance of our
proposed algorithm.

II. RELATED WORK
The original TCGRE problem has attracted some attention
from researchers. Limbu et al. [1] proposed a method that
constructs a Joint State Graph (JSG) and converts the prob-
lem into a single-agent shortest path problem, solvable by
Dijkstra’s algorithm. They then developed the Critical Joint
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State Graph (CISG) approach that removes many unnecessary
edges in the JSG and mitigates the curse of dimensionality
while maintaining optimality. To improve practicality of the
solution so it works with more robots and larger graphs,
Reinforcement Learning (RL) [10] is one way to scale up,
but optimality is no longer a guarantee. Zhou et al. [9] then
reformulated the problem as a combinatorial optimization
problem, elaborated on the importance of problem decompo-
sition via mathematical analysis, and provided three classes
of solutions: JSG-based approaches are optimal but compu-
tationally expensive when the number of agents increases;
coordination-based methods are optimal under an assumption
that one coordination behavior only occurs for a limited
number of times, therefore efficient in terms of the number
of agents, but not the number of coordination behaviors;
Receding-Horizon Optimistic Cooperative A* (RHOC-A¥)
search algorithms are efficient but sacrifice performance due
to a limited horizon and limited robot pair choices.

However, the original TCGRE problem is based on three
strong assumptions: 1) All robots are the same; 2) The
entire graph is known to the team a priori; and 3) any
team member can communicate with the central controller
anytime anywhere at no cost. All these assumptions are not
always realistic in real-world robot applications with limited
perception range, different robot types, and constrained com-
munication channels. Therefore, the HPR-TCGRE problem
and its solution proposed in this work aim to relax all these
three oversimplified assumptions.

I1I. PROBLEM FORMULATION

In the original TCGRE problem, a team of N homogeneous
robots traverse an undirected graph G = (V,E), where V
is the set of nodes the robots can traverse to and E is
the set of edges connecting the nodes, ie., E C V x V.
The team of robots traverse in the graph from their start
nodes Vo C V to goal nodes V, C V via edges in E.
Each edge e;; = (V;,V;) € E is associated with a cost.
Specially, some edges with high costs are difficult to traverse
through, denoted as risky edges E’ C E, but with the support
from a teammate from a supporting node, their costs can
be significantly reduced. In this problem, such coordination
behaviors only occur between two robots: one receiving robot
receives support while traversing a risky edge, and another
supporting robot offers support from some (nearby) location,
called support node. Each risky edge e;; € E’ corresponds
to certain support node(s) S¢,, C V (S,,, = 0 if e;; ¢ E).
Additionally, the coordination also induces some cost for
the supporter. The scheduling of all agents’ movement and
coordination relies on a central controller.

However, TCGRE may not be applicable in many real-
world cases as stated in Sec. I, so in this paper we generalize
it to HPR-TCGRE, by relaxing three assumptions as follow:

1) Heterogeneous team: the team of robots involve H
types, who have different specialties possibly complementary
to each other and thus contribute to better teamwork. As a
result, an edge cost is not only dependent on the specific edge
e;;, but also the type of the robot traversing it h,,, represented
as cf]" For coordination, the reduced cost is related to the

types of both robots conducting a coordination behavior h,,
and h,,, represented as E?j"’”; the coordination cost is related
to the type of the supporter h,,, denoted by c;?m.

2) Partial observability: the environment is unknown in
the beginning, and each robot can only use its sensors to
observe the graph around it. That is to say, at time ¢ = 0,
the graph is unknown to each robot n in the team, i.e., G?L =
(V2 E%) where VY E? = (). Each robot n can only sense
a region around its current node [%; the range is dependent
on the sensors of different robot types, i.e., G"(I%), with a
memory of previously collected data. Therefore, each robot’s
knowledge of the graph, called partial map, is based on past
and current observations G, = G~ UG" (%), as in Fig. 1.
Moreover, each node corresponds to a set of coordinates,
and each robot knows the coordinates of its goal, but not the
path(s) to it, due to partial observability.

3) Realistic communication: without central control,
robots rely on communication for coordination, with which
they can also exchange their partial maps to facilitate nav-
igation. Inspired by the 3-way handshake [11], we propose
a similar process, where each robot n broadcasts a hello
message once at each time step; when another robot m
detects the message, it replies with another broadcast. If
robot n receives the response, it sends out a confirmation
message. Then, the actual communication is established, and
they start to coordinate after exchanging and combining their
own partial maps and their coordination messages, also once
per time step, i.e., G!,,G!, = GLUG!, if €,, = 1, as shown
in Fig. 1. In this mechanism, the actual communication only
starts when they get close, within the communication range—
the minimum of the two transmission distances (which
may be derived from the Friis Equation [12]), i.e., rpy =
min(Dym, Dimp)- (The communication range in Fig. 1 and
Fig. 2 are not following the strict definition, only for a
better demonstration of the key ideas.) Additionally, robots
can communicate with each other via other intermediate
robots and form ad-hoc networks [13], called robot groups.

Denote any robot group that includes n as RG!, where
s.t. dl, < 7Tpm} and

n
RG!, = {n|vn € RG!,3Im € RG],
RG! , RG! = RG!URG! if m € RG. So for any robot
pair in the same group, their communication is available,
ie, ¢!, = 1if m € RG!, and 0 otherwise. In this
problem, we assume a constant cost for each communication,
which is trivial in the objective function. A more realistic
communication cost model will be discussed in future work.

Ultimately, each robot needs to schedule a path to reach
their individual goal and coordinate with one another along
the way, to minimize the overall cost.

A. Cost Model

Similar to previous work [9], we can represent robots’
decision making with two sets of 0/1 variables, a movement
decision set M and coordination decision set S. Specifically,
without coordination, at each time step ¢, each robot n needs
to decide where to go, denoted as M = {M[¥'|Vi, j,¥n,Vt},
where M, ];f = 1 represents robot n traverses edge e;; at time
t and O otherwise. The general cost in this case is simply the



cost of the chosen edge, i.e., C! = chj(”) where M} =

Staying is allowed for future coordination, i.e., ¢;; = 0.

When coordination is possible — after exchanging partial
maps with other robots via communication, one robot can
move to a support node to help another pass through an
edge with reduced cost, coordinated via live communication
— each robot pair needs to decide whether they are going
to coordinate, denoted as S = {s!,,,,|Vn, m,Vt}. The cost is
decided by both variables:

hn : - 0
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where s!, = 1 means robot n receives support from m,
st = —1 indicates robot n offers support to m, and
st = 0 suggests no coordination between n and m at
t. Such coordination only happens to a robot pair, i.e.,
st + st =0, and only to two different robots, i.e.,
st = 0. Additionally, coordination is only possible when

robots know the existence of other robots by communication,

ie., st,, =0if €, = 0. Last, there is no point for every
oy i

robot to stay still, i.e..) 2y, > v, M} # 0.

B. Problem Definition

Given the node set V, the edge set E, support nodes for
each edge Seij, N robots with their starts Vo and goals V,
their sensing regions G"(-) and communication range {7, }
(to determine €., ), cost of each edge without and with
coordination cfj",c?j"’” coordination cost c nm optimize the
movement and coordination decisions M and S, in order to
minimize the total cost for each agent to traverse from its
start to its goal within a time limit 7". Formally, the problem
can be represented as

T—1 N
min t. 2
M,sgnz::lc”’ 2)

s.t. Z |st | <1,

vme{1,2,...,N}

VYne{l1,2,..,N},vte{0,1,...T —1}. (3)
st st o e{-1,0,1},s! . +smn =0,

Vn,me {1,2,..,N}WVt € {0,1,...,.T —1}. (4
st =0,if€,, =0 (5)
G, =G, UG (1) (6)
G!, G, =G UG, if¢6, =1 @)

10 =Vy(n),lL =V,(n),¥n € {1,2,..,N}.  (8)
nt __ nt __
Yo Mi=1 Y Mi=o,
Veij €N, Vei €Nt
vn e {1,2,..,N},vt € {0,1,..,T

—1}. )
ZZM{?#O,VtE{O,l,...,Tfl}. (10)
Yn Vi#j

Eqn. (2) suggests the goal of the problem is to minimize the
total cost of all agents across all time steps with two decision
variables, movement set M and coordination set S. Eqn. (3)
enforces, at each time step, each robot can participate in
at most one coordination behavior. Eqn. (4) regulates that,

at each time step, one coordination behavior only occurs
between one robot pair. Eqn. (5) shows that coordination
is only possible when communication is available. Eqn. (6)
defines the update mechanism of a partial map. Eqn. (7)
is for graph knowledge exchange when communication is
available. Eqn. (8) set the start and the goal for each robot.
Eqn. (9) guarantees, at each time step, a robot can only move
to a neighbor node or stay still in the neighbor set J\/l;
of node [%,. Eqn. (10) assures no unnecessary stagnationl.
Eqns. (2),(5),(6),(7) are elaborated in this problem; others
can be found in previous work [9]. Notice that the sensing
region G"(-) and communication range {r,,,} are decided
by hardware, so we treat them as given inputs here.
IV. MATHEMATICAL ANALYSIS

In this section, we show the NP-hardness and present
problem analysis of HPR-TCGRE.
A. NP-Hardness

By constraining the number of robot types to one, and
the sensing region of any robot and communication range
between any robot pairs to be large enough to cover the entire
graph, the HPR-TCGRE problem becomes exactly TCGRE.
That is to say, TCGRE is a specific version of HPR-TCGRE;
since TCGRE is already proven NP-hard [9], HPR-TCGRE is
also NP-hard.

B. Problem Analysis

1) Cost Model: Similar to previous work [9], since the
coordination only occurs in a pair, then the supporting cost
can be moved to the receiving robot, as we only care about
the overall cost, so Eqn. (1) becomes

C?jn’ if s, = 0;
0, if Szlm = -1,
where &l = o g (fln

2) Distributed Goals: Our fundamental goal is to utilize
communication and coordination among robots to reduce the
overall cost of all robots for reaching their goals. However,
only when the communication channel is established, will
there be any opportunity to coordinate, so the cost is only
possible to be reduced with an active channel (Eqn. (5)).
Thus, the objective function can be rewritten as

T—1 N
min Z > (1-E},) (12)
M.S t=0 n=1
T—1 N
+ YD E (= sk + shem] (13)
t=0 n=1

where Eqn. (12) refers to independent operation of each
individual robot when no teammates are detected, while
Eqgn. (13) involves communication and coordination.
V. SOLUTION

Based on the mathematical analysis, the decision variable
st is only in Eqn. (13) but not Eqn. (12), one simple so-
lution is to divide the problem into two sub-problems: inde-
pendent movement (Eqn. (12)) and coordination (Eqn. (13)),
depending on whether other robots are detected. Regarding
detection, since the communication range is usually much
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larger than the sensing range, we use communication as the Algorithm 1: Individual (G',,1%,V 4[n])
indicator, i.e., €t = 0/1. -
> Tnm / 1 Generate a candidate sub-goal list, SG;, in GL;

A. Individual Movement

When a robot detects no teammates, i.e., €., = 0,Vm,
no coordination is available, so it approaches its goal in-
dividually. The objective of all robots in Eqn. (12) can be
distributed to each 1nd1V1dual robot n as

mln E Cij ha

If the entire graph is prov1ded 1t is a shortest path problem.
However, partial observability (Eqn. (6)) makes the nodes
and edges outside its partial map G!, invisible. Hence, the
shortest path algorithm is only applicable locally inside the
partial map, outside which we use Euclidean distance to
estimate the real cost. Specifically, to run the shortest path
algorithm, we need to assign a goal for each robot in its
partial map, called sub-goal. Moreover, the partial map grows
as it moves, so the sub-goal also changes constantly along its
way. The idea is if all the sub-goals selected for an individual
robot are on its optimal path to its final goal, the solution is
optimal. That is to say, this sub-problem can be equivalently
transformed into deciding a sub-goal for each partial map.

In this paper we propose an A*-like algorithm, as in
Alg. 1, that decides a sub-goal, using the sum of 1) Cy: its
minimal cost from its current node to a potential sub-goal
(line 5), and 2) Cs: the Euclidean distance between this sub-
goal and the final goal (line 6). If the Euclidean length of an
edge is no greater than its cost, this heuristic is admissible,
as the first minimal cost is optimal and the second Euclidean
distance is an underestimate of the minimum cost between
the sub-goal and final goal.

(14)

B. Coordination

While robot n detects some teammates, i.e., )., = 1,3m,
directly or indirectly via intermediate robots, they need to
consider coordination to minimize their total cost, almost
equivalent to TCGRE, except with heterogeneous robots. In a
robot group RG, all robots communicate and share partial

maps. Similar to Sec. V-A, the problem becomes deciding

2 if V,[n] € G!, then SG, = [V,[n]];

3 man_cost < 003 min_Solution < (;

a for subgoal € SG!, do

P,C, = ShOTtestPath(GfL, i,
Cy = d(subgoal, V4[n]);

if C; + Cy < min_cost then
L min_cost = C1 + Coa;

min_Solution = [P, C4];
10 return min_Solution

subgoal, c);

e e NN wn

sub-goals for each RG. In addition, they also need to
consider future coordination opportunities; the main idea is
that, for any robots in a robot group whose goals are close,
they are potentially good teammates, and thus their sub-goals
should also be close. In other words, in Alg. 2, (in line 12)

we approximate Eqn. (13) with
T-1 N

Z Z Cln + CZn + anc?mv

t=0 n=1
where ZZ:Ol 25:1 C1y, is Eqn. (13) inside a partial map,
solvable by any algorithms for TCGRE [9], with one more
dimension (robot type) in edge costs (lines 6 and 8); Cy,, is
the Euclidean distance between each robot n’s sub-goal and
final goal (line 9); Cs,, is the sub-goal distance between each
robot n and its best teammate 7'M, (line 11), whose final
goal is closest to robot n’s (line 10), to encourage robots
whose final goals are close to each other to stay close along
their journey so they have high chances of supporting each
other to reduce cost. C, is weighed by a coefficient «,
with respect to Cy,, and Cy,. Note that LEG = {ll|vn €
RG}: ¢ = {r|Ve;; € Ghg, Vhn}: & = {&lrm|Ve;; €
Ghas Vhn, hin }-

We treat Eqn. (15) for each RG as a multiple-choice knap-
sack problem [14] with special weights as in Fig. 2, where we
need exactly one item (sub-goal) from each class (candidate
sub-goals of each robot) of a k-class knapsack, with a cost

5)



calculated by Eqn. (15). Minimizing cost can be regarded
as maximizing cost reduction, similar to previous work [9].
For this problem, we use Cartesian product to produce all
sub-goal combinations (line 3) and run an exhaustive search
(line 4) to find the best combination (lines 12-14).

Algorithm 2: Coordination (GLg,Liq, RG,V,)

1 Generate a list of candidate sub-goal lists,
SG' = {SG!,,¥n € RG}, in G

2 if V,[n] € Gig, then SG!, = [V, [n]];

3 min_cost < ooy min_Solution <« 0;

4 SSG' = Product(+SG")

5 for SG' € SSG' do

6 | P,C;=TCGRE(Ghy,LLq,SG, c,8);

7 for n € RG do

8

9

Cin = Ci[nl;
Can = d(SG'[n], Vy[n]);
10 TM,, = argmin,, g d(Vy[n], Vy[m]);

1 | Can = d(SG'[n],SG'[TM,]);

12 C = ZVTLGRG Cln + CQn + anc?m;
13 if C < min_cost then

14 min_cost = C'

15 min_Solution = [P, C4];

16 return min_Solution

C. Overall Solution

Since we already have Alg. 1 and Alg. 2 for the two sub-
problems, now we only need to apply them in the corre-
sponding scenarios. The overall algorithm is shown in Alg. 3.
For each time step, we search each robot’s communication
channel and build robot groups RG': one robot group RG
includes a group of robots who are communicating directly or
indirectly (sharing the same partial map). For each RG, if it
only has one robot, it means the robot is moving individually
and we run Alg. 1 (lines 8-15); otherwise, the robot group
may need coordination and we run Alg. 2 (lines 16-25). Note
that in Alg. 3, we build RG for individuals too (| RG| = 1)
for code efficiency; in concept individuals don’t form RGs.

Specifically, to better demonstrate the key ideas of the
algorithm, some details are not shown in the algorithm defini-
tions, which have great impact on the algorithm performance
and efficiency: 1) In both Alg. 1 and Alg. 2, the candidate
sub-goals are only nodes on the frontier of each partial map
that are not dead ends. To improve efficiency, candidates may
be limited to nodes near its current node, at the expense
of some performance loss. 2) In Alg. 2, while calculating
Zn Cs,, for all combinations of one RG, we only need to
sum the counterpart for each cluster, without going through
every combination; a cluster is a minimal set of robots that
includes all "best teammates" of the robots in the cluster. 3)
In Alg. 3, Alg. 1 or Alg. 2 only needs to be called when
the partial map is updated or some members of the RG are
changed. 4) In both Alg. 1 and Alg. 2, when deciding sub-
goal(s), an e—greedy model [15] can be applied to escape
local optimums: we select the "best" sub-goal(s) with a
probability €, and other candidates with an even chance.

Algorithm 3: HPR-TCGRE (G, Vo, V)

1 Initialize paths for all robots Py, = [0] * N;

2 Initialize total cost total_cost = 0;

3 Initialize every robot’s partial map GY = 0, Vn;
4 Initialize the list of all robot groups RG" = (;
sfort=1tT—1do

6 | Update RG' and partial maps G?,Vn;
7 | for RG € RG' do
8 if |RG| =1 then
9 P, C = Individual (G, 1}, V,[n]);
10 edge = P[0]; cost =cost of edge;
u Ppnin[n].append(edge);
12 total_cost = total_cost + cost;
13 Update its coordinate I%, = edgel[1];
14 if I!, = V4[n] then
15 L Ignore n while updating RG'™;
16 else
17 Share partial maps Gire = Uynerg Ghs
18 P, C = Coordination
(Gha: Lra, RG, Vy):
19 for n € RG do
20 edge = P[n][0]; cost =cost of edge;
21 Pin[n].append(edge);
2 total_cost = total_cost + cost;
23 Update its coordinate I = edge[l];
24 if I!, = V,[n] then
25 L Ignore n while updating RG'™!;

26 return P,,;.., total_cost

VI. RESULTS
We conduct a simple case study to explain the algorithms

and experiments on a variety of large graphs of the same
size but different structures to evaluate the effect of number
of robot types, size of sensing region, and size of communi-
cation range on the algorithm performance. We also conduct
ablation experiments to evaluate each part of the algorithm.
A. Experiment Settings

We vary the number of robot types (labeled "#" in the
results), sensing factor (the factor multiplying the graph
length is the sensing distance, within which the nodes and
edges can be detected), and communication factor (similar
to sensing factor), which represent the three relaxations we
have in this problem. The two sensing/communication factors
are common for every robot; the common factors need to
multiply another unique coefficient for each robot type to
simulate the definition of an edge cost in the problem. For
each setting, we run the algorithms in 100 graphs. Every
graph is randomly generated with 20 nodes, 50% edges with
base cost in [40,60], half among which are risky edges with
50% cost reduction if coordination happens, and random
starts and goals for 10 robots. Since HPR-TCGRE is a new
and complex problem, there is no state-of-the-art algorithm
to compare against, and we conduct an ablation experiment
with the following baselines: 1) The naive approach where
every robot is moving individually without coordination
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(labeled "Naive"). 2) Alg. 3 without consideration of future
coordination (labeled "w/o. C3"). 3) Alg. 3 with an e-greedy
model while deciding sub-goal(s) (labeled "w/. €"), where
e = 0.1. Furthermore, because we are experimenting on
large graphs with a lot of risky edges, we are only using
RHOCA [9] for TCGRE in Alg. 2. As heuristic algorithms
sometimes get stuck in the dead ends, so we additionally set
that a node can be only visited at most 5 times in "Alg. 3" and
"w/o. Cs", in contrast to the probability model in "w/. €".

B. Results

1) Case study: We first use a simple graph as a case study
to explain how each algorithm works, as in Fig. 3. To make
it easier to explain, we assume 1) it is an undirected graph
with no risky edge, 2) if a robot senses an edge, it can also
sense both endpoints; 3) if two robots’ communication ranges
overlap, they share partial maps; 4) edge cost is the edge
length. In this graph, G starts from node 2 and attempts to
reach node 11, R from 4 to 1, and B from 14 to 8.

G and B start sharing partial maps in the beginning.
At the moment, communication does not help navigation
because their sensing regions are not connected, so "w/o.
C3" and Naive will give the same first step — G reaches 6,
R reaches 8, and B reaches 13 — to minimize their estimated
individual cost C +Cs. Next, "w/o. C3" and Naive will both
move R back to 4, for a minimal C; + C5. Without limited
revisitation, R will be stuck in 4 and 8 back and forth; even
with limited revisitation, R will go for 9 — 5 — 3 before
moving to 7, for the same reason. Similarly, B will move
to 12 before reaching 11. G will reach its goal smoothly
because of the graph structure.

However, Alg. 3 assumes G and R are best teammate in
the beginning and tries to make their sub-goals closer to
minimize C; + Cy + C3, so R will reach 9 instead of 8; G
and B will still move to 6 and 13. Then, G and R can both
sense 7, which will make their sensing regions connected,
which will provide R with a path to 2 and thus avoid the
dead end, node 3. Meanwhile, B at 13 will also be able to
communicate with R at 9, and R becomes B’s best teammate,
which also helps B move to 11 instead of 12. As a result,
Alg. 3 produces paths as shown in Fig. 3. "w/. €" is likely
to follow the same greedy strategy as Alg. 3, but also has a
chance of ¢ to select alternative nodes in each step.

Yet, this is only one case for explanatory purpose, not
representative of the general case, so we conduct more
experiments with the setting stated in the Sec. VI-A.

s factor ¢ factor # types avg cost avg runtime
0.2 0.3 2 176 1.0366
0.2 0.3 4 158.2 1.8264
0.2 0.3 6 188 1.6522
0.2 0.3 8 137.4 0.4232
0.2 0.3 10 169 1.0004

TABLE I: Average cost and runtime with # robot types.

#line s factor cfactor Alg.3 w/.e w/o.Cs Naive
1 0.1 0.3 113 159 129 241
2 0.1 0.4 100 149 104 237
3 0.1 0.5 119 124 131 244
4 0.1 0.6 122 121 119 240
5 0.1 0.7 123 108 121 245
6 0.15 0.3 112 122 118 245
7 0.15 0.4 123 115 118 230
8 0.15 0.5 108 125 118 246
9 0.15 0.6 104 131 116 234
10 0.15 0.7 100 96 119 241
11 0.2 0.3 100 115 101 237
12 0.2 0.4 117 112 116 237
13 0.2 0.5 110 116 118 235
14 0.2 0.6 107 109 105 235
15 0.2 0.7 98 110 102 235
16 0.25 0.3 98 106 97 238
17 0.25 0.4 110 116 88 236
18 0.25 0.5 82 120 111 229
19 0.25 0.6 97 106 116 234

20 0.25 0.7 111 103 108 230
21 0.3 0.3 100 97 92 229
22 0.3 0.4 108 99 93 226
23 0.3 0.5 91 101 111 233
24 0.3 0.6 96 89 102 224
25 0.3 0.7 96 125 92 235

TABLE II: Average cost w/. sensing/communication factors.

2) Robot types: Theoretically, the runtime does not
change with the number of robot types, because the com-
putation time to construct and search on JSG [1] for TCGRE
remains the same. JSG is not implemented because the large
size of our graphs. We conduct some small experiments to
verify our theory, as shown in the Table. I.

The table is the average results of our proposed algorithm
in 10 random graphs with 20 nodes and 10 robots. As is
shown, there is no particular pattern for the average cost
and runtime as the number of robot types increases, because
the parameters for each robot type are randomly generated.
Therefore, in the next section, we fix its value at 2.

3) Sensing and communication factors: We use factors
instead of the actual sensing and communication ranges in
the experiments because their significance varies with the
graph size. Instead, a factor is directly related to how many
information exchanges a robot potentially needs on average
to know the whole graph or communicate with other robots.
The range of communication factor is larger than that of the
sensing factor as is the most cases in the real world.

The average cost of all 25 lines in Table. II would be 106
for Alg. 3, 115 for "w/. €", 110 for "w/o. C3", and 236
for Naive, so Alg. 3 with limited revisitation outperforms
all other baselines. In the experiment setting, there are 50%
risky edges among all edges, each with 50% cost reduction
after coordination, which leads to an expected overall cost



s factor  Alg3|l w/.el w/o.C3l Naivel
0.1 115 132 121 242
0.15 109 118 118 240
0.2 106 112 108 236
0.25 100 110 104 234
0.3 98 102 98 230

TABLE III: Average cost with sensing factor.

reduction rate of 25% from coordination. However, Alg. 3
reduces 55% cost compared to the Naive approach, which
indicates the algorithm modifies path selection by a large
percentage. Surprisingly, limited revisitation works much
better than an epsilon greedy model here, as Alg. 3 and
"w/o. C3" both beat "w/. €". (More unlisted experiment
results without limited revisitation also point to the same
conclusion.) Moreover, the fact that Alg. 3 tops "w/o. C3"
verifies that our best teammate prediction method in Alg. 2
is also effective.

By averaging lines from Table. II, we can observe the
impact of each factor, as in Tables. III and IV. In Table III,
it is clear that the average cost decreases with increasing
sensing factor, which is reasonable, since the larger region a
robot can sense, the more information it can gather to help
navigation. However, to our surprise, this is not the case
for the communication factor in Table. IV, likely due to the
limited size of the graph. As there are 10 robots in a 20-node
graph, a communication factor of 0.3 is already large enough
for every robot to communicate with one another via multi-
hops. Increasing the value does not make any difference in
a 20-node graph, and the fluctuation in Table. IV is caused
by random graph structure. A fix would be either decreasing
its value or increasing the graph size. However, decreasing
this value will force a smaller sensing factor, which makes
it harder for robots to find candidate sub-goals; it is also
very difficult to increase the graph size, as the runtime will
increase dramatically, unless we reduce the number of robots.
In the future, we will try to improve our algorithm efficiency
and expand the experiments into larger graphs.

VII. CONCLUSIONS AND DISCUSSIONS

We study a more general version of TCGRE [9], called
HPR-TCGRE, by relaxing three assumptions with Heteroge-
neous robots, Partial observability, and Realistic commu-
nication. We construct a new combinatorial optimization
problem based on the previous one [9]. (Some equations from
previous work are not elaborated due to page limit.) After
analysis, we break down the problem into two sub-problems:
individual movement and coordination. The coordination
sub-problem is then broken into TCGRE problems inside their
shared local partial maps of robot groups. Globally for the
group we solve the multi-choice knapsack problem with an
estimated cost model considering future coordination.

Our HPR-TCGRE problem is difficult as the robots are
moving in an unknown environment without prior knowl-
edge about the environment in the beginning. We apply
a communication model to help them explore the graph
and enable coordination. But the model is not completely
realistic, because we are not considering the transmission
cost function and the transmission time; both involve how

c factor Alg3 w/.e w/o.C3 Naive
0.3 105 120 107 238
0.4 112 118 104 233
0.5 102 117 118 238
0.6 105 111 112 234
0.7 106 108 108 238

TABLE IV: Average cost with communication factor.

much graph information they need to exchange at once and at
what distances they should exchange the information, which
may also introduce a data filtering mechanism to decide
which nodes and edges are worth going to. Furthermore, we
use an estimated cost model that considers future coordina-
tion, because robots fall into individual moving mode and
coordination mode interchangeably, and they are not really
two independent sub-problems. However, the estimation may
not work very well in complex environments, as it is a simple
linear model. In the future, it may be necessary to develop
a teammate position prediction mechanism, with which the
problem can be solved in a more comprehensive manner.
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