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Fig. 1: Human Trajectory Prediction Using Human Skeletal Keypoints from 360° Robot Egocentric Camera View.

Abstract— Predicting human trajectory is crucial for social
robot navigation in crowded environments. While most existing
approaches treat human as point mass, we present a study
on multi-agent trajectory prediction that leverages different
human skeletal features for improved forecast accuracy. In
particular, we systematically evaluate the predictive utility of
2D and 3D skeletal keypoints and derived biomechanical cues as
additional inputs. Through a comprehensive study on the JRDB
dataset and another new dataset for social navigation with
360° panoramic videos, we find that focusing on lower-body
3D keypoints yields a 13% reduction in Average Displacement
Error and augmenting 3D keypoint inputs with corresponding
biomechanical cues provides a further 1-4% improvement.
Notably, the performance gain persists when using 2D keypoint
inputs extracted from equirectangular panoramic images, indi-
cating that monocular surround vision can capture informative
cues for motion forecasting. Our finding that robots can forecast
human movement efficiently by watching their legs provides
actionable insights for designing sensing capabilities for social
robot navigation.

I. INTRODUCTION

Accurate multi-agent trajectory prediction is a key en-
abler for social robot navigation. As robots are extensively
deployed in human-centric environments such as hospitals,
campuses, and public venues, it increases the demand for
robots’ ability to anticipate human trajectories. This capa-
bility is essential for navigating safely and efficiently while
respecting social norms and comfort of nearby people [1]–
[4].
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While much of the literature still represents humans as
points on 2D maps or bird’s-eye view (BEV) tracks, multi-
agent trajectory prediction can benefit from human visual
features. Data-driven methods [5]–[8] perform well on BEV
datasets but abstract away visual cues such as body pose,
gaze, and gait. This abstraction is limiting for human-robot
interaction with short histories and occlusions due to corners
and doorways [9]. Recent work begins to close this gap by
injecting human visual cues into forecasting models.

Similar to humans who use head and eye movement to
observe the surrounding environments, robots in human-
crowded environments can also benefit from surround-view
perception to ensure safety and other social navigation ob-
jectives. While a single front-facing camera can miss people
approaching from sides and behind with a limited field of
view, a 360° RGB camera offers full coverage for perceiving
nearby humans and capturing incoming trajectories from all
directions. Recent development has made 360° RGB camera
a low-cost sensor modality for mobile robots. Although its
equirectangular images introduce distortion and horizontal
wrap-around, these effects are well understood and tractable
with standard engineering.

Motivated by the potential of rich first-person-view visual
cues and 360° RGB camera (Fig. 1), this paper presents
a study on which visual information, particularly skeletal
regions and derived cues, matter the most for multi-agent
trajectory prediction, and how useful 2D keypoints from
equirectangular images are in practice. Based on Human
Scene Transformer (HST) [9], we compare the added values
of skeletal keypoints and derived biomechanical gait cues



from 2D and 3D pose for the trajectory prediction problem
on two egocentric robot perception datasets. From our study,
we observe the following:

• Lower-body 3D skeletal keypoints hold the most pre-
dictive values for our trajectory prediction task.

• 2D skeletal keypoints from equirectangular images im-
prove trajectory prediction despite distortion.

We translate these findings into practical recommendations
for feature selection and camera placement and outline future
directions.

II. RELATED WORK

We review related work in human trajectory prediction in
social navigation, human pose detection and intent predic-
tion, and existing egocentric perception datasets.

A. Human Trajectory Prediction for Social Navigation

Predicting human motion is crucial to social robot nav-
igation. Mavrogiannis et al. [10], [11] showed that pre-
dicting human trajectories can reduce discomfort around
robots, although current models need significant improve-
ments to increase robot navigation metrics. Deep learning ap-
proaches [5]–[8] model multi-agent interactions effectively,
but they represent humans as 2D points and are benchmarked
on bird’s-eye datasets like ETH/UCY [12], [13] and SDD
[14]. These approaches ignore rich human visual features
from robot egocentric perspective which are potentially ben-
eficial for predicting human motion.

Salzmann et al. [9] introduced the Human Scene Trans-
former (HST), showing that full-body 3D keypoints and
head orientation improve prediction from robot egocentric
perception. Gao et al. [15] proposed a portable pose encoder
that boosts trajectory forecasting, but evaluated mainly on
synthetic data or single-agent scenarios and focused on ego-
motion of single agents. Taking full-body pose as input,
however, no prior work has examined how different skeletal
regions and derived biomechanical cues affect multi-agent
human trajectory prediction in egocentric robot navigation.

Based on these insights, our study is the first to systemat-
ically compare different skeletal regions and biomechanical
cues for multi-agent trajectory prediction from robot ego-
centric perspective, aiming to identify which human body
signals matter most for socially aware prediction.

B. Human Pose Detection and Intent Prediction

Human skeletal pose detection has become practical
through 2D keypoint detectors [16]–[18]. These models
localize skeletal keypoints from RGB image frames, which
can then be lifted to 3D pose sequences by fitting parametric
human body models [19], [20] or learning human motion
representations [21]. This process provides temporally con-
sistent 3D skeletal keypoints usable for downstream tasks.

In autonomous driving, human pose is utilized to predict
path direction and street-crossing intention. Minguez et al.
[22] showed that focusing on leg and shoulder joints im-
proves path direction prediction. Zhang et al. [23] and Li
et al. [24] demonstrated the usage of derived biomechanical

Fig. 2: Diagram for 33-keypoint 3D skeletal pose with K3D
L

and K3D
U enclosed in green and orange boxes, respectively.

Adapted from MediaPipePose [30].

cues for intention prediction. While informative, these studies
focus on single-agent pedestrian direction and crossing intent
in driving scenarios and do not address trajectory prediction.

C. Egocentric Perception Datasets

Several datasets such as JRDB [25], SCAND [26], Mu-
SoHu [27], GND [28], and CODa [29] provide percep-
tion data from egocentric-view sensors. However, SCAND,
CODa, most of MuSoHu, and part of GND do not provide
full surround RGB views, which are crucial for detecting
skeletal keypoints of all nearby humans. SCAND, MuSoHu,
and GND additionally lacks trajectory annotation and fea-
tures relatively sparse interaction with humans. Although
JRDB also lacks social navigation behaviors as the robot is
often stationary, it remains a useful benchmark for our study
with trajectory and keypoint annotations from full surround
views. To better capture the dynamics of mobile service
robots operating in human environments, we introduce in
Section III-B a new dataset that emphasizes realistic naviga-
tion interactions with desired perception data.

III. METHODOLOGY

We formulate the problem of multi-agent trajectory pre-
diction from egocentric perception and set the stage for our
study on the values of different visual features in solving this
prediction problem. We also present details of our datasets
and implementations to facilitate our study.

A. Problem formulation

For our study on the predictive value of skeleton-based
keypoint features, we formulate the problem of multi-agent
trajectory prediction from robot egocentric perception as
follows: Let At denote the set of agents observed at time
t. For each agent i ∈ At, let x(i)

t ∈ R2 be its 2D position
in the robot-egocentric frame. Given a history window of
length H , define the past trajectories

Xt−H+1:t =
{
x
(i)
t−H+1:t

∣∣ i ∈ At

}
. (1)



The prediction target is each agent’s future positions over a
horizon of F steps,

Yt+1:t+F =
{
x
(i)
t+1:t+F

∣∣ i ∈ At

}
. (2)

We learn a predictor fθ that models a (potentially multi-
modal) distribution over futures conditioned on past motion
and optional egocentric visual features:

pθ

(
Yt+1:t+F

∣∣∣Xt−H+1:t, Gt−H+1:t(s)
)
, (3)

where Gt−H+1:t(s) denotes additional information detected
from onboard perception (such as skeletal keypoints) and
subsequently derived for observed agents based on feature
configuration s. In particular, for observed agent i ∈ At,

G
(i)
t−H+1:t(s) = K

(i)
t−H+1:t(s) ∪ C

(i)
t−H+1:t(s),

where K
(i)
t−H+1:t(s) denotes the set of keypoints available

for configuration s and C
(i)
t−H+1:t(s) denotes corresponding

derived cues.
In our study with two datasets (see Section III-B), G

instantiates different feature configurations s to enable con-
trolled comparisons under a fixed training protocol. For 3D
skeletal pose, we define K3D ,K3D

L , K3D
U to be the set of

all 33 keypoints, the subset of 10 lower-body keypoints,
and the subset of 10 upper-body keypoints, respectively
(see Fig. 2). Subsequently, C3D

L derived from K3D
L includes

leg articulation angles and step length, K3D
U includes arm

articulation angles and head orientation derived from K3D
U ,

and C3D = C3D
L ∪ C3D

U . For the 2D skeletal pose with
standard COCO 17-keypoint format, we define K2D and
K2D

L to be the set of all 17 keypoints and the subset of
6 lower-body keypoints from the hips down, respectively.

On JRDB, we conduct two sets of experiments. In the first
experiment, we evaluate the impact of different 3D skeletal
feature configurations to quantify the relative predictive value
of skeletal regions and whether derived indicators provide
complementary gains. In the second experiment, we directly
compare 2D and 3D skeletal inputs, training on the publicly
available 2D annotations from JRDB-Pose alongside 3D pose
estimates, to assess how much predictive performance is lost
when only 2D features are available.

For our new dataset, we focus on the predictive utility of
2D skeletal inputs extracted from equirectangular panoramic
images. We specifically evaluate whether 2D keypoints from
distorted panoramic imagery provide useful predictive cues,
and whether restricting inputs to lower-body keypoints yields
stronger improvements than using the full 2D skeleton.
This tests our hypothesis that leg motion provides the most
informative signals for short-term trajectory forecasting, even
under uncorrected panoramic distortion.

B. Datasets

We base part of our evaluation on JRDB [25], a large-
scale dataset collected from a mobile social robot with
LiDAR and 360° stereo camera in pedestrian zones and
indoor environments. JRDB provides multimodal egocentric
perception and ground-truth annotations for human detection

and tracking. A later version JRDB-Pose supplies 2D skeletal
keypoints labels for all humans around the robot in COCO
17-keypoint format. Building on this foundation, HST used
parametric human body fitting [19], [31] to estimate 3D
skeletal keypoints for humans around the robots with a 33-
keypoint format and made them publicly available. Although
these methods may not be suitable for onboard real-time
detection and tracking capabilities, they provide high-quality
ground truth for skeletal representations that can convey
intent and gait. We adopt JRDB and its pose extensions as
a baseline to compare the gains from 2D and 3D skeletal
features as well as derived mechanical cues and the predictive
power of lower-, upper-, and full-body features for trajectory
prediction.

To complement JRDB, we additionally use a new social
navigation dataset that will be released with the final version
of this paper. In this dataset, a teleoperated robot navigates
through dense human crowds in indoor campus canteens
and hallways in a socially compliant manner to reach goals
implicitly determined by the operators. The platform is an
AgileX Scout Mini equipped with an Insta360 X4 cam-
era, producing equirectangular panoramic images for full
surround-view coverage, along with other onboard sensors.
We employ HRNet [17] with MMPose [32] to detect and
track humans and their 2D skeletal keypoints in image
space, then convert the trajectories to robot Cartesian space
using the pipeline by Bacchin et al. [33], which leverages
the properties of equirectangular images and the flat-ground
assumption. This yields continuous 2D tracks of humans
together with their 2D skeletal poses in COCO 17-keypoint
format. Despite panoramic distortions near upper and lower
image boundaries, the Insta360 X4 camera provides a full
vertical field of view and reliably captures full-body poses at
close range (see Fig. 4). By contrast, the stitched 360° images
in JRDB have a limited vertical field of view and often crop
out the lower body and upper body of nearby pedestrians (see
Fig. 4). In total, our dataset comprises 3 hours of socially-
compliant and goal-oriented navigation, about three times the
duration of JRDB. Unlike JRDB, where the robot frequently
remains stationary or operates in relatively sparse outdoor
settings, our dataset better reflects dynamic social navigation
scenarios where the robot interacts with and navigates in
dense human flows, making trajectory prediction a more
challenging problem while imitating the real scenarios that
mobile service robots encounter.

C. Implementation Details

We use the HST as the backbone for all experiments. It
offers a flexible architecture for the multi-agent trajectory
prediction problem as its modular design and attention
mechanism make it straightforward to augment the model
with additional modalities like skeletal keypoints and derived
biomechanical cues. This extensibility allows us to perform
controlled comparisons under a consistent modeling frame-
work to ensure that observed differences in performance
arise from the features themselves rather than architectural
discrepancies.
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Fig. 3: Our robot AgileX Scout Mini setup with onboard
sensors: Insta360 X4 360° camera, Zed 2 RGB camera,
Velodyne VLP-16 LiDAR, and WitMotion IMU.

We re-implement the HST in PyTorch, closely following
the design and reference code released with the original
work. Each additional feature stream, such as skeletal key-
points, their subsets, and derived biomechanical cues, is
encoded with a lightweight MLP before being fused with
human trajectories for full self-attention across agent and
timestep dimensions. Biomechanical cues include head ori-
entation, step length, and limb articulation angles for both
arms and legs, which serve as compact indicators of motion
intent [34], [35]. All models are trained with the AdamW
optimizer, a batch size of 64, and configured to predict six
consistent future modes per sequence.

For both datasets, we subsample the sequences to 3 Hz and
train models to use information from six past timesteps (2s)
to predict human trajectories in the next 12 timesteps (4s),
ensuring consistent temporal resolution. We extract robot
positions from odometry data and transform all trajectories
into the robot’s egocentric frame at the first timestep of each
sequence.

D. Evaluation

During evaluation, we restrict metric computation to
pedestrians for whom at least partial keypoint observations
and position histories are available, ensuring feature parity
across comparisons. We report our results using four trajec-
tory prediction metrics, which capture geometric accuracy,
quality of multimodal predictions, and probabilistic sound-
ness of the predictive distribution:

• Minimum Average Displacement Error (MinADE):
the lowest average Euclidean distance between pre-
dicted and ground-truth trajectories across all sampled
futures;

• Minimum Final Displacement Error (MinFDE): the
lowest Euclidean distance between the predicted and
ground-truth positions at the final timestep;

TABLE I: Evaluation on 3D skeletal keypoints and cues on
JRDB

G(s) MinADE MinFDE MLADE NLLpos

∅ (baseline) 0.39 0.64 0.71 0.86
K3D 0.37 0.62 0.68 0.88

K3D ∪ C3D 0.36 0.60 0.62 0.80
K3D

U 0.38 0.58 0.83 0.82
K3D

U ∪ C3D
U 0.36 0.57 0.61 0.75

K3D
L 0.34 0.57 0.61 0.65

K3D
L ∪ C3D

L 0.34 0.57 0.69 0.67

• Most Likely Average Displacement Error (MLADE):
the average Euclidean distance between the most likely
mode and ground-truth trajectories; and

• Negative Log-Likelihood of Positions (NLLpos): the
negative log-likelihood of the ground-truth trajectory
under the model’s predicted probabilistic distribution.

IV. RESULTS AND DISCUSSION

We present our experiment results and discuss the findings
to make recommendations for future feature selection and
camera placement for human trajectory prediction.

TABLE II: Evaluation of 3D vs. 2D skeletal feature config-
urations on JRDB

G(s) MinADE MinFDE MLADE NLLpos

∅ (baseline) 0.42 0.62 0.72 1.08
K3D 0.39 0.56 0.65 0.88
K3D

L 0.37 0.54 0.64 0.77
K2D 0.41 0.6 0.74 1.08
K2D

L 0.41 0.59 0.72 0.97

TABLE III: Evaluation of 2D keypoints detected from
equirectangular images on our dataset

G(s) MinADE MinFDE MLADE NLLpos

∅ (baseline) 1.1 1.44 1.86 3.1
K2D 1.02 1.34 1.6 2.8
K2D

L 1.03 1.35 1.73 2.86

A. Predictive Value of Lower-body Keypoints

Table I presents the experimental results for different
configurations of 3D skeletal keypoints on the JRDB dataset.
The result shows that restricting additional inputs G(s) to
lower-body 3D keypoints K3D

L yields the largest combined
gains over the baseline across all metrics. In particular, K3D

L

reduces MinADE by 13%, minFDE by 11%, MLADE
by 14%, and NLLpos by 24%, indicating that leg mo-
tion features carry the strongest predictive signal for our
trajectory prediction task. Full-body K3D and upper-body
K3D

U configurations also outperform the baseline, but both
trail K3D

L . We further observe that augmenting keypoints



Fig. 4: Sample panoramic images from JRDB (left) and our dataset (right). In JRDB, nearby humans are cropped due to the
camera’s limited vertical field of view, while in our dataset, full 2D keypoints can be detected even at distances below 1m.

with derived biomechanical cues improves the corresponding
configurations by 1-4%. This suggests that while the cues are
beneficial, the primary information is already well captured
by 3D keypoints encoding under this training regime.

B. 3D versus 2D Keypoints on JRDB

We compare the 3D and 2D skeletal inputs on a paired
subset of JRDB in which both features are available to
ensure parity. As shown in Table II, the 3D input provides
better predictive value for the trajectory prediction task. Both
2D keypoints K2D and their lower subset K2D

L yield only
marginal changes on MinADE, whereas K3D and K3D

L

yields 7% and 12% respectively. This is consistent with what
we observe in Section IV-A. Two factors likely explain the
minimal 2D gains on JRDB: (i) training and evaluation are
done on a smaller dataset, and (ii) JRDB’s 360° camera often
crops lower and upper body parts of nearby pedestrians,
degrading the quality of image-based 2D pose more than
that of 3D pose, which is obtained via sequence-level human
parametric fitting.

C. 2D Keypoints from Equirectangular Images

Table III reports results on our social navigation dataset
collected with an Insta360 X4. Full-body 2D keypoints K2D,
extracted from equirectangular images without distortion
correction, reduce MinADE by 7% relative to the baseline,
with similar trends across other metrics. We attribute part of
these gains to full vertical field of view of equirectangular
images, which captures complete pose even at close range,
mitigating the issues observed on JRDB. However, the dif-
ference between K2D and K2D

L is not significant, which is
consistent with what we see in Section IV-B and motivating
future analysis on when using lower-body 2D keypoints is
preferable.

D. Discussion

1) Sensor placement for surround-view: Fig. 3 shows our
robot hardware setup. The 360° camera is mounted at 0.85m
from the ground, approximately half of average adult height.
This placement reduces extreme equirectangular distortion
near upper and lower image boundaries on nearby humans
and likely contributes to the gains we see with 2D keypoints.
Practitioners can take it into account together with this
paper’s key results to consider proper sensor placements that
balance perception capabilities and human’s comfort.

2) Sensor choice: While a single off-the-shelf 360° cam-
era is simple and low-cost, a multi-fisheye rig can integrate
more easily with different robot form factors and retain
maximum vertical field of view. For social navigation, this
can improve leg visibility and tracking continuity, especially
near corners and obstacles.

3) Human 3D Keypoint Detection On Equirectangular
Images: Recent work [36] outlines a practical path: learn
an accurate fisheye-to-equirectangular projection model, fine-
tune 2D keypoint detectors on synthetic panoramic data, and
then perform 2D-to-3D lifting. This pipeline applies to both
single 360° and multi-fisheye configurations and can improve
3D pose quality and achieve real-time processing capability
for downstream tasks.

4) Future Work: While we standardize our evaluation
on HST to isolate feature effects as embedded additional
inputs are treated equally with simple encoders, our re-
sults could still be backbone-sensitive and confirming the
results across distinct suitable backbones remains future
work. Furthermore, our study does not explicitly consider
other social cues such as gestures and group behaviors that
could affect pose and alter feature importance. To explore
further improvements, one can consider using more complex
encoding scheme for skeletal representations [15], [37], [38]

V. CONCLUSION

This study investigates the predictive values of different
sets of human skeletal keypoints for multi-agent trajectory
prediction from robot egocentric perception. From the study,
we observe two key findings. First, lower-body 3D skeletal
keypoints provide the most predictive value. Incorporating
the set of 3D lower-body keypoints yields the highest gain
of 13% ADE reduction over a baseline that uses only 2D
position histories for trajectory prediction task on JRDB.
Using biomechanical cues such as limb articulation angles
and head orientation, derived from corresponding sets of 3D
skeletal keypoints, yields an additional improvement of 1-
4%. Second, 2D skeletal keypoints from equirectangular im-
ages from the 360°camera improve prediction, even with dis-
tortion. On our collected social navigation dataset, 2D body
keypoints extracted from equirectangular panoramic images
improve performance by 7% over the same baseline. These
findings indicate that skeletal keypoints, especially in lower-
body region, and corresponding biomechanical cues capture



important information about human motion for trajectory
prediction. We expect this paper to serve as a reference
for designing robust human trajectory prediction system for
mobile robots to achieve more socially compliant navigation.
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