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Abstract. We present MOSU, a novel autonomous long-range naviga-
tion system that enhances global navigation for mobile robots through
multimodal perception and on-road scene understanding. MOSU ad-
dresses the outdoor robot navigation challenge by integrating geometric,
semantic, and contextual information to ensure comprehensive scene un-
derstanding. The system combines GPS and QGIS map-based routing
for high-level global path planning and multi-modal trajectory genera-
tion for local navigation refinement. For trajectory generation, MOSU
leverages multi-modalities: LiDAR-based geometric data for precise ob-
stacle avoidance, image-based semantic segmentation for traversability
assessment, and Vision-Language Models (VLMs) to capture social con-
text and enable the robot to adhere to social norms in complex environ-
ments. This multi-modal integration improves scene understanding and
enhances traversability, allowing the robot to adapt to diverse outdoor
conditions. We evaluate our system in real-world on-road environments
and benchmark it on the GND dataset, achieving a 10% improvement
in traversability on navigable terrains while maintaining a comparable
navigation distance to existing global navigation methods.

Keywords: Global Navigation, Traversability Analysis, Multiple Modal-
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1 Introduction

Global navigation has witnessed significant advancements in recent years [6],
playing a crucial role in applications such as autonomous driving [27], logis-
tics [9], and search and rescue [4]. However, several key challenges remain. Many
existing approaches depend on highly accurate global maps and precise localiza-
tion [17], which are costly and difficult to maintain at scale. Additionally, scene
understanding, particularly traversability analysis and socially compliant navi-
gation, poses a significant challenge for generating safe and context-appropriate
trajectories. Ensuring reliable long-range navigation across diverse and dynamic
real-world environments further complicates the problem, as the system must
adapt to varying terrain, obstacles, and social contexts. Addressing these chal-
lenges requires an approach that integrates global planning with multimodal per-
ception and adaptive local planning to enable robust and scalable autonomous
navigation.
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Maintaining an accurate map is time- and labor-intensive, and various tem-
poral conditions can degrade planning performance [7,17]. However, humans do
not require highly accurate maps for global navigation. Given Google Maps, we
can complete most long-range navigation tasks, such as commuting from home
to work, traveling in a new city, or walking on trails. Inspired by this observation,
instead of maintaining a highly sophisticated global map, we propose separating
this task into two easily accessible and generalizable components: routing and
trajectory generation. Routing provides raw latitude and longitude directions,
while trajectory generation determines the traversability of the environment to
guide the robot to the next GPS location.

Scene understanding is essential for trajectory generation in outdoor robot
navigation. It is a complex process that requires the integration of geometric
perception [11], semantic comprehension [1, 10], and contextual awareness [18].
Geometric perception enables obstacle avoidance, semantic understanding dis-
tinguishes traversable paths, and contextual awareness ensures socially compli-
ant behavior. Foundation models have recently demonstrated strong capabilities
in capturing social contexts [22, 23]. However, many trajectory generation ap-
proaches prioritize only one or two aspects due to the high computational costs
on resource-constrained onboard systems [14, 15], leading to incomplete envi-
ronmental understanding and limiting navigation reliability. To address this,
our approach incorporates multiple modalities, including LiDAR-derived ge-
ometric confidence [14], image-based color semantics [3], VLM-based context
awareness [23], and robot odometry that achieves comprehensive on-road scene
understanding for robot navigation.

Problem Statement: Designing a long-range navigation system with au-
tonomous routing and trajectory generation by leveraging multimodal percep-
tion and VLMs to achieve comprehensive scene understanding, enhancing both
traversability and social awareness.

2 Our Approach

We propose a novel global navigation system, MOSU, with Multi-modal per-
ception and On-road Scene Understanding for mobile robots. While traditional
outdoor navigation systems rely on detailed global maps and integrate global
path planning with local motion planning, MOSU instead decomposes global
path planning into two separate components: routing and trajectory genera-
tion. Specifically, we leverage QGIS and GPS data for high-level routing and
use multi-modal sensor inputs for low-level trajectory generation and scene un-
derstanding. As shown in Fig. 1, the system consists of three stages: routing,
trajectory generation, and motion planning.

2.1 Routing

The routing stage computes a high-level path from the robot’s current GPS
location to the target by generating a sequence of intermediate GPS subgoals.
These subgoals are computed by public satellite routing service, such as Google
or Openroute. Due to the limited precision of GPS sensors (5m) [26], the sub-
goals can only serve as directional guides towards the target rather than exact
positions, and if the sub-goals are too close the noise will lead the robot to
move into non-traversable areas. To prevent this short-range effect of the GPS
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Fig. 1: Overall System Architecture. MOSU leverages QGIS and GPS to generate long-
range waypoints, serving as high-level guidance for its trajectory generation system.
The trajectory generation system provides local trajectories by integrating multimodal
perception cues for traversability assessment and leveraging social cues from Vision-
Language Models (VLMs) to ensure social compliance in navigation. This hierarchical
approach enables robust, adaptive, and context-aware trajectory generation for long-
range autonomous navigation.

sub-goals, we space the sub-goals approximately 50m apart, corresponding to
the robot’s perceptual range with 3D LiDAR and RGB sensors. As the robot
navigates, we convert the current GPS sub-goal into the robot’s coordinates
and continuously monitor its approximate distance to the current sub-goal and
updates to the next one upon reaching a predefined proximity threshold, 10m.
This strategy enables scalable long-range navigation while allowing the local
trajectory generation module to handle fine-grained motion decisions based on
real-time sensor observations.

2.2 Trajectory Generation

Given the current GPS sub-goal, the robot needs a trajectory to navigate toward
it. In complex outdoor environments, the robot must handle obstacles, varying
terrain traversability, social norms, and traffic rules. We decompose this task into
two subproblems: traversability analysis and social navigation. During trajectory
generation, we apply different methods to address these challenges and generate
trajectories that are both traversable and socially compliant, using multi-modal
sensor inputs such as RGB images, robot velocities, 3D LiDAR point clouds,
and text prompts (Fig. 1).

For traversability analysis, relying solely on geometric or color information is
insufficient to fully understand the environment’s traversability (i.e., which areas
are safe for the robot to traverse), as shown in Fig. 4. Our system integrates both
geometric and color information for more accurate analysis. Social navigation is
highly intuitive and depends on the common sense and the culture of the country.
Therefore, we utilize generalized vision-language models (VLMs) to address the
social navigation problem.

Our trajectory generation method consists of four key components: (1) CVAE-
based multiple trajectories generation, which models the distribution of feasible
trajectories based on LiDAR and velocity inputs, (2) semantic segmentation
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for traversability analysis, which leverages RGB images to identify navigable
surfaces (3) VLM-based trajectory ranking, which ranks candidate trajectories
based on social compliance using overlaid image and natural language prompts.

CVAE-based Multiple Trajectories Generation: This model is to un-
derstand the geometric information of the environment for traversability analysis
through 3D Lidar point clouds. However, directly modeling the environment us-
ing point cloud is memory costly and the segmentation of a large point cloud
is also heavy [8, 20]. To address the issue, we adopt MTG [14], which is a very
light-weighted learning-based approach to generate multiple candidate trajecto-
ries to cover traversable regions in front of the robot. MTG employs a Condi-
tional Variational Autoencoder (CVAE) [21] to model the distribution of feasible
trajectories. Given sensor input x = {l,v}, where l ∈ L represents a sequence
of LiDAR observations and v ∈ V denotes the robot’s historical velocities, the
model generates a set of N candidate trajectories T = {τ1, ..., τN}. For each
trajectory τn ∈ T , we have the following formulation:

pθ(τn|x) = pθ(τn|zn, c), zn ∼ N (µn, νn), (1)

c = fθ(x), µ, ν = gθ(x), N (µn, νn) = hθ(N (µ, ν), c) (2)

We slightly abuse the notation of θ to represent the parameters of all neural
networks. c is the conditional vector obtained from an encoder network fθ(·).
gθ(·) is the latent encoder network that takes the sensor inputs x and predicts
the parameters, mean µ and variance ν, of a Gaussian distribution N (µ, ν). In
our approach, the LiDAR data is processed by PointCNN [12], and the velocities
are processed by a sequence of linear layers, as shown in [14]. Then we linearly
transform the distribution to N Gaussian distributions N (µn, νn) by the learn-
able linear transformation (neural network) hθ(·). We then sample the latent
vector zn from the distribution N (µn, νn) and use it as the input of the trajec-
tory decoder pθ(·) to generate trajectory τn. The predicted variance ν represents
the uncertainty in the latent space and is used to compute a confidence score cτ
for each trajectory. This formulation takes the LiDAR geometric information as
input and generates trajectories to cover geometrically traversable areas in front
of the robot.

Semantic Segmentation for Traversability Analysis: However, this
model struggles to accurately detect the boundaries between adjacent traversable
and non-traversable areas when they have similar geometric structures (e.g.,
off-road mud vs. sidewalks), as shown in Fig.4 (c). To address this limitation,
we incorporate semantic information by using Mask2Former [3], an RGB-based
semantic segmentation model. The model segments the image into multiple re-
gions with different semantic categories by predicting the class label of each
pixel. We define five traversability categories [13]: road, sidewalk, vegetation,
building, and others. Different types of robots have different traversable areas;
for wheeled robots, we constrain them to operate only within the sidewalk and
road traversability categories.

Given the segmented image, we overlay the set of candidate trajectories T ,
generated by the CVAE-based trajectory generator, onto the image and evaluate
their traversability scores. First, we use the Bresenham algorithm [2] to convert
trajectory waypoints into connected pixels in the image. Then, the semantic
traversability score tτ is computed for each trajectory as the ratio of pixels
falling in traversable areas to the total number of pixels along the trajectory.
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VLM-based Trajectory Ranking: To ensure social compliance, we incor-
porate VLMs [22,23] to understand social cues from the robot’s observation. As
in VL-TGS [23], we project the trajectories onto the image and, from right to
left, we assign numbers to the trajectories in sequence, according to the pixel
positions of the last waypoint of each trajectory. Then, VLMs take the overlayed
RGB image and a text prompt as input. The following is the prompt input to
the model:

The N trajectories are labeled with numbers [0-N] from right to left in
sequence. rank trajectories for social navigation.

1. keep away from the goups of pedestrians. The robot has two mode,
Normal and Slow. If the people are approaching, the robot need to Slow.

2. follow the traffic rules, and if going across the street, the robot should
keep in crosswalks.

3. recognize the traffic signs and behave accordingly.
4. avoid off-road terrain for small wheeled robots.

Given the picture, the target is at Front Left. Rank the trajectories by the
criteria. output the format: [robot mode], [ranked numbers], reason

where the orange text indicates variables based on the current sub-goal and
candidate trajectories. The model output consists of three parts: (1) the robot’s
current velocity mode—either slow or normal; (2) the ranking of trajectories
based on social and traffic compliance; and (3) the reasoning behind the ranking,
enabling chain-of-thought understanding of the environment. From the ranking
of trajectories, we calculate the ranking score, rτ = 1

N (N − pn), where pn is the
ranking of the trajectory τn. Leveraging chain-of-thought reasoning guided by
the prompt, the VLM selects trajectories that are both socially compliant and
contextually appropriate.

While each component contributes complementary information, they also
come with individual limitations in scene understanding. For example, RGB-
based segmentation lacks geometric precision and often fails to capture eleva-
tion changes such as curbs. Learning-based models may also misinterpret out-of-
distribution regions under unfamiliar conditions, as illustrated in Fig. 4 (d). To
mitigate these limitations, we aggregate the outputs from all components to com-
pute a final score for each candidate trajectory. Since trajectories are generated
in real time, we further incorporate multiple consecutive frames, transforming
them into the current robot frame to ensure consistency. The optimal trajectory
τ is selected by maximizing a weighted sum of scores:

i∗ = arg max
i∈[1,N ]

{
β1c

i
τ + β2t

i
τ + β3r

i
τ + β4g

i
τ

}
, τ = τ i

∗
, (3)

where β1,2,3,4 are weights of the components, and i ∈ [1, N ] represents the index
of the N generated trajectories. ciτ denotes the confidence score from geometric
information, tiτ represents a semantic traversability score, and riτ corresponds to
the ranking score from VLMs, where higher-ranked trajectories receive greater
weights. giτ is the distance score to the nearest GPS subgoal, the closer, the
higher.
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2.3 Motion Planning

This stage generates executable robot actions to follow the selected trajectory
τ from Equation 3. We integrate the Dynamic Window Approach (DWA) [5], a
widely used reactive local planner that generates safe and feasible motion com-
mands in real time. In addition to standard trajectory following, we apply the
velocity mode (normal or slow) predicted by the VLM to constrain the robot’s
maximum velocity to social-compliantly move the robot. The normal mode al-
lows a maximum velocity of 1,m/s, while the slow mode limits the velocity to
below 0.5,m/s.

3 Experiments

The experiment is designed to evaluate the efficacy of the system in two aspects:
(1) Trajectory generation, focusing on traversability analysis and social under-
standing. (2) Overall system performance in real-world long-range navigation
compared with other approaches. Experiments are conducted on a computer
equipped with an Intel i9 CPU (31 GB RAM) and an Nvidia RTX 3060 GPU
(6.4 GB VRAM). We compare our approach against MTG [14], DTG [15], and
VL-TGS [23], NoMaD [24], ViNT [19], and PIVOT [16] with the dataset. We
use Gemini [25] for VLM.

We evaluate trajectory generation using the GND dataset [13], which covers
10 campuses with diverse scenarios, including urban and rural environments. For
traversability analysis and social routine understanding, as shown in the Fig. 2,
we evaluate the approaches a large-scale dataset (GND) with various challenging
scenarios.

(a) Narrow Space (b) Off-road Terrain (c) Crosswalks (d) Social Scenarios

Fig. 2: Complex Outdoor Scenarios: We evaluate the approach in large-scale,
complex outdoor environments with various challenging scenarios, such as (a)
narrow spaces, (b) areas with dense off-road vegetation, (c) traffic components
(e.g., crosswalks), and (d) social situations involving pedestrians.

The metrics in Table 1 are calculated as following:
Traversability: We overlay the generated trajectory onto the traversability

map from the GND dataset [13]. The traversability score is then calculated as
the percentage of fully traversable waypoints over the entire trajectory length.

Distance to Target: 1 − dτ−do

|τ | , where dτ and do represent the distances

between the target and the current trajectory and between the target and the
optimal ground-truth trajectory, respectively. |τ | denotes the length of the gen-
erated trajectory.
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(a) (b) (c)

Fig. 3: Qualitative Evaluation: Each column illustrates one of the three components
in our trajectory generation pipeline, (a) CVAE-based multiple trajectory generation,
(b) semantic segmentation for traversability analysis, and (c) VLM-based trajectory
ranking in the outdoor scenarios. In (a) and (b), lighter colors indicate higher scores,
confidence scores in (a) and traversability scores in (b). In (c), the VLM ranks trajec-
tories based on social cues. The top example shows a ranking of [3, 0, 1, 2, 4]. The
bottom example shows a ranking of [4, 5, 0, 1, 2, 3].

(a) (b) (c) (d)

Fig. 4: Geometric and Semantic Analysis: Both geometric trajectory generation
and semantic segmentation perform well in most cases, but there are also failure cases,
as marked in yellow circles in (c) and (d). When the elevations of the lawn and side-
walk are similar, the geometric model struggles to perform accurately. Additionally,
segmentation fails in out-of-distribution scenarios.

3.1 Experimental Insights

As shown in Fig. 4 (a), geometry-based trajectory generation [14] performs well
in scenarios where geometric structures are easily detected. However, when the
elevations of off-road areas and sidewalks are similar, it often fails, as shown in
(c). In Fig. 4 (a) and (b), lighter colors indicate higher scores in both geometric
confidence and color-based traversability. As shown in (d), semantic segmen-
tation also encounters out-of-distribution scenarios, where large ground areas
cannot be properly segmented. Therefore, we use Equation 3 to integrate all
components for optimal performance in traversability analysis. As shown in Ta-
ble 1, our approach achieves the best traversability among all methods, and the
generated trajectories lead to the target closely.

As shown in Fig. 3, beyond traversability analysis, VLMs also process labeled
trajectories and analyze social cues from the images. In the first row, the VLM
ranks the trajectories as [3, 0, 1, 2, 4], given the target at the right front. It
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Method Modality Traversability (%) ↑ Distance to Inference
Target (%) ↑ Time (s) ↓

PIVOT RGB + Language 70 69 2.30
ViNT RGB 57 62 0.69

NoMaD RGB 59 61 0.24
MTG [14] Points 61 64 0.01
DTG [15] Points 67 66 0.13

VL-TGS [23] Points, RGB, Language 65 70 2.31
MOSU (ours) Points, RGB, Language 77 73 2.30

Table 1: Quantitative Evaluation: Our approach achieves the best
Traversability and comparable Distance to Target.

suggests following trajectory 3 at normal speed, while other trajectories should
be taken at a slower speed when encountering humans. The ranking for the
second row is [4, 5, 0, 1, 2, 3] with normal speed. In the experiment, we observed
that VLMs take a significant amount of time to process, as shown in Table 1,
but they demonstrate high accuracy in understanding social cues, particularly
in detecting movement directions.

Besides social and traffic understanding, as shown in Tab. 1, our approach
achieves a comparable distance-to-target while attaining at least 10% higher
traversability than other methods.

4 Conclusion

We propose a system for long-range navigation that considers traversability, as
well as social and traffic constraints. The system integrates routing, trajectory
generation, and motion planning, leveraging the benefits of geometric, semantic,
and language information to enhance scene understanding and trajectory gen-
eration. Compared with other state-of-the-art (SOTA) approaches, our method
achieves a comparable distance-to-target and improves traversability by at least
10%.

While the system demonstrates strong overall performance, some limitations
remain. It has difficulty in detecting small cliffs, such as the vertical surfaces of
ramps. When the robot is moving on ramps, it is challenging to detect very low
vertical surfaces. Additionally, as with many learning-based approaches, the tra-
jectory generation model lacks generalizability to out-of-distribution scenarios,
which can lead to noisy trajectories and poor integration of geometric infor-
mation. Future improvements may involve incorporating more robust geometric
analysis methods, such as foundation geometric understanding models, to better
evaluate geometric constraints.
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