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Abstract— Long-duration, off-road, autonomous missions re-
quire robots to continuously perceive their surroundings re-
gardless of the ambient lighting conditions. Most existing
autonomy systems heavily rely on active sensing, e.g., LiDAR,
RADAR, and Time-of-Flight sensors, or use (stereo) visible light
imaging sensors, e.g., color cameras, to perceive environment
geometry and semantics. In scenarios where fully passive
perception is required and lighting conditions are degraded
to an extent that visible light cameras fail to perceive, most
downstream mobility tasks such as obstacle avoidance become
impossible. To address such a challenge, this paper presents a
Multi-Modal Passive Perception dataset, M2P2, to enable off-
road mobility in low-light to no-light conditions. We design a
multi-modal sensor suite including thermal, event, and stereo
RGB cameras, GPS, two Inertia Measurement Units (IMUs), as
well as a high-resolution LiDAR for ground truth, with a multi-
sensor calibration procedure that can efficiently transform
multi-modal perceptual streams into a common coordinate
system. Our 10-hour, 32 km dataset also includes mobility
data such as robot odometry and actions and covers well-
lit, low-light, and no-light conditions, along with paved, on-
trail, and off-trail terrain. Our results demonstrate that off-
road mobility and scene understanding under degraded visual
environments is possible through only passive perception in
extreme low-light conditions. The project website can be found
at https://cs.gmu.edu/˜xiao/Research/M2P2/.

I. INTRODUCTION

Autonomous mobile robots have found their way out of
controlled lab, factory, and warehouse environments into
the wild [1]. On their way to deliver packages [2], inspect
infrastructure [3], maintain agricultural fields [4], and con-
duct search and rescue missions [5], those robots constantly
perceive their surroundings with their onboard sensors. The
perceived geometric and semantic world representations al-
low them to move to their goals while avoiding collisions.
Such an extension in Operational Design Domain requires
robot perception systems to address challenges around the
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Fig. 1: Multi-Modal Passive Perception Data Collection in
an Off-Road Forest Environment in Complete Darkness. Top
Left: Clearpath Husky with the Sensor Suite (flashlight for
visualization only); Top Right: Thermal Image; Bottom Left:
Event Stream; Bottom Middle: RGB Image (fail to perceive);
Bottom Right: LiDAR Point Cloud (for ground truth).

clock, ranging from well-lit to no-light conditions, as well
as from paved to completely off-road terrain in the wild.

Existing perception systems for mobile robots rely heavily
on active sensing. For example, LiDAR range finders [6]
use pulsed laser beams to detect distance and perceive
environmental geometry, while Time-of-Flight sensors [7]
use infrared light and measure the time it takes for the light
signal to travel to the target and back. Despite working well
in all lighting conditions, many active sensors suffer from
significant noise in heavy rain, snow, and fog. Furthermore,
the reliance on the emission of active light signals will
expose the presence of the robot, making those active sensors
less ideal for covert operations, e.g., in military settings.

Non-active, visible light imaging sensors, e.g., RGB cam-
eras, are also widely used in robot perception systems, rely-
ing on reflected light to form images for non-light emitting
objects. Stereo camera pairs can triangulate to determine
distance and use different RGB color channels to reason
about semantics. Those sensors work well in well-lit indoor
and outdoor environments and provide similar sensing as
human perception. However, visible light imaging sensors
require good lighting conditions to perceive reflected light
and form visible pixels, and therefore suffer from degraded
perception quality in low-light to no-light conditions.

These aforementioned limitations of existing active and
visible light imaging sensors present challenges for long-
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duration, off-road, autonomous missions, since robots need to
perceive their surroundings around the clock regardless of the
ambient lighting conditions and are also oftentimes required
to be fully passive to maintain stealth. To operate in low-
light to no-light conditions without emitting any active light
signatures, novel sensing modalities, including thermal and
event cameras, show promise by passively sensing infrared
radiation from all objects with a temperature above absolute
zero or per-pixel brightness changes (also called “events”)
asynchronously with low latency, high dynamic range, and
low power consumption, respectively.

In this paper, we propose to use multi-modal passive
perception modalities to enable robot perception in extreme
low-light conditions so as to facilitate downstream off-road
mobility tasks (Fig. 1). To be specific, our contributions
include:

• a multi-modal sensor suite including thermal, event,
and stereo RGB cameras, GPS, two IMUs, and a high-
resolution LiDAR for ground truth;

• a precise multi-sensor calibration procedure for multi-
modal perceptual streams;

• a Multi-Modal Passive Perception dataset, M2P2, with
data ranging from different lighting conditions (well-
lit to no-light) and various off-road terrain conditions
(paved to off-trail), along with mobility data like robot
odometry and actions; and

• experimental results demonstrating off-road mobility,
depth reconstruction, and vehicle odometry through
only passive perception in extreme low-light conditions.

II. RELATED WORK

In this section, we review related work in off-road percep-
tion systems and passive perception sensors.

A. Off-Road Perception

Perception in off-road environments requires both exte-
roceptive and interoceptive sensing to understand the envi-
ronment and the robot’s interaction with it. The availability
of a wide array of sensors makes safe traversal through
off-road environments possible. While a single modality
may suffice for navigation in structured environments, the
inclusion of multiple modalities in challenging environments
adds robustness and redundancy, ensuring that navigation
can continue even if one or more sensors are unable to
work at full capacity because of adverse environmental
conditions. By combining complementary data from multiple
sensors, robots can also better perceive and interpret complex
environmental features for comprehensive understanding in
a variety of off-road unstructured scenarios.

Active sensing modalities like LiDAR and RADAR detect
and perceive environmental geometry, enabling the creation
of 2D, 3D, or 2.5D elevation maps [11]–[15] of the environ-
ment. Although LiDAR-based systems are highly popular for
their robustness and precision, they can suffer in heavy rain,
snow, and fog, and may struggle to map terrain at greater
distances [16]. Additionally, the use of pulsated beams
can expose the presence of the robot. On the other hand,

vision-based navigation systems utilize visible light imaging
sensors, e.g., RGB or RGB-D cameras, to understand the
terrain semantics [17]–[20], create elevation maps [16], [18],
and map off-road terrain [21], [22]. Although vision-based
navigation systems are advantageous due to their passive
sensing capabilities and ability to provide rich environmental
information, their reliance on visible light causes poor per-
formance in low-light conditions. While also being passive,
interoceptive sensors like IMUs and force sensors measure
robot internal states during environment interactions, which
can be used to generate traversability maps [17], [23] and
model terrain response [24], [25] when combined with
exteroception.

Combining the advantages of the aforementioned percep-
tion modalities expands robots’ Operational Design Domain
in varying environmental conditions around the clock, such
as low visibility or extreme weather, with the possibility
of staying passive. With the recent advancement in data-
driven approaches [1], multi-modal off-road datasets [8],
[26], [27] are essential for developing and refining perception
and mobility algorithms, providing a foundation for training,
testing, and benchmarking. Our multi-modal sensor suite
offers passive sensing capabilities with precise ground truth
from active perception, enabling navigation in extremely
low-light off-road environments. The sensor suite is resilient
to environmental degradation like dust, smoke, fog, snow,
and rain, and can be calibrated in a single step for effective
off-road navigation.

B. Related Datasets

A few existing datasets provide a variety of sensor
modalities and ground truth data, enabling the development
and benchmarking of algorithms in areas such as SLAM,
object recognition, and autonomous navigation (Table I):
MVSEC [28] is the first dataset that synchronizes stereo
event cameras and provides accurate ground truth depth from
LiDAR and SLAM and ground truth pose using a motion
capture system and GPS; UZH-FPV [29] dataset utilized
fast, aggressive, and agile drones to capture event camera
data for extreme motion scenarios, but does not contain
depth information; For night and day place recognition tasks,
Maddern and Vidas [30] built a capture platform consisting
of GPS, RGB camera, and thermal camera to capture data
from before dawn to after dusk; The KAIST Multi-Spectral
Day/Night Dataset [31] introduced a sensor system designed
for SLAM, comprising stereo RGB cameras, LiDAR, and
thermal camera; Aiming at off-road environments such as
forests and urban areas, M3ED [32] used high resolution
stereo event cameras, grayscale and RGB cameras, IMU,
LiDAR, and RTK localization to collect a high-speed dy-
namic motion dataset; ViViD++ [8] is the first dataset to
feature aligned information from multiple types of alternative
vision sensors, including RGB, thermal, event, depth, and
inertial measurements. Compared to existing datasets, our
M2P2 dataset is the first dataset that focuses on off-road
mobility in extremely low-light environments with the most
perception modalities and highest sensor quality, as well as
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TABLE I: Comparison with alternative vision datasets.

Sensor Modality

Dataset RGB Depth Thermal Event LiDAR IMU GPS Hardware Environments Lighting

ViViD++ [8] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Vehicle Indoor/Urban Day/Night
DiTer++ [9] ✓ ✓ ✓ ✗ ✓ ✓ ✓ Legged Diverse Terrain Day/Night
TartanDrive 2.0 [10] ✓ ✓ ✗ ✗ ✓ ✓ ✓ Wheeled Off-road Day

M2P2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Wheeled Off-road Day/Night

Fig. 2: Sensor Suite CAD (Left) and Hardware (Right).

a precise multi-modal calibration procedure with accurate
synchronization (see Table I for comparison).

III. MULTI-MODAL SENSOR SUITE

Our multi-modal sensor suite comprises a thermal and an
event camera, stereo RGB cameras, two IMUs, GPS, and
LiDAR for ground truth. All sensors are assembled in a
custom-designed 3D-printed structure, which can be easily
mounted on most mobile robot platforms (Fig. 2). The total
dimensions of the sensor suite are 0.31×0.26×0.24 m, with
a total weight of 2 kg.

A. Thermal Camera

Our sensor suite includes the Xenics Ceres T 1280
thermal camera, offering high-resolution LWIR imaging at
1280×1024. It captures up to 45 FPS over a GigE Vision in-
terface. Paired with an 11 mm wide-angle lens (71.7◦ HFoV,
58.9◦, f/1.2 aperture), it delivers exceptional thermal image
quality surpassing that of existing open-source datasets.

B. Event Camera

We use the Prophesee Metavision EVK4 event camera
with a 1280×720 resolution and 220µs latency in a compact
form. It achieves a time resolution of 10K FPS and operates
in low light down to 0.08 lx. A 46.8◦ HFoV, 36◦ VFoV lens
(aperture f/2–11, fixed at f/4.0) is used. To suppress LiDAR-
induced noise, we place an IR filter over the lens.

C. Stereo RGB Cameras

We use two FLIR Blackfly S cameras for RGB imaging at
a resolution of 1616×1240, captured at up to 175 FPS (fixed
at 10 FPS). While stereo RGB fails in complete darkness, it
remains effective in partially degraded or low ambient light
environments.

D. IMUs

We use a Yahboom 10-DoF IMU featuring a 3-axis
accelerometer, 3-axis gyroscope, 3-axis magnetometer, and a
barometer. The sample rate of the IMU is 200 Hz. It features
built-in data fusion and gyro stabilization. We also include
the IMU embedded in the LiDAR (see details below).

E. LiDAR for Ground Truth

A 3D Ouster OS1-128 LiDAR is used to provide ground
truth with 128 lines of vertical divisions in 45◦ VFoV and
selectable 512, 1024, and 2048 angle divisions in 360◦ HFoV
at 10/20 Hz. For best data efficiency, LiDAR point clouds
are recorded with 1024 angle divisions at 10 Hz. The LiDAR
also features a built-in 6-DoF IMU with a 125 Hz sample
rate for LiDAR frame calibration.

IV. SENSOR SUITE CALIBRATION

To interpret how real-world features in world coordinates
map to sensor readings and relate across modalities, we
develop a streamlined calibration procedure to align all
sensors in the suite within a common coordinate frame.

Traditional methods rely on standard printed geometric
targets like checkerboards for cameras or flat surfaces for
LiDAR to estimate intrinsics and extrinsics. However, these
are ineffective for our multi-modal setup: thermal cameras
can’t see standard targets in IR, and event cameras require
motion to detect intensity changes. Thus, we need a common
calibration target perceivable by all sensors to calibrate both
intrinsic and extrinsic parameters.

A. Thermal Checkerboard

The first calibration challenge comes from the thermal
camera, which needs varying thermal signatures to detect
geometric features. To create a thermal contrast, we build a
calibration target from a 3 mm thick aluminum sheet with
attached carbon fiber squares of 35 mm length, CNC-milled
to 0.05 mm accuracy. As aluminum reflects strongly in the
long-wave IR spectrum (like a mirror in visible light), we
anodize it to reduce unwanted reflections. Heating the target
to 45◦C reveals the checkerboard pattern in thermal images
due to the large emissivity difference between aluminum and
carbon fiber. (Fig. 3 left). Due to the contrast in color of
aluminum and carbon fiber, the same pattern is visible in
both RGB cameras (Fig. 3 right).
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Fig. 3: Calibration Target (Thermal, Event, and RGB Image).

Fig. 4: Multi-Modal Synchronization: LiDAR trigger syn-
chronized to internal encoder angle (θ = 360◦) initiates
frame acquisition at a rate of 10 Hz for RGB and thermal
cameras, with event camera recording trigger edges for frame
reconstruction.

B. Event Reconstruction

To address the second challenge of aligning asynchronous
event data with synchronous streams like thermal and RGB
images, we use a two-step approach. First, we recon-
struct grayscale images from the raw event stream using
E2Calib [33] (Fig. 3 middle). We also use the event cam-
era’s trigger input to mark precise timestamps for frame
reconstruction, enabling accurate temporal alignment with
other sensors. This approach overcomes the asynchronous
nature of event data and builds a reliable temporal link
with synchronous streams, supporting multi-modal fusion
and calibration.

C. Multi-Modal Synchronization

With a shared calibration target visible to all four cameras,
including the second RGB camera in the stereo pair, the
final challenge is synchronizing multiple asynchronous data
streams to achieve calibration convergence. To solve this,
we implement a synchronization scheme shown in Fig. 4.
All cameras are synchronized to the LiDAR, which emits a
sync pulse at 10 Hz aligned to its encoder angle at 360°. This
pulse triggers frame capture in the RGB and thermal cameras
and timestamps events in the event camera. The pulse width
matches the RGB exposure time, and the falling edge defines
the event camera’s frame boundary, aligning it with RGB
frame completion and ensuring temporal correlation across
all sensors.

D. All-in-One Calibration Procedure

Finally, we combine all synchronized frames into a ROS
bag, which is compatible with standard calibration toolkits.

Fig. 5: Transformation Tree of the Sensor Suite: Solid arrows
indicate direct hardware transformations, while dotted arrows
represent transformations from our multi-modal calibration.

Fig. 6: Multi-modal data from the M2P2 dataset, showcasing
spatial and temporal alignment in a low-light, off-road forest
environment. LiDAR point cloud overlaid on RGB image
(left), reconstructed event frame at the trigger’s falling edge
(middle), and thermal image (right).

In our implementation, We use Kalibr [34] to estimate
camera intrinsics and extrinsics, and further calibrate cameras
to IMUs to complete the sensor suite’s transformation tree.
Since the Ouster IMU includes a factory-calibrated 6-DoF
transform to the LiDAR base, we use the LiDAR base as the
reference frame to unify all sensors. The full transformation
tree from both calibration and hardware design is shown in
Fig. 5.

Fig. 6 shows the LiDAR point cloud overlaid on the
corresponding RGB image, along with the reconstructed
event frame and thermal image, demonstrating the spatial
and temporal alignment of the multi-modal data.

V. MULTI-MODAL PASSIVE PERCEPTION DATASET

M2P2 dataset contains over 10 hours of data collected
across diverse and challenging terrain conditions (Fig. 7a).
Data were recorded using the sensor suite mounted on
a Clearpath Husky A200 robot. Sequences span a wide
range of environments—from paved trails to unpaved paths
and unprepared off-trail areas in dense forests with thick
vegetation and narrow passages. To capture varied lighting,
data were collected at dusk with illumination levels ranging
from 20 lx to complete darkness (0 lx). This ensures the
dataset supports navigation tasks in both well-lit and low-
visibility conditions.

The dataset is organized as ROS-bag files and includes
compressed RGB and thermal images at 10 FPS, asyn-
chronous raw event data, LiDAR point clouds, IMU readings,
GPS coordinates, robot odometry and status, and joystick
commands. All camera data are synchronized using LiDAR
trigger pulses to ensure temporal alignment across modal-
ities. Due to dense forest canopy, GPS is available for
only 87.97% of the dataset. However, LiDAR, IMU, and
GPS (when present) can be fused using LIO-SAM, which
primarily relies on lidar-inertial odometry. Fig. 7b shows a
LIO-SAM generated map overlaid on a satellite image, where
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(a) >32 km, 10.15-Hour M2P2 Data Collection across Different Locations: Maps
show diverse environments such as lakeside trails, parks, and dense forests,
highlighting the variety terrain and conditions in the dataset.

(b) LIO-SAM Mapping Results on Lake Braddock
Trail: LiDAR point cloud (colored points) overlaid
on a satellite image. Inset: LIO-SAM trajectory
(blue) vs. raw GPS (green).

Fig. 7: Overview of the M2P2 dataset locations and mapping results. (a) shows various collection sites and terrain types.
(b) shows LIO-SAM mapping results with comparison to raw GPS.

TABLE II: M2P2 Statistics

Attribute Quantity

Total Size/Distance ≈2 TB / >32 km
Total Time/GPS Lock 10.15h / 8.93h

Average Speed 0.95 m/s
Number of RGB/Thermal Images 730606 / 361685

Number of Events 1.15× 1011

Number of Point Clouds 365297

point clouds align well with features like trail edges and
vegetation. The inset shows the estimated trajectory (blue)
compared to raw GPS (green); the latter suffers under tree
cover, while LIO-SAM remains consistently accurate.

To support accurate sensor placement replication, we pro-
vide URDFs for the sensor suite on the Husky platform,
along with calibrated transforms. Table II summarizes key
statistics of the M2P2 dataset. Our synchronization scheme
yields near-perfect alignment between RGB images and Li-
DAR point clouds, with only six mis-synchronized instances.
The slightly lower count of thermal images is due to the
camera’s automatic shutter calibration, which pauses the
stream for 0.4 seconds to correct non-uniformities.

VI. EXPERIMENT RESULTS

We conduct three experiments using our M2P2 dataset
to demonstrate its usefulness in off-road navigation and
perception under degraded lighting conditions.

A. End-to-End Navigation Learning

To demonstrate the dataset’s utility for end-to-end learn-
ing, we train a behavior cloning (BC) model to predict
linear and angular velocities [35] from thermal images using
ResNet-18. Since absolute temperature varies, we normalize
each image using its min and max pixel values to obtain
relative temperature. We deploy the BC model on a Husky
robot for a 3.6 km autonomous run on a paved trail (Fig. 8).
Lighting conditions vary from 235 lx to 0 lx (shown by
path color), with most of the run in total darkness. The

robot completes the route with only 11 human interventions,
mostly due to thermal confusion between pavement and
gravel. More robust navigation may require integrating other
sensors, such as the event camera.

Fig. 8: Autonomous Navigation around a 3.6 km Trail with
a BC model and Thermal Input: Lighting conditions drops
from 255 lx at the beginning (light gray on the path, lower
right) to 0 lx (black, upper left). 11 interventions (red crosses)
are necessary to correct the robot when going off-course.

B. Perception in Degraded Visual Environments

To assess M2P2’s utility for scene perception in degraded
visual conditions, we compare metric depth estimation mod-
els. We train a 31M-parameter U-Net [36] to map thermal
images to depth from LiDAR point clouds. Its performance
is compared with DepthAnythingV2-Large [37], a monocular
depth model with 335.3M parameters. As shown in Table III,
U-Net achieves notably better results despite its smaller size,
while DepthAnythingV2-Large struggles to generalize to the
thermal domain.
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Fig. 9: Qualitative Depth Prediction Comparison on Unseen
Data.

TABLE III: Quantitative Depth Prediction Comparison on
Unseen Data.

Model #Params (M) ↓ Abs Rel ↓ RMSE ↓ δ1 ↑

DepthAnythingV2 335.3 0.66 8.43 0.03
U-Net + M2P2 31 0.13 2.12 0.82

Qualitative results in Fig. 9 support these findings. U-Net
trained on M2P2 produces significantly higher-fidelity depth
maps than DepthAnythingV2-Large. This underscores the
value of domain-specific datasets like M2P2 for developing
robust perception models in degraded visual conditions,
where RGB-based methods often fail. Our results highlight
the importance of such datasets in bridging the gap be-
tween standard perception and the challenges posed by no-
traditional sensory inputs.

C. Passive Visual Odometry with Thermal and Event Data

A distinctive feature of M2P2 is the inclusion of calibrated,
synchronized thermal and event data, enabling passive per-
ception in extreme low-light. While prior work has explored
visual-inertial odometry with RGB and event cameras [38],
thermal-event fusion for odometry remains underexplored.
This combination is promising for scenarios lacking visible
light, such as nighttime off-road navigation or covert mis-
sions. RAMP-VO [38] is the closest prior work, and M2P2
contributes to advancing this research direction.

To showcase the potential of multi-modal fusion, we adapt
the RAMP-VO framework originally for RGB and event
data to work with thermal and event inputs from M2P2. We
evaluate on a 157.5 m segment of the Burke Lake trail to
test robustness under varying lighting. To simulate reduced
light, we subsample the event stream, retaining 100%, 80%,
50%, and 25% of events, mimicking increasingly darker
conditions. This setup allows us to analyze how thermal-
event odometry performance degrades as event data becomes
sparse.

Table IV presents the translational Absolute Trajectory
Error (ATE) for each event subsampling level. As expected,
the error generally increases as the event data becomes
sparser.

TABLE IV: Translational ATE with Thermal-Event Fusion

Event Percentage 100% 80% 50% 25%

Translational ATE (m) ↓ 8.79 11.60 12.79 12.49

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces M2P2, a novel multi-modal pas-
sive perception dataset specifically designed to address the
challenges of off-road robot mobility in extreme low-light
conditions. Unlike existing datasets, M2P2 uniquely com-
bines thermal, event, and stereo RGB cameras, along with
IMUs, GPS, and LiDAR for ground truth, providing a
comprehensive representation of challenging off-road, low-
light environments. We make the M2P2 dataset, along with
our sensor suite design, publicly available to facilitate further
research. We also present a robust multi-sensor calibra-
tion procedure, ensuring accurate data alignment across all
modalities. Our initial experiments demonstrate that, even in
complete darkness, off-road navigation, scene understanding,
and vehicle state estimation are achievable using purely
passive sensing.

While these initial experiments showcase the promise of
individual modalities and limited fusion, the full realization
of M2P2’s potential requires deeper exploration of advanced
sensor fusion techniques and their application to a wider
range of mobility tasks. As the first step toward fully
passive perception for off-road mobility in extreme low-
light conditions, this work opens up a new avenue of future
research. Some of the areas that could benefit from M2P2
include Visual Inertial Odometry [39]–[41], SLAM [42]–
[44], and off-road kinodynamics modeling [45]–[49], all with
the purely passive modalities available from our multi-modal
sensor suite and dataset.
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and M. Hutter, “Navigation planning for legged robots in challenging
terrain,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016.

[15] L. Sharma, M. Everett, D. Lee, X. Cai, P. Osteen, and J. P. How,
“RAMP: A risk-aware mapping and planning pipeline for fast off-road
ground robot navigation,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023.

[16] C. Chung, G. Georgakis, P. Spieler, C. Padgett, A. Agha, and
S. Khattak, “Pixel to elevation: Learning to predict elevation maps
at long range using images for autonomous offroad navigation,” IEEE
Robotics and Automation Letters, 2024.

[17] L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena, and
M. Hutter, “Where should i walk? predicting terrain properties from
images via self-supervised learning,” IEEE Robotics and Automation
Letters, 2019.

[18] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain
mapping for mobile robots with uncertain localization,” IEEE Robotics
and Automation Letters, 2018.

[19] M. Wigness, S. Eum, J. G. Rogers, D. Han, and H. Kwon, “A
rugd dataset for autonomous navigation and visual perception in
unstructured outdoor environments,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019.

[20] X. Meng, N. Hatch, A. Lambert, A. Li, N. Wagener, M. Schmittle,
J. Lee, W. Yuan, Z. Chen, S. Deng et al., “Terrainnet: Visual modeling
of complex terrain for high-speed, off-road navigation,” arXiv preprint
arXiv:2303.15771, 2023.

[21] P. Sermanet, R. Hadsell, M. Scoffier, U. Muller, and Y. LeCun,
“Mapping and planning under uncertainty in mobile robots with long-
range perception,” in 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2008.

[22] M. Bajracharya, J. Ma, M. Malchano, A. Perkins, A. A. Rizzi, and
L. Matthies, “High fidelity day/night stereo mapping with vegetation
and negative obstacle detection for vision-in-the-loop walking,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2013.

[23] M. G. Castro, S. Triest, W. Wang, J. M. Gregory, F. Sanchez,
J. G. Rogers, and S. Scherer, “How does it feel? self-supervised
costmap learning for off-road vehicle traversability,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), 2023.

[24] X. Cai, M. Everett, J. Fink, and J. P. How, “Risk-aware off-road
navigation via a learned speed distribution map,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022.

[25] G. Kahn, P. Abbeel, and S. Levine, “BADGR: An autonomous self-
supervised learning-based navigation system,” IEEE Robotics and
Automation Letters, 2021.

[26] S. Jeong, H. Kim, and Y. Cho, “Diter: Diverse terrain and multi-
modal dataset for field robot navigation in outdoor environments,”
IEEE Sensors Letters, pp. 1–4, 03 2024.

[27] P. Jiang, P. Osteen, M. Wigness, and S. Saripalli, “Rellis-3d dataset:
Data, benchmarks and analysis,” in 2021 IEEE international confer-
ence on robotics and automation (ICRA). IEEE, 2021.
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