
Learning from Hallucinating Critical Points for
Navigation in Dynamic Environments

Saad Abdul Ghani1, Kameron Lee2, and Xuesu Xiao1

Abstract— Generating large and diverse obstacle datasets to
learn motion planning in environments with dynamic obstacles
is challenging due to the vast space of possible obstacle trajecto-
ries. Inspired by hallucination-based data synthesis approaches,
we propose Learning from Hallucinating Critical Points (LfH-
CP), a self-supervised framework for creating rich dynamic ob-
stacle datasets based on existing optimal motion plans without
requiring expensive expert demonstrations or trial-and-error
exploration. LfH-CP factorizes hallucination into two stages:
first identifying when and where obstacles must appear in order
to result in an optimal motion plan, i.e., the critical points,
and then procedurally generating diverse trajectories that pass
through these points while avoiding collisions. This factorization
avoids generative failures such as mode collapse and ensures
coverage of diverse dynamic behaviors. We further introduce
a diversity metric to quantify dataset richness and show that
LfH-CP produces substantially more varied training data than
existing baselines. Experiments in simulation demonstrate that
planners trained on LfH-CP datasets achieves higher success
rates compared to a prior hallucination method.

I. INTRODUCTION

Dynamic obstacles present a fundamental challenge for
autonomous mobile robots, as their trajectories reside in a
vast and high-dimensional space. Describing obstacle trajec-
tories with velocity, acceleration, and higher order derivatives
adds dimensions to the space, making it difficult for planners
to anticipate and respond to complex motion patterns in
real time. Consequently, intelligent navigation strategies must
account for these dynamics and react in real time to avoid
collisions effectively.

Learning-based models have recently demonstrated suc-
cess in navigating such environments by leveraging collected
data [1]. Two dominant paradigms—Imitation Learning
(IL) and Reinforcement Learning (RL)—provide structured
ways to gather and learn from experience. However, both
paradigms face critical limitations: IL requires large numbers
of expert demonstrations, while RL demands extensive trial-
and-error exploration. Moreover, robust planners depend on
training datasets that are sufficiently diverse to capture the
variability of dynamic obstacles. As a result, learning-based
planning has not performed to the same extent as in vision
and language domains, where internet-scale labeled datasets
are readily available.

The Learning from Hallucination (LfH) paradigm [2] pro-
vides a compelling solution to this challenge by synthesizing
training data from prior navigation experiences. LfH takes

1George Mason University {sghani2, xiao}@gmu.edu
2Thomas Jefferson High school intern affiliated with the RobotiXX Lab,

George Mason University. 2027klee@tjhsst.edu.

Fig. 1: A mobile robot’s optimal path around the hallucinated
critical point and its generated paths using LfH-CP.

past motion plans from simpler, even fully open environ-
ments and generate more constrained and complex scenarios,
where those prior plans would be optimal. This process,
known as “hallucination”, enables safe and inexpensive cre-
ation of large datasets without relying on expensive expert
demonstrations or extensive trial-and-error exploration. How-
ever, prior methods often produce datasets with limited diver-
sity, constraining their applicability and scalability, especially
when facing the vast and high-dimensional space of dynamic
obstacles [3], [4].

In this work, we introduce Learning from Hallucinating
Critical Points (LfH-CP), a self-supervised framework for
generating rich datasets of dynamic obstacle trajectories.
LfH-CP factorizes hallucination into two stages: first iden-
tifying the critical points of obstacle trajectories—specific
times and locations obstacles must appear in order to result
in an optimal motion plan—and then procedurally generating
diverse trajectories with varying orders of complexity that
pass through these points while avoiding collisions. These
generated obstacle trajectories and original motion plans
can then be used to train motion planners in a supervised
manner. To quantify the richness of the generated datasets,
we introduce a diversity metric and show that LfH-CP pro-
duces substantially more varied training data than existing
methods. We validate these results in simulated experiments
on a ground robot, demonstrating that planners trained on
LfH-CP datasets achieve superior navigation performance
compared to prior hallucination-based baselines. In summary,
this work makes the following contributions:

• Propose LfH-CP, a self-supervised framework for gen-
erating large and diverse datasets of dynamic obstacle
trajectories.

• Introduce a diversity metric to quantify dataset richness.
• Demonstrate effectiveness of LfH-CP through simulated

robot experiments.
• Release code on GitHub to facilitate future research1.

II. RELATED WORK

This section reviews learning based techniques used in
autonomous mobile robots for navigating in dynamic envi-
ronments. It also reviews the recent LfH paradigm.

A. Machine Learning for Dynamic Obstacle Avoidance
Machine learning has been leveraged in mobile robot

navigation in various ways [1], such as either integrating
learning with classical methods [5]–[9] or using IL [10], [11]
or RL [12]–[14] to develop end-to-end planners [15], [16].
Going beyond simple obstacle avoidance [17]–[19], learning
is heavily used in social robot navigation where classical
methods fail to calculate trajectories for human-populated
spaces [11], [20]–[23]. Another use case is off-road nav-
igation, in which learning can help to reason about the
unstructured terrain underneath the robot [24]–[29]. Learning
approaches can also directly navigate robots with RGB
input alone [30]–[35]. Furthermore, advanced methods are
emerging that seek richer representations of the environment,
such as Inverse Reinforcement Learning (IRL) [36] to infer
agent intent and Graph Neural Networks (GNNs) [37] to
model the relational dynamics between multiple agents.

However, despite their success, most learning methods
require either high-quality (IL) or extensive (RL) training
data, such as those derived from human demonstrations or
from trial-and-error exploration respectively, both of which
are very difficult to acquire among dense and dynamic
obstacles. LfH-CP is a self-supervised learning approach
that automatically generates diverse training data, addressing
the conundrum of needing to know what good navigation
behavior is, without prior knowledge of how to achieve it.

B. Learning from Hallucination (LfH)
LfH [2]–[4], [38], [39] has been proposed to alleviate

the difficulty of acquiring high-quality or extensive training
data using completely safe exploration in open spaces or
existing successful navigation experiences. Based on existing
motion plans, the idea of hallucination is to generate obstacle
configurations in which the existing plans would be optimal.
Hallucination allows robots to reflect on past success and
produces other training scenarios where such successful
navigation can be repeated. Researchers have designed hal-
lucination techniques to project the most constrained [2], a
minimal [4], or a learned [3], [39] obstacle configuration
onto the robot perception. Hallucination has also been used
to enable multi-robot navigation in narrow hallways [38] and
to augment existing global motion plans for which the global
path is optimal [40].

However, the learned hallucination approaches [3], [39]
face a fundamental problem that limits their generalization

1https://github.com/Saadmaghani/LfH-CP

and usefulness. Dyna-LfLH [39] extends LfLH [3] by incor-
porating a velocity component in the hallucination model.
Though this approach theoretically works well, the learnable
components tend to mode collapse in the presence of the
fixed, optimal decoder. LfLH, in comparison, can partially
overcome mode collapse by hallucinating more obstacles
in static environments. With dynamic obstacles, however,
adding too many hallucinated obstacles can give the illusion
of a safe “tunnel” where the the robot is never at risk of
collision.

In this work, we introduce LfH-CP, which hallucinates
realistic instantaneous obstacles at critical points and gener-
ates dynamic obstacle trajectories from them. This approach
enables the safe and efficient generation of diverse, complex
training scenarios for learning motion planners to navigate
through highly cluttered, fast-moving, and unpredictable ob-
stacles.

III. APPROACH

In this section, we begin by presenting the motion planning
problem in dynamic environments and introduce the notion
of critical configurations. Using this notion, we reformulate
the problem under the Learning from Hallucination (LfH)
paradigm, which provides the foundation for our proposed
LfH-CP approach, visualized briefly in Fig. 2.

A. The Motion Planning Problem
Motion planning is often framed in the configuration space

(C-space), which represents all possible robot configurations
in a given environment. It is split into Cobst, the set of
infeasible configurations blocked by obstacles or restricted
by kinodynamic constraints, and Cfree = C-space \Cobst, the
set of feasible configurations. In dynamic environments, the
C-space evolves over time, yielding Ctobst and Ctfree where
t ∈ {1, . . . ,H} over a discrete time horizon H .

A motion plan is a sequence of actions that moves the
robot from its current configuration cc to a goal configuration
cg through intermediate configurations ct such that ct ∈
Ctfree,∀t. The planning problem is then to find such a function
that generates such feasible plans. Formally,

p = f({Ctobst}Ht=1 | cc, cg),

where p = {ut}H−1
t=0 , ut ∈ U, and U denotes the robot’s

action space. An optimal planner f∗(·) seeks an optimal plan
p∗ that minimizes a given cost, such as travel time or path
length.

B. The Critical Configurations
We posit that an optimal plan p∗ does not depend on

the full time-varying obstacle configurations {Ctobst}Ht=1, but
rather on a smaller subset of time steps, which we term the
critical configurations, denoted as K:

K = {Ctobst | t ∈ T}, T ⊆ {1, 2, . . . ,H}, (1)

where T represents the critical time step(s). For other time
step(s), the entire C-space can be free.

The intuition is simple: when navigating around a moving
obstacle, the obstacle configurations only strongly influence

https://github.com/Saadmaghani/LfH-CP

(a) (b) (c) (d)

Fig. 2: The LfH-CP method visualized for motion plan (green) and one obstacle (red). We first learn where the obstacle
should be to make our plan optimal using Eqn. 4 (Fig. 2a). Then using Eqn. 6, we learn where the obstacle should be
temporally to make the plan optimal (Fig. 2b,2c). Finally using Eqn. 7, numerous obstacle trajectories can be generated
from the obstacle’s critical point (Fig. 2d).

the avoidance behavior when being close to the robot, usually
instantaneously, while it matter less long before or after.
Consequently, the plan only needs to consider the obstacle
configurations at time steps T, rendering the obstacles
instantaneous and seemingly teleport in and out of existence
at their defined locations. Despite this abstraction, the motion
plan still remains feasible and optimal.

Formally, the planning problem can be reformulated as

p∗ = f∗(K | cc, cg).

This reformulation, however, raises the non-trivial problem
of identifying the critical configurations K from {Ctobst}Ht=1.
To address this, we leverage the LfH paradigm which enables
direct synthesis of the critical configurations K from past
motion plans p.

C. Reformulation in LfH paradigm
The LfH paradigm provides a natural way to tackle the

challenge of identifying critical configurations by solving
the inverse problem: given a motion plan p, hallucinate all
obstacle configurations such that p is optimal. Formally in
dynamic environments this is expressed as:

{{Ct,iobst}
H
t=1}∞i=1 = f−1(p | cc, cg),

that is, hallucinating all (possibly infinite) obstacle configu-
ration sequences over time horizon H that make p optimal,
given that p moves the robot from cc to cg .

In our reformulation, LfH would focus on hallucinating
the critical configurations directly:

{Ki}∞i=1 = f−1(p | cc, cg), (2)

representing all critical obstacle configurations that deter-
mine plan optimality.

Since it is impossible to predict all (infinite) possible
configurations, we approximate it using a learned distribu-
tion. Concretely, the hallucination function h(·) outputs a
distribution over the critical configurations:

K ∼ h(p | cc, cg). (3)

This formulation forms the basis of our LfH-CP approach.

D. Hallucinating Critical Points
The hallucination function is parameterized by learnable

parameters ψ and we learn hψ(·) in an encoder-decoder
manner. Similar to prior approaches, we assume Cobst can be
represented by a set of N circular obstacles {Oi}Ni=1 with a
fixed radii,

Cobst ≈ {Oi}Ni=1.

The distribution of obstacles can be represented by a Gaus-
sian over their locations:

{(xi, yi)}Ni=1 ∼ N(µi,Σi).

This assumption simplifies the problem of hallucinating ob-
stacle configurations to hallucinating parameter distributions.
hψ(·) is learned in two phases. In the first phase, we

learn where obstacles should be to make p optimal. The
encoder takes the motion plan, current robot configuration,
and goal configuration and outputs distributions over obstacle
locations:

{(µi,Σi)}Ni=1 = hψ(p | cc, cg).

To learn the distributions, the decoder d(·) is a classical mo-
tion planner without any learnable parameters that produces
an optimal plan p∗ given an obstacle configuration:

p∗ = d(Cobst ∼ hψ(p | cc, cg) | cc, cg).

The objective function is to minimize the reconstruction loss
between p and p∗:

ψ∗ = argmin
ψ

E
p∼P

p∗=d(Cobst∼hψ(p|cc,cg)|cc,cg)

ℓ(p, p∗). (4)

This ensures that obstacles are placed to make p optimal.
In the second phase we learn when obstacles should appear

by estimating T. In addition to the inputs and outputs in the
first phase, hψ(·) outputs logits αi ∈ RH for each obstacle.
αi is passed through the Gumbel-Softmax distribution to pro-
duce ki ∈ [0, 1]H , an H-dimensional probability distribution.

Scaling by the maximum value yields a soft, continuous mask
mi = ki/max(ki), representing the temporal presence of
obstacle i: mt

i = 0 indicates absence, mt
i = 1 indicates full

presence at time step t.
Finally, to construct T and K, the argument-maximum is

taken over m. Formally,

Cobst ≈ {Oi}Ni=1 ∼ {(µi,Σi, αi)}Ni=1 = hψ(p | cc, cg),

K ≈ {Ot
crit
i
i }Ni=1, tcrit

i = argmaxmi. (5)

For training, a soft version of the critical configurations,
Ksoft, is constructed directly from mi and passed to the
decoder:

p∗ = d(Ksoft ∼ hψ(p | cc, cg) | cc, cg),

allowing the decoder to account for partial obstacle presence.
The objective remains the same:

ψ∗ = argmin
ψ

E
p∼P

p∗=d(Ksoft∼hψ(p|cc,cg)|cc,cg)

ℓ(p, p∗). (6)

E. Rendering Obstacle Trajectories
The generation function g(K) uses the critical configu-

rations to generate unlimited obstacle trajectories over time
horizon H . Specifically,

{Ctobst}Ht=1 ≈ {{Oti}Ni=1}Ht=1 = g(K ∼ hψ∗(p | cc, cg)).
(7)

g(K) is not tied to a specific parameterization, but it must
satisfy two constraints: (i) each obstacle i must be at (xi, yi)
at t = argmaxmi, and (ii) generated trajectories must
remain collision-free with the plan p. Examples of g(·) are
functions that sample smooth trajectories from first, second,
or third order dynamics (see Eqn. 9), or piece-wise functions
that define obstacle motion over H .

F. Learning from Hallucinating Critical Points
After sampling critical points for all N obstacles from

hψ∗(·) and generating S obstacle trajectories using g(·), we
construct a supervised training dataset for IL:

Dtrain = {({Ct,jobst}
H
t=1, p

j , cjc, c
j
g)}Sj=1.

Here, each plan pj is (roughly) optimal for its corresponding
configuration space {Ct,jobst}Ht=1. The configuration space is
transformed into sensor observations (e.g., LiDAR scans via
ray tracing), enabling us to train a motion planner fθ(·) to
reproduce pj from {Ct,jobst}Ht=1. Formally,

θ∗ = argmin
θ

E
({Ctobst}

H
t=1,p,cc,cg)

∼Dtrain

[
ℓ(p, fθ({Ct

obst}
H
t=1 | cc, cg))

]
.

(8)
During deployment, fθ∗(·) will be used to plan around the

sensed dynamic environment.

IV. IMPLEMENTATION

In this section we discuss the particular instantiation of all
data and models discussed in Sec. III.

A. Learning hψ
We collect a dataset of motion plans P , where each plan

is a sequence of SE(2) robot configurations (xt, yt, ψt) and
linear and angular velocity actions (vt, ωt). Each plan is
segmented using a sliding window of size 233 (≈5 s of
odometry time). Configurations are expressed in the robot
frame, so cc = 0 and is omitted. The final configuration of
each segment is treated as the goal cg and is contained in p,
so it is not modeled separately.

The hallucination function hψ is implemented as a 3-layer
convolutional encoder (channels [16,32,64], kernels [5,5,3],
stride 2), followed by N autoregressive linear layers that
output µ, Σ, and α.

Training proceeds in two phases. In Phase 1 of training, hψ
is optimized for 1000 epochs to predict µ and Σ, generating
N = 10 circular obstacles (radius 0.5 m) centered at sampled
{(xi, yi)}Ni=1 coordinates. In Phase 2, the network learns α
over 1500 epochs. Initially, temporal masks mi = 1, i.e.
obstacle is present at all time steps. Over 1000 epochs, mi

is annealed to one-hot vectors at tcrit
i = argmaxmi via a

Gumbel–Softmax with temperature τ decaying from 2048
to 0.1. The final 500 epochs train with one-hot mi.

The decoder d is a re-implementation of Ego-Planner [41]
with convex optimization layers. It uses mi to scale obstacle
radii and safety clearances over time, so that mt

i → 0
nullifies collisions with obstacle i at time t.

The reconstruction loss is mean-squared error between
the input plan p and reconstructed plan p∗. Following prior
methods, we stabilize training by adding priors and penalties:
(i) a Gaussian prior fitted to p is imposed on obstacle centers,
biasing obstacles toward the trajectory; and (ii) penalties are
applied for obstacle–obstacle and obstacle–plan overlap.

B. Generating Dtrain

For generating Dtrain, we sample S1 = 1 critical point
per obstacle from hψ∗ for each pj ∈ P , forming Kj . To
isolate only the obstacles essential for optimizing the plan,
we filter based on reconstruction loss: obstacles are added
incrementally in order of contribution, and retained only if
they reduce the loss by at least 1%. The process stops when
no further improvement is observed or when Nmax = 7 is
reached. Finally, we require at least a 90% overall reduc-
tion in reconstruction loss relative to the baseline straight-
line plan from start to goal, obtained when obstacles are
unoptimized and placed far away. The resulting Kj

filtered thus
contains only the obstacle critical points that contribute most
to optimizing pj .

Obstacle trajectories are instantiated using g(Kj
filtered),

which samples velocities from a uniform distributions be-
tween [1, 2] m/s, and applies the first-order equation of
motion to produce smooth trajectories. Collision checks
ensure that the generated trajectories do not intersect the
corresponding plan pj :

g
(
{(xtcrit

i
i , y

tcrit
i

i)}|K
j
filtered|

i=1

)
=

{
Si +Vit

}N

i=1
,

t ∈ [1− tcrit
i , T − tcrit

i],

∀i = {1, . . . , |Kj
filtered|},

(9)

where Si = (x
tcrit
i
i , y

tcrit
i
i), and Vi is the (x, y) components of

the sampled velocity.
Using Eqn. (9), we sample S2 = 50 trajectories from each

Kj
filtered, producing up to S2 ×Nmax obstacle sequences per

data point j. These are rendered as 2D LiDAR scans given
ct,j along pj .

To improve robustness, Dtrain is further augmented. First,
up to 20 random non-colliding obstacle trajectories are added
to Cobst to introduce noisy, non-optimizing obstacles. Second,
obstacle-free motion plans with speed above 0.9m/s and
direction aligned with the goal 90% of the time (cosine
similarity ≥ 0.9) are added to encourage fast goal-directed
navigation in open spaces.

C. Learning and Deployment of fθ∗
The motion planner fθ∗ predicts a sequence of Ma = 5

actions, {ui}Ma
i=1, conditioned on Ml = 5 LiDAR scans

(comprising Ml − 1 historical scans and the current scan)
representing obstacle configurations {Ctobst}

i+Ma−1
t=i−Ml+1 and on

Ml = 5 past actions. Using multiple past scans (Ml > 1)
enables the planner to capture obstacle dynamics, while
predicting multiple future actions (Ma > 1) supports longer-
horizon reasoning. Each training instance is anchored at the
robot’s current configuration cic = 0, with the goal cig defined
as a unit vector pointing to the end of plan p.

The planner fθ∗(·) is implemented as a causal transformer
with two encoder layers, two attention heads, and a 256-
dimensional feed-forward network. LiDAR scans are first
projected into a 256-dimensional latent space using a 2-
layer 1D CNN (kernel size 5). The transformer output is
concatenated with the goal vector and processed by a 2-layer
MLP head to predict linear and angular velocities.

During deployment, at each time step t′, the robot’s current
configuration is set as ct

′

c = 0, and the goal ct
′

g is a unit
vector pointing 2.25m ahead along the global path given by
the move base navigation stack. The planner predicts Ma

actions but executes only the first at each step. Following
prior work, an MPC safety module monitors collisions: if a
collision is imminent, the robot halts first and then reverses
to avoid obstacles.

V. EXPERIMENTS AND EVALUATION

In this section, we first demonstrate that a single critical
point is sufficient to produce an optimal trajectory. We then
evaluate the hallucination of critical points and introduce
a metric for dataset richness, showing how our method
generates diverse obstacle trajectories that maximize this
metric. Finally, we present results for learning a motion
planner from the hallucinated trajectories and demonstrate
that the learned planner outperforms baseline methods in
simulated environments.

A. Hallucinating Critical Points
In Fig. 5, we compare the original trajectories with those

reconstructed from obstacles at the end of Phase 1 (P1)
and from obstacles instantiated solely at their critical points
at the end of Phase 2 (P2). Visually, the P2 reconstructed

2 1 0 1 2
Left Right

1

0

1

2

3

B
ac

k
 F

ro
nt

Obstacle Critical Points Map
Jackal

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Ti
m

e
(s

)

Fig. 3: Obstacle critical points map.

trajectories remain similar to their P1 counterpart. Such sim-
ilarities validate our hypothesis that obstacles only appearing
at critical configurations are sufficient to make a motion plan
optimal, instead of requiring the obstacles’ constant presence.

In Fig. 3, we visualize the hallucinated critical points.
Each point indicates a location and time such that if an
obstacle passes through it, there exists an optimal motion
plan moving the robot from its current configuration (0, 0)
to a goal configuration behind the obstacle while minimizing
travel distance. The map is generated by sampling one critical
point per obstacle, filtering out non-essential points, and
plotting their positions. When constructing Dtrain, a moving
window along the robot trajectory shifts the hallucinated
critical points closer to the robot’s current configuration,
making the effective map denser in time and space.

In Fig. 4, we illustrate the diversity of obstacle trajectories
that can be generated from a single critical point. Despite the
variations in their paths, all these obstacles can be avoided
using the same underlying motion plan, which remains near-
optimal in terms of travel efficiency.

B. Measuring Dataset Coverage
To quantify the richness of the generated datasets, we

define a Dataset Coverage Score (DCS), which measures
how well the dataset spans the space of relevant obstacle
configurations. We consider four key components:

• Distance between the robot and an obstacle, r;
• Angle between the robot and an obstacle, θ;
• Obstacle speed, s; and
• Obstacle heading in the robot frame, ψ.

For each component, we compute marginal coverage by
checking whether there exists at least one data point within
each bin across the specified bounds and at the specified
resolution. The bounds and resolutions used for these calcu-

(a) (b)

Fig. 4: 100 obstacle trajectories are generated from each critical point. The robot trajectory (green) remains collision-free
and near-optimal, regardless of the variations and combinations of obstacle trajectories. That is, the same robot trajectory is
optimal and collision-free for any single combination of these 100N possible obstacle trajectory sets. Fig. 4a show a total
of 200 obstacle trajectories generated from N = 2 critical points, while Fig. 4b show a total of 300 obstacle trajectories
generated from N = 3 critical points.

0.5 0.0 0.5 1.0 1.5 2.0

2.5

2.0

1.5

1.0

0.5

0.0

P1 Loss: 15.482
P2 Loss: 14.004

0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

P1 Loss: 11.013
P2 Loss: 15.078

0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

P1 Loss: 10.881
P2 Loss: 3.280

0.0 0.5 1.0 1.5 2.0

2.5

2.0

1.5

1.0

0.5

0.0

P1 Loss: 7.300
P2 Loss: 10.151

Phase 1 Recon. Traj.
Phase 2 Recon. Traj.

Original Traj.

Fig. 5: Reconstructed trajectories from Phase 1 (P1) and
Phase 2 (P2) using obstacles at their critical points. Trajec-
tories remain visually close to each other, with only minor
variations in reconstruction loss.

lations are summarized in Tab. I.
We define overall dataset coverage as the joint coverage

across all four components. Full coverage is achieved when
every resolution bin within the specified bounds of each
component contains at least one data point. DCS is then given
by the ratio of the observed joint coverage to this theoretical
upper bound.

The coverage achieved by our method is reported in
Tab. II. LfH-CP can achieve almost 100% coverage when

TABLE I: Bounds and Resolution for Dataset Coverage.

Component (unit) Lower bound Upper bound Resolution

r (m) 0.15 2 0.1
θ (deg) -180 180 5
s (m/s) 1 2 0.1
ψ (deg) -180 180 5

TABLE II: DCS for all metric combinations for our LfH-CP
and comparitive approach.

Metric Combination Coverage LfH-CP(%) Coverage Dyna-LfLH (%)

r, θ, s, ψ 62.21 11.05

r, θ, s 100.0 74.61
θ, s, ψ 99.18 49.30
r, s, ψ 100.0 69.6
r, θ, ψ 93.20 40.49

θ, s 100.0 99.13
r, s 100.0 89.47
r, θ 100.0 89.40
r, ψ 100.0 86.52
θ, ψ 100.0 89.06
s, ψ 100.0 91.41

r 100.0 89.47
θ 100.0 100.0
s 100.0 100.0
ψ 100.0 100.0

considering up to three metrics, while for all four metrics
a coverage of 62.21% is reached. In contrast, Dyna-LfLH
achieves only 11.05% over the the same range. To further
demonstrate robustness, Fig. 6 shows how increasing the
number of generated samples improves the coverage score.
This indicates that our approach avoids mode collapse and
effectively populates diverse obstacle scenarios.

C. Learning from Hallucinated Critical Points
We evaluate the learned motion planner using Dyn-

aBARN [42], a simulation testbed for dynamic obstacle
avoidance. DynaBARN supports generation of environments
populated with moving obstacles at varying speeds, following

20 40 60 80 100
Generated Samples

30

40

50

60

70

D
C

S
O

ve
r 4

 C
om

po
ne

nt
s

DCS vs # Generated Samples

Fig. 6: DCS increases with more samples.

TABLE III: DynaBARN Parameters.

Difficulty # Worlds Number of obstacles Range of speed

Easy 20 [5, 10] [0.5, 1.0]
Medium 10 [5, 10] [1.0, 0.5]
Medium 10 [10, 20] [0.5, 1.0]

Hard 20 [10, 20] [1.0, 2.0]

trajectories with different motion patterns.
We generate 60 environments with 3 levels of difficulty

similar to the original DynaBARN implementation using the
parameters in Tab. III. We compare LfH-CP against Dyna-
LfLH. Each planner is evaluated over 2 trials in each of the
60 environments, yielding a total of 120 trials. Simulation
results are summarized in Fig. 7.

The overall success rates in DynaBARN are low due to
the fast-moving and highly cluttered environments. LfH-
CP achieves a higher success rate at 30.83%, showing that
hallucinated critical points provide strong navigation perfor-
mance. In contrast, Dyna-LfLH underperforms with success
rates of 22.5%, due to mode collapse during hallucination
that reduces obstacle diversity and generalization.

Despite achieving high dataset coverage, LfH-CP does not
perform particularly well during deployment. One reason is
that the plans are optimized for only a few obstacles that
are rendered at a time. While random non-colliding obstacles
are added for robustness, the planner may still struggle when
multiple obstacles appear simultaneously during deployment.
A potential solution would be to generate multiple obstacle
samples passing through the same critical point within the
same demonstration. Finally, the Dataset Coverage Score
(DCS) measures coverage for individual obstacles, ensuring
at least one sample exists per resolution bin. However,
in real scenarios, multiple obstacles often appear together,
suggesting that DCS could be extended to account for joint
coverage of two or more obstacles simultaneously.

VI. CONCLUSIONS

In this paper, we present LfH-CP, a self-supervised frame-
work for creating rich dynamic obstacle datasets based on
existing optimal motion plans to create supervised training
data. Situated within the LfH paradigm, LfH-CP does not

Easy Medium Hard Overall
0

10

20

30

40

50

Su
cc

es
s R

at
e

(
)

Success Rate in DynaBARN
LfH-CP
Dyna-LfLH

Fig. 7: Simulation Results of 120 trials in DynaBARN.

require expensive expert demonstrations for IL or trial-and-
error exploration for RL and extends to dynamics obstacles.
Facing the vast and high-dimensional space of dynamic
obstacles, LfH-CP further tackles the mode collapse problem
that degrades previous LfH approaches’ performance by
hallucinating only the critical points for those obstacles, i.e.,
where and when these obstacles have to appear to assure an
existing motion plan’s optimality. Our new obstacle diversity
metric, DCS, shows that LfH-CP produces substantially more
varied training data than existing baseline and DCS scales
with more samples, instead of saturates due to mode collapse.
LfH-CP also achieves improved navigation performance in
dynamics obstacles compared to state-of-the-art approaches.

REFERENCES

[1] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, vol. 46, no. 5, pp. 569–597, 2022.

[2] ——, “Toward agile maneuvers in highly constrained spaces: Learning
from hallucination,” IEEE Robotics and Automation Letters, pp. 1503–
1510, 2021.

[3] Z. Wang, X. Xiao, A. J. Nettekoven, K. Umasankar, A. Singh,
S. Bommakanti, U. Topcu, and P. Stone, “From agile ground to aerial
navigation: Learning from learned hallucination,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 148–153.

[4] X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallu-
cinated learning and sober deployment,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021.

[5] S. H. Semnani, H. Liu, M. Everett, A. De Ruiter, and J. P. How,
“Multi-agent motion planning for dense and dynamic environments via
deep reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 3221–3226, 2020.

[6] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[7] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone, “Appli: Adaptive
planner parameter learning from interventions,” in 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2021.

[8] Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang,
and P. Stone, “Applr: Adaptive planner parameter learning from
reinforcement,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021.

[9] X. Xiao, Z. Wang, Z. Xu, B. Liu, G. Warnell, G. Dhamankar, A. Nair,
and P. Stone, “Appl: Adaptive planner parameter learning,” Robotics
and Autonomous Systems, vol. 154, p. 104132, 2022.

[10] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” in 2017 ieee
international conference on robotics and automation (icra). IEEE,
2017, pp. 1527–1533.

[11] X. Xiao, T. Zhang, K. M. Choromanski, T.-W. E. Lee, A. Francis,
J. Varley, S. Tu, S. Singh, P. Xu, F. Xia, S. M. Persson, L. Takayama,
R. Frostig, J. Tan, C. Parada, and V. Sindhwani, “Learning model pre-
dictive controllers with real-time attention for real-world navigation,”
in Conference on robot learning. PMLR, 2022.

[12] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 31–36.

[13] Z. Xu, B. Liu, X. Xiao, A. Nair, and P. Stone, “Benchmarking
reinforcement learning techniques for autonomous navigation,” in
2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 9224–9230.

[14] Z. Xu, X. Xiao, G. Warnell, A. Nair, and P. Stone, “Machine
learning methods for local motion planning: A study of end-to-end
vs. parameter learning,” in 2021 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR). IEEE, 2021, pp. 217–
222.

[15] J. Zeng, R. Ju, L. Qin, Y. Hu, Q. Yin, and C. Hu, “Navigation
in unknown dynamic environments based on deep reinforcement
learning,” Sensors, vol. 19, no. 18, p. 3837, 2019.

[16] B. Wullt, P. Matsson, T. B. Schön, and M. Norrlöf, “Neural motion
planning in dynamic environments,” IFAC-PapersOnLine, vol. 56,
no. 2, pp. 10 126–10 131, 2023.

[17] X. Xiao, Z. Xu, Z. Wang, Y. Song, G. Warnell, P. Stone, T. Zhang,
S. Ravi, G. Wang, H. Karnan et al., “Autonomous ground navigation
in highly constrained spaces: Lessons learned from the benchmark
autonomous robot navigation challenge at icra 2022 [competitions],”
IEEE Robotics & Automation Magazine, vol. 29, no. 4, pp. 148–156,
2022.

[18] X. Xiao, Z. Xu, A. Datar, G. Warnell, P. Stone, J. J. Damanik,
J. Jung, C. A. Deresa, T. D. Huy, C. Jinyu et al., “Autonomous ground
navigation in highly constrained spaces: Lessons learned from the
third barn challenge at icra 2024 [competitions],” IEEE Robotics &
Automation Magazine, vol. 31, no. 3, pp. 197–204, 2024.

[19] B. Liu, X. Xiao, and P. Stone, “A lifelong learning approach to mobile
robot navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 1090–1096, 2021.

[20] R. Mirsky, X. Xiao, J. Hart, and P. Stone, “Conflict avoidance in social
navigation–a survey,” ACM Transactions on Human-Robot Interaction,
2024.

[21] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand):
A large-scale dataset of demonstrations for social navigation,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11 807–11 814,
2022.

[22] D. M. Nguyen, M. Nazeri, A. Payandeh, A. Datar, and X. Xiao, “To-
ward human-like social robot navigation: A large-scale, multi-modal,
social human navigation dataset,” arXiv preprint arXiv:2303.14880,
2023.

[23] A. Francis, C. Pérez-d’Arpino, C. Li, F. Xia, A. Alahi, R. Alami,
A. Bera, A. Biswas, J. Biswas, R. Chandra et al., “Principles and
guidelines for evaluating social robot navigation algorithms,” ACM
Transactions on Human-Robot Interaction, vol. 14, no. 2, pp. 1–65,
2025.

[24] X. Xiao, J. Biswas, and P. Stone, “Learning inverse kinodynamics for
accurate high-speed off-road navigation on unstructured terrain,” in
2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2021.

[25] H. Karnan, K. S. Sikand, P. Atreya, S. Rabiee, X. Xiao, G. Warnell,
P. Stone, and J. Biswas, “Vi-ikd: High-speed accurate off-road nav-
igation using learned visual-inertial inverse kinodynamics,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 3294–3301.

[26] A. Datar, C. Pan, M. Nazeri, and X. Xiao, “Toward wheeled mobility
on vertically challenging terrain: Platforms, datasets, and algorithms,”
in 2024 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2024.

[27] A. Datar, C. Pan, M. Nazeri, A. Pokhrel, and X. Xiao, “Terrain-
attentive learning for efficient 6-dof kinodynamic modeling on verti-

cally challenging terrain,” in 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2024, pp. 5438–
5443.

[28] A. Datar, C. Pan, and X. Xiao, “Learning to model and plan for
wheeled mobility on vertically challenging terrain,” IEEE Robotics
and Automation Letters, 2024.

[29] A. Pokhrel, A. Datar, M. Nazeri, and X. Xiao, “Cahsor: Competence-
aware high-speed off-road ground navigation in se (3),” arXiv preprint
arXiv:2402.07065, 2024.

[30] D. Shah, A. Sridhar, A. Bhorkar, N. Hirose, and S. Levine, “Gnm:
A general navigation model to drive any robot,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 7226–7233.

[31] H. Karnan, G. Warnell, X. Xiao, and P. Stone, “Voila: Visual-
observation-only imitation learning for autonomous navigation,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 2497–2503.

[32] K. S. Sikand, S. Rabiee, A. Uccello, X. Xiao, G. Warnell, and
J. Biswas, “Visual representation learning for preference-aware path
planning,” in 2022 International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2022, pp. 11 303–11 309.

[33] S. Ravi, G. Wang, S. Satewar, X. Xiao, G. Warnell, J. Biswas, and
P. Stone, “Visually adaptive geometric navigation,” in 2023 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR). IEEE, 2023.

[34] M. H. Nazeri and M. Bohlouli, “Exploring reflective limitation of
behavior cloning in autonomous vehicles,” in 2021 IEEE International
Conference on Data Mining (ICDM), 2021, pp. 1252–1257.

[35] M. Nazeri, J. Wang, A. Payandeh, and X. Xiao, “Vanp: Learning where
to see for navigation with self-supervised vision-action pre-training,”
in 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2024, pp. 2741–2746.

[36] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 13, pp.
1557–1577, 2016.

[37] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Crowd-robot inter-
action: Crowd-aware robot navigation with attention-based deep rein-
forcement learning,” in 201S9 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 5899–5905.

[38] J.-S. Park, X. Xiao, G. Warnell, H. Yedidsion, and P. Stone, “Learn-
ing perceptual hallucination for multi-robot navigation in narrow
hallways,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 10 033–10 039.

[39] S. A. Ghani, Z. Wang, P. Stone, and X. Xiao, “Dyna-lflh: Learning
agile navigation in dynamic environments from learned hallucination,”
in 2025 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2025.

[40] D. Das, Y. Lu, E. Plaku, and X. Xiao, “Motion memory: Leveraging
past experiences to accelerate future motion planning,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 16 467–16 474.

[41] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, 2020.

[42] A. Nair, F. Jiang, K. Hou, Z. Xu, S. Li, X. Xiao, and P. Stone,
“Dynabarn: Benchmarking metric ground navigation in dynamic envi-
ronments,” in 2022 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR). IEEE, 2022, pp. 347–352.

	Introduction
	Related Work
	Machine Learning for Dynamic Obstacle Avoidance
	Learning from Hallucination (LfH)

	Approach
	The Motion Planning Problem
	The Critical Configurations
	Reformulation in LfH paradigm
	Hallucinating Critical Points
	Rendering Obstacle Trajectories
	Learning from Hallucinating Critical Points

	Implementation
	Learning h
	Generating Dtrain
	Learning and Deployment of f*

	Experiments and Evaluation
	Hallucinating Critical Points
	Measuring Dataset Coverage
	Learning from Hallucinated Critical Points

	Conclusions
	References

