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Abstract—Self-supervised learning is a powerful approach for
developing traversability models for off-road navigation, but these
models often struggle with inputs unseen during training. Existing
methods utilize techniques like evidential deep learning to quantify
model uncertainty, helping to identify and avoid out-of-distribution
terrain. However, always avoiding out-of-distribution terrain can
be overly conservative, e.g., when novel terrain can be effectively
analyzed using a physics-based model. To overcome this chal-
lenge, we introduce Physics-Informed Evidential Traversability
(PIETRA), a self-supervised learning framework that integrates
physics priors directly into the mathematical formulation of ev-
idential neural networks and introduces physics knowledge im-
plicitly through an uncertainty-aware, physics-informed training
loss. Our evidential network seamlessly transitions between learned
and physics-based predictions for out-of-distribution inputs. Addi-
tionally, the physics-informed loss regularizes the learned model,
ensuring better alignment with the physics model. Extensive sim-
ulations and hardware experiments demonstrate that PIETRA
improves both learning accuracy and navigation performance in
environments with significant distribution shifts.

Index Terms—Machine learning for robot control, motion and
path planning.

1. INTRODUCTION

ECENT advancements in perception and mobility have
R accelerated the deployment of autonomous robots in chal-
lenging real-world environments such as office spaces, con-
struction sites, forests, deserts and Mars [1], [2], [3], [4], [5],
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OOD Terrain

Fig. 1. Real-world navigation scenario where the robot, trained on flat ground
and turf, encounters unseen tall vegetation and ramps while navigating to a goal.
Unlike prior works that avoid OOD terrain, this work successfully navigates
across OOD terrain to reach the goal by integrating physics knowledge into the
traversability model.

[6], where both geometric and semantic comprehension of the
terrain is crucial for reliable navigation. In these settings, self-
supervised traversability learning has emerged as a powerful tool
to train neural networks (NNs) to predict terrain models from
navigation data without manual labeling [7], [8], [9], [10], where
the learned representations can work directly with model-based
motion planners, providing better interpretability and flexibility
compared to fully learned navigation policies. However, the lack
of abundant and diverse training data limits the reliability of
learned traversability models in novel environments. This is a
well-known issue in the learning literature that arises from out-
of-distribution (OOD) inputs at test time due to the distribution
shift between training and test data [11], [12].

Many recent works mitigate the risk of encountering OOD
scenarios by quantifying the epistemic uncertainty, which is
the model uncertainty due to distribution shift [12]. For ex-
ample, OOD terrain can be detected by learning a density
estimator for the training data to identify test input with low
density [13], [14], or a terrain auto-encoder for detecting poorly
reconstructed terrain [8], [15]. While avoiding OOD terrain
has been shown to improve mission success rate in our prior
work [10], doing so can be too conservative, such as the situation
considered in this work (see Fig. 1). To this end, we pro-
pose Physics-Informed Evidential TRAversability (PIETRA),
a self-supervised learning framework that seamlessly combines
learning-based and physics-based traversability analysis meth-
ods such that the downstream planner relies on the learned
model for in-distribution (ID) terrain and the physics-based
model for OOD terrain. Improving upon our prior work [10],
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we exploit the mathematical structure of evidential learning to
embed a physics-based prior that automatically gets invoked
when epistemic uncertainty is high. Moreover, we propose an
uncertainty-aware physics-informed loss function inspired by
existing works to regularize the learned model to improve gen-
eralization [16], [17].

In summary, the contributions of this work are threefold:

1) An evidential traversability learning framework with an
explicit physics-based prior that gets invoked when en-
countering OOD features at test time.

2) An uncertainty-aware physics-inspired loss function that
implicitly injects physics knowledge at training time to
improve learning accuracy for both ID and OOD features.

3) Extensive simulation and hardware experiments showing
that our approach improves both the learning accuracy and
the downstream navigation performance in test environ-
ments with significant distribution shift.

II. RELATED WORK

The field of traversability analysis studies how to infer suit-
ability of terrain for navigation (see survey [18]). Compared
to hand-crafting planning costs based on terrain features, di-
rectly learning traversability models from data requires less
manual labeling and results in a more accurate assessment of
vehicle-terrain interaction. Based on navigation data, visual
and/or geometric features of the visited terrain can be used to
train a traversability predictor based on estimated traversabil-
ity values [8], [19], [20], [21], [22]. Building upon this basic
idea, visual and visual-inertial representation learning [9], [23],
self-training with pseudo-labels for unvisited terrain [24], tem-
poral fusion of robot states and sensor measurements [7], and
data augmentation via vision foundation models [25] can all
improve learning accuracy. Alternatively, when a hand-crafted
traversability model such as [26] is available, it can be used to
provide supervisory signals for training NNs that are faster [2],
[3]. One concern is that, because learning-based methods rely
on likely limited real-world data, the learned models may not
generalize to environments unseen during training. While our
work also uses self-supervised learning to obtain a traversability
model, we incorporate physics knowledge into the model to
improve generalization to OOD environments.

OOD detection is well studied and closely related to uncer-
tainty quantification (see surveys [11], [12]). At a high level,
input features that are not well-represented in the training data
can lead to high epistemic uncertainty, which can be estimated
with techniques such as Bayesian dropout [27], model ensem-
bles [28], and evidential methods [29]. Epistemic uncertainty
can also be estimated via a terrain auto-encoder for detecting
high reconstruction error [15], a density estimator fit to the train-
ing data distribution [14], or Gaussian Process regression [30].
Our prior work [10] adopts the evidential method proposed
by [31] to efficiently identify OOD terrain and shows that
avoiding OOD terrain during planning can improve mission
success rate. However, always avoiding OOD terrain can be too
conservative. To address this limitation, this new work exploits
the mathematical formulation of evidential learning to explicitly
embed a physics prior that is activated when encountering OOD
features. While informative priors have recently been combined
with evidential learning in other problem settings, such as the
use of a rule-based prior for trajectory prediction in autonomous
driving [32], our work focuses on off-road navigation and addi-
tionally introduces a physics-informed loss to further improve
OOD generalization.
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Incorporating physics and expert knowledge for navigating
challenging terrain is crucial for both performance and safety,
which can be achieved explicitly or implicitly (see survey [33]).
For example, explicit safety constraints based on terrain ge-
ometry and robot states can be imposed during planning [23],
[34], [35], [36]. Physics laws can be explicitly incorporated
into NNs via differentiable physics engines or neuro-symbolic
methods [37], [38]. In addition, custom models can be directly
used as priors in an evidential framework [32]. In contrast to
previously mentioned explicit approaches, physics knowledge
can also be infused into NN models implicitly by learning to
reduce prediction errors with respect to both the training data
and the physics model [16], [17]. This work described herein
uses both explicit and implicit methods to infuse physics knowl-
edge into the learned traversability model. As will be shown
in Section V, compared to NNs trained with a physics-based
loss that suffer from distribution shifts in far-OOD regime,
our method gracefully falls back to the explicit physics prior.
Furthermore, compared to an evidential network that only has
a physics prior, our method uses a physics-based loss to further
improve generalization.

III. PROBLEM FORMULATION

We consider the problem of motion planning over uneven ter-
rain for a ground vehicle. This section introduces the robot model
with uncertain traversability parameters caused by rough terrain
and sensing uncertainty in Section III-A and the risk-aware
planning formulation in Section III-B. Compared to our prior
work [10] that only considers the linear and angular traction,
this new work additionally accounts for the roll and pitch angles
important for navigating uneven terrain.

A. Dynamical Models With Traversability Parameters

Consider the discrete time system:

ey

where x; € X C R” is the state vector such as the position and
heading of the ground robot, u; € R™ is the control input, and
1, € ¥ C R" is the parameter vector that captures traversability
of the terrain. In this work, we focus on the bicycle model
which is applicable for Ackermann-steering robots used in our
simulation and hardware experiments:

Xi4+1 = F(Xtv ut»d’t)a

D1 j2 P14 - v - cos (6)
pla| = |pf| +A| Yipve-sin(@) |, ()
9t+1 Ht ’lﬂg}t s Ut - tan(ét)/L

where x; = [p¥,p/,0;]" contains the X, Y positions and yaw
angle; u; = [vy, 5,5]T contains the commanded speed and steer-
ing angle; 0 < 1)y 4,124 < 1are the linear and angular traction;
A > 0 is the time interval; and L > 0 is the wheelbase. We
additionally consider the absolute roll and pitch angles of the
robot 13 ¢,1%4, > 0 that do not appear in (2). Therefore, the
traversability parameter vector is 10, = [11.4, Vo.t, V3., Ya ] -
Intuitively, traction captures the “slip” or the ratio between
achieved and commanded velocities, which is important for
fast navigation, and the roll and pitch values are important for
rollover prevention.

For rough terrain with vegetation, the traversability values are
often unknown but can be empirically learned. Additionally, due
to the noisy nature of the empirical data, we model traversability
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Density

CVaR{ (2) VaR$ (Z) VaRj(Z) CVaRy (2)

Fig. 2. Conditional Value at Risk (CVaR) is the expected value of the worst-
case v € (0, 1] portion of total probability and Value at Risk (VaR) is the worst-
case a-quantile for some random variable Z. We use both the left-tail and right-
tail definitions proposed in [10].

1, as random variables and mitigate the risk of encountering
poor traversability during planning.

B. CVaR-Based Risk-Aware Navigation

Given the initial state Xy and maximum roll and pitch angles
Pt >0, we want to find a control sequence ug.7—;
that minimizes the time to reach the goal using the objective
proposed in [10]. We use Conditional Value at Risk (CVaR, as
visualized in Fig. 2) to quantify the risk of obtaining low traction
and large roll and pitch angles. We achieve risk-aware planning
by simulating the state trajectory using the left-tail CVaR}, of
traction and imposing the maximum attitude constraints over the
right-tail CVaR} of roll and pitch angles:

min O(Xo;T) (3)
S.t. Xt+1 = F(Xt, Uy, ’l,_bt) (4)
R T )
CVaR{ (¢1,4) Vi
- CVaR{, (24) Yot
= DI N 1~ p(oy 6
V= evary () | 7 [ws| PO @
CVaR ) (4,1) Pyt
0, is the terrain feature at x; (7)
vt e {0,...,T — 1}, )

where 1), contains the worst-case expected traversability values,
a € (0,1] is the risk tolerance, and p(o;) is the traversability
distribution after observing the terrain feature at state x;. We
use Model Predictive Path Integral control (MPPI [39]) to solve
(3-8) because MPPI is gradient-free and parallelizable on GPU.
Note that a similar formulation of (3—8) has been shown by [10]
to outperform methods that assume no slip and state-of-the-art
methods such as [21], [40], but this new work introduces addi-
tional constraints over roll and pitch.

IV. PHYSICS-INFORMED EVIDENTIAL LEARNING

In this section, we present the proposed method PIETRA
shown in Fig. 3. At a high level, the traversability predictor
D¢ parameterized by ¢ outputs a categorical distribution over
discretized traversability values to capture aleatoric uncertainty
(inherent, irreducible data uncertainty) for each traversability
parameter. Moreover, the normalizing flow network [41] py
parameterized by A estimates the densities of latent features
as proxies for epistemic uncertainty (model uncertainty due
to distribution shift). PIETRA improves upon our prior work
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Overview of PIETRA :l New Components w.r.t. EVORA

i Prior f
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Fig.3. Overview of the proposed physics-informed evidential learning frame-
work. In contrast to our prior work EVORA [10], this work explicitly embeds
a physics prior in the Dirichlet posterior update and implicitly infuses physics
knowledge via an uncertainty-aware, physics-informed loss during training.

EVORA [10] by having an explicit physics prior that is in-
voked when encountering OOD inputs (Section IV-A) and an
uncertainty-aware physics-informed loss that implicitly injects
physics knowledge to further improve model accuracy in OOD
terrain (Section IV-B). Lastly, we design custom physics priors
used in our experiments in Section I'V-C and discuss the imple-
mentation details in Section IV-D.

A. Dirichlet Distribution With Physics Prior

The Dirichlet distribution q = Dir([)’) with concentration pa-
rameters 3 = [B1,...,88]" B is a hierarchical distribu-
tion over categorical dlstrlbutlons Cat(p), where p € RE, is a
normalized probability mass function (PMF) over B > 0 dis-
cretized traversability values, i.e., Zszl pp = 1. The parameters
p of the lower-level categorical distribution Cat(p) are sampled
from the higher-level Dirichlet distribution, i.e., p ~ Dir(3).
The mean (also called the expected PMF) of the Dirichlet
distribution is given by Epy[p] = 8/ Y4, B5. The sum n =
> bB:l By reflects how concentrated the Dirichlet distribution is
around its mean and corresponds to the “total evidence” of a
data point observed during training.

Given an input feature o and a physics model pP™* that maps
its input to a traversability PMF with the evidence nP"* > 0, the
NN performs an input-dependent posterior update:

B = nP>*p™ (o) + nYpe (o), ©)
ny = Npa(zo), (10)
where the posterior Dirichlet distribution gg , = Dir(33 ;) de-

pends on the physics prior and its ev1dence the predlcted
traversability PMF pg (o) and the predicted evidence ng that
is proportional to the density p, (z,) for the latent feature z,
weighted by a fixed certainty budget N > 0. The posterior
Dirichlet distribution leads to the expected traversability PMF:

nPYSpPY (o) 4 nPpg (o)
nPhys + ng®

; (In

Pga =

which is used by the risk-aware planner (3-8). The prior ev-
idence is set to a small number (e.g., nPhYs = B) such that
the predicted evidence nQ is much larger than nP™* for ID
features. As a result, the learned traversability PMF pg (o) is
used for planning on ID terrain. However, the new evidence ny
diminishes if the features are OOD, so the physics model pP¥* (o)
is used for planning instead. The graceful transition between
learned and physics-based traversability estimates eliminates
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the need to avoid OOD terrain, as is required in our prior work
EVORA [10] that uses an uninformative prior.

B. Uncertainty-Aware Physics-Informed Loss

In addition to explicitly embedding the physics prior in the
posterior update (11), physics knowledge can also be implicitly
infused into the NN by adding a physics-based loss term during
training. In contrast to existing methods [16], [17] that are not
uncertainty-aware, we adapt the physics-informed loss to the
context of evidential learning.

We design the training loss based on the squared Earth
Mover’s distance (EMD? [42]) which is a better measure of
error compared to KL divergence that treats prediction errors
independently across discrete bins. EMD? has a closed-form
expression after dropping the constant multiplicative factor:

EMD?(p,y) := [les(p) — es(y)|%,

where cs : RP — R® is the cumulative sum operator, and p and
y are the predicted and target PMFs. To train an evidential NN,
our prior work proposes the uncertainty-aware EMD? (UEMD?)
loss, which is the expected EMD? under the predicted Dirichlet
q (see the closed form in [10, Thm. 1]):

12)

LM (q,y) = Epq [EMD*(p,y)] . 4

This uncertainty-aware loss has been shown to improve both
learning accuracy and navigation performance compared to
using (12) or cross-entropy-based losses for training.

To implicitly infuse physics knowledge, we propose the
uncertainty-aware physics-informed (UPI) loss, defined as the
expectation of the weighted sum of data loss and physics loss
given the predicted Dirichlet distribution:

LY(q,y) == Ep-, [EMD?(p,y) + £ - EMD?(p, p™*)]

= UEMD?(q,y) + 1 - UEMD?(q, p™),  (14)
where pPY® = pP¥s(0) is the PMF predicted by the physics
model given some feature o, and x > 0 is a hyperparameter.
Intuitively, the physics-based term ensures that NN predictions
stay close to the physics prior, thus improving generalization in
near-OOD regimes. As our ablation study in Section V-C later
shows, both the UPI loss (14) and the physics prior (11) are
important for achieving the best learning performance.

C. Uncertainty-Aware Physics Prior

‘We now present our custom physics priors for uneven terrain
with two semantic types: the rigid dirt terrain and the soft
vegetation terrain. Note that alternative prior designs could be
used provided they are based on physics principles that hold in
both ID and OOD scenarios.

The traction priors are inferred from the terrain properties
under the wheels (also called the “footprint”) assuming the robot
has 0° roll and pitch. Over dirt terrain, as the tire traction depends
on friction that reduces with greater slopes, we design a simple
slope-based model that predicts lower traction for more sloped
terrain. In our hardware experiment, taller vegetation deforms
less and slows down the robot more, so we propose a traction
model that predicts lower traction for taller vegetation. To factor
in the uncertainty due to outcomes from the four wheels, our
physics-based traction models for the traversability parameter

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 3, MARCH 2025

(a) (b) (c)

MYs Height dy;
h; thh3 ky

d,-vj: Distance between i,j € {1,2,3,4}

hy

Estimated Traversability PMF
Weighted by 1 — q"0if

Uniform PMF
Weighted by w

unif

Prob. Mass

< Bins
Possible Traversability Values
Based on Terrain under Wheels

Physics Prior that Captures
Uncertainty in Outcomes

Fig. 4. Terrain features used by the physics priors and how multiple potential
traversability values are fused, as discussed in Section IV-C. (a) Terrain slope.
(b) Terrain height. (c) Inter-wheel distances of the front wheel pair and back
wheel pair. (d) Inter-wheel distances of the left wheel pair and right wheel pair.
(e) Multiple candidates are fused into a single estimated traversability PMF and
combined with the uniform distribution to account for uncertainty.

V' e {11, 1)} are

4 -
, 1 , ) gmax _ g
p’:ibirl = Z Z :ﬂ':ipirt <Chp < gmax 707 1)) ) (15)
i=1
4 .
/ 1 , . [ h™m® —h;
Pgég = Z Z :ﬂ"l{ég <Chp ( Jmax 0, 1)) ’ (16)
i=1

where s;, h; are the terrain slope and the height of vegetation
under the wheel ¢, as shown in Fig. 4(a)-(b); the clip function
restricts the traction values between 0 and 1; and the operator
]l;"/ maps a scalar to a PMF where the estimated traversability
value for 7/’ has probability 1 for the semantic type s € S :=
{dirt, veg}. Intuitively, the priors merge the estimated traction
outcomes from the four wheels into a common PMF. Note that
the terrain slope is estimated in the direction of the robot’s
heading, and we use the absolute slope to produce low traction
values for both uphill and downhill terrain.

The roll and pitch angles are estimated based on the terrain
height under the wheels using trigonometry. The physics model
for the traversability parameter ¢/ € {13, 14} and the semantic

type s € S is
, h; — h;
]lf (arctan <j>) , (17)
di;

where d; ; is the distance between the wheels 7, j. Roll and
pitch priors use different wheel index pairs defined in W¥3 =
{(1,4),(2,3)}and W¥+ = {(1,2), (4, 3)} to account for uncer-
tain terrain contact points as shown in Fig. 4(c)—(d).

To handle different semantic types within the footprint feature
o, the proposed physics prior for the traversability parameter
' € {11, ...,14} combines the prior predictions based on dif-
ferent semantic types via:

PP (0) = w™ip™ 4 (1 —w™) > rp!,
seS

DS

(i,5)ew?’

p! =

(18)

where 7 is the ratio of the semantic types within the footprint,
p?' is the physics prior based on (15-17), p*f is a uniform
PMF, and w"f € [0, 1] determines how much uniform PMF is
incorporated into the final physics prior to account for inaccurate
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prior predictions, as shown in Fig. 4(e). Note that (18) is used
as the physics prior in (11).

D. Implementation Details

The traversability predictor pg and the normalizing flow p,
are trained jointly using the proposed UPI loss (14) on an
empirically collected dataset {(0,%)x -, where K > 0 and
every estimated traversability parameter in ) is converted to a
target PMF y using one-hot encoding with B = 12 discrete bins.
Terrain features can be extracted from a semantic elevation map
(e.g.,[43]), while traversability values can be computed using the
pose and velocity estimates obtained from onboard odometry,
along with the commanded velocities.

For simplicity, we use a multi-layer perceptron (MLP) as
the shared encoder to process the flattened and concatenated
semantic and elevation patches of the terrain. The shared encoder
is followed by separate MLP decoders with soft-max outputs for
predictions of each traversability parameter. To reduce computa-
tion, we train a single flow network using the encoder’s outputs.
Asrecommended by [31], we scale the constant certainty budget
N exponentially with the dimension of the encoder’s outputs for
numerical purposes. As the accuracy of physics priors differs
across traversability parameters, we use a standalone MLP to
map the shared encoder’s output to scalars between 0 and 1 to
downscale the predicted evidence in the posterior update (11)
for each traversability parameter.

In contrast to our prior work [10], this work uses yaw-aligned
features because roll, pitch and traction are directional over
uneven terrain. At deployment time, feature patches are obtained
in a sliding-window fashion with a fixed number of yaw angles.
The predicted traversability distributions are then converted to
CVaR values for look-up during planning.

V. SIMULATION RESULTS

We use the Chrono Engine [44] to simulate navigation over
rocky terrain and collect benchmark data. When compared
against several baselines with or without physics knowledge,
PIETRA achieves the best prediction accuracy (Section V-B).
Furthermore, we conduct an ablation study to validate the
proposed improvements (Section V-C). When used for naviga-
tion, PIETRA leads to the best success rate and time to goal
(Section V-D). While only the dirt terrain is simulated, the real-
world experiments have both dirt and vegetation (Section VI).

A. Simulation Setup

An overview of the simulation environment is shown in Fig. 5.
We generate 30 distinct synthetic elevation maps based on the
real-world rock testbed proposed in [45], which are split evenly
for training, validation and testing. Every map has sides of
50 m and we use an Ackermann-steering robot of dimension
3.4 m by 1.8 m to collect 20 navigation trials in each map.
For simplicity, the robot executes sinusoidal steering and 2 m/s
speed commands, and the episode ends if the robot rolls over,
gets stuck, or exits the map. Note that terrain features and
traversability values are obtained directly from the simulator.

To emphasize the testing of OOD generalization, the test
elevation maps are scaled more than the training and validation
maps, inducing significant distribution shift as visualized in
Fig. 5, where we use the standard deviations of the elevation
features to measure terrain unevenness. To clearly mark the
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Train./Val. Env. Test Env. (More Uneven) Test Start-Goal Pairs

E
<
2
®
2
2
w

Training
Validation
Test
—— 50.0 Percentile of Training Data

Used for
Train./Val.

Density
wv

0.1 0.2 0.3 0.4 0.5
Standard Deviation of Elevation in Footprint (m)

Fig. 5. Overview of the simulation setup with synthetic rocky terrain, where
the terrain unevenness is measured by the standard deviation of elevation in the
robot footprint. The test maps are more uneven than the training and validation
ones to induce distribution shift. During training and validation, only the data
with terrain unevenness below the 50th percentile of the training dataset is used.
Note that test maps are also used to evaluate navigation performance.

TABLE I
LEARNING BENCHMARK RESULTS

Prediction Error (EMD? |)

Method

Overall 1D 00D
PIETRA (Proposed) 2.77+0.01 268+0.01 278+0.01
Physics-Informed (PI) 2.99 £0.01 2.68+0.01 3.02+0.01
Vanilla 3.05+0.01 2.74£0.01 3.08+0.01
EVORA 3.30+£0.02 2.72+£0.01 3.35+£0.02
Physics Prior 3.09 2.93 3.10
Uniform Prior 4.35 4.34 4.35

ID/OOD boundary, we consider a terrain feature as ID (or OOD)
if its unevenness falls below (or above) the 50th percentile of
the training dataset. We only use the ID data for training and
validation, but the accuracy of trained NN is evaluated on the
entire test dataset. Note that the test maps are also used for
evaluating navigation performance.

B. Learning Benchmark

The proposed method PIETRA is compared to several state-
of-the-art methods, including our prior work EVORA [10], an
encoder-decoder NN trained with the EMD? loss (Vanilla),
and an encoder-decoder NN trained with the physics-informed
loss (PT) adapted from [16] to use the EMD? loss. Based
on the training data and vehicle characteristics, we tune the
max slopes (15) for linear and angular traction to correspond
to 30° and 15° with w"" = 0.2 for mixing in the uniform
PMF (18). Hyperparameter sweeps are conducted over learn-
ing rates in {le—3, le—4, le—5} for the Adam optimizer, and
weights for the physics loss termin {0.1, 0.5, 1.0}. To encourage
smoothness, we penalize Dirichlet entropy [31] with weights in
{le—3,1le—4, le—5} for evidential NNs. We identify the best
parameter set for each method based on the average validation
EMD? errors over 5 training seeds and report the mean and
standard deviations of the prediction errors over the seeds.
The learning benchmark results in Table I show that PIETRA
achieves the best overall, ID and OOD performance. To gain
more intuition, the test errors are binned based on terrain un-
evenness in Fig. 6 . Notably, while PI outperforms Vanilla and
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Fig. 6. Prediction errors binned by the standard deviation of elevation in

robot footprint. While all trained models perform similarly on ID data, PIETRA
generalizes the best to OOD data. Unlike PIETRA that falls back to the physics
prior, EVORA falls back to the uniform prior which has higher error. Without
explicit priors, PI and Vanilla perform poorly in far-OOD regime.
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Fig.7.  Successrate and time to goal from the simulated navigation benchmark.

The figure shows the mean and standard deviation values for each method. The
proposed PIETRA performs the best because it seamlessly transitions between
the learned and physics models on OOD terrain. When PIETRA avoids OOD
terrain, it becomes more conservative but still outperforms EVORA thanks to
the physics-informed training loss. While PI outperforms Vanilla, it performs
worse than the physics prior due to unreliable traversability predictions.

TABLE II
ABLATION STUDY ON INFUSING PHYSICS KNOWLEDGE INTO EVORA [10]

Prediction Error (EMD?2 |)

Changes w.r.t. EVORA

Overall 1D 00D
PP & UPI (Proposed) 2.77+0.01 268£0.01 2.78+0.01
UPI 3.27+£0.02 2.67+0.01 3.32+0.02
PP 2.86 +=0.01 2.73+0.01 2.87+0.01
Use phys. model if OOD 2.93 +0.01 2.72+0.01 2.95£0.01
EVORA 3.30£0.02 2.72+£0.01 3.35+0.02

PP: Physics Prior UPI: Uncertainty-Aware Physics-Informed Loss (14)

performs similarly to PIETRA on ID features, the improvement
thanks to the physics-informed loss degrades as features become
more OOD. On the other hand, PIETRA and EVORA fall back
to their corresponding priors (physics prior and uniform prior)
due to decreasing predicted evidence (11).

C. Ablation Study

An ablation study for the proposed improvements with respect
to EVORA is summarized in Table II. For completeness, we
include a variant where EVORA uses the physics model for OOD
features with latent densities lower than the densities observed
during training. The takeaway is that both the physics prior
and physics-informed loss are important for achieving the best

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 3, MARCH 2025

overall accuracy. While the UPI loss (14) alone leads to the best
ID accuracy, it offers limited improvement on OOD accuracy.
Interestingly, EVORA equipped with a physics prior achieves
better OOD accuracy than OOD-based switching, verifying the
benefit of the explicitly embedded physics prior.

D. Navigation Benchmark

We deploy the NNs from Section V-B trained with the best
hyperparameters in the test environments. As discussed in [10],
EVORA detects OOD terrain that is avoided during planning
via auxiliary costs. As an ablation of the physics prior, we also
consider PIETRA with OOD avoidance. We consider 10 test
maps and 10 start-goal pairs that are 40 m apart as visualized in
Fig. 5. The robot aims to reach the goal without exceeding 30°
of roll and pitch angles or getting immobilized. The robot has a
maximum steering angle of 30° and a maximum speed of 1 m/s
to ensure stable crawling. Note that MPPI runs at 10 Hz on GPU
with a 5 s planning horizon and 1024 rollouts. We consider 3
risk tolerances « in {0.4,0.6,0.8} and report the success rate
and the time to goal of successful trials.

The navigation results in Fig. 7 show that PIETRA achieves
the best success rate and time to goal. In comparison, PIETRA
with OOD avoidance is more conservative but still outperforms
EVORA thanks to the proposed UPI loss (14). While PI outper-
forms Vanilla, it performs worse than the physics prior due to
poor OOD generalization.

VI. HARDWARE EXPERIMENTS

While the simulation results in Section V have shown
improved learning and navigation performance achieved by
PIETRA with respect to the state-of-the-art, this section presents
further evidence of PIETRA’s practical utility via real-world
experiments on a computationally constrained platform in the
presence of multiple semantic types in the environment.

A. Data Collection, Training and Deployment

The indoor 9.6 m by 8 m arena contains turf and fake bushes
to mimic outdoor vegetation. The dirt semantic type includes
the concrete floor and a skateboard ramp. A 0.33 m by 0.25 m
RC car carries a RealSense D455 depth camera, and a computer
with an Intel Core i7 CPU and Nvidia RTX 2060 GPU. The
robot runs onboard traversability prediction, motion planning,
and elevation mapping with 0.1 m resolution, but Vicon is used
for estimating the pose and velocity of the robot. For simplicity,
terrain elevation and semantics are estimated separately based
on depth and color measurements. Each map cell contains a
single semantic type initially set to dirt and is later updated to
vegetation if the corresponding pixels in the image space are
green.

Traversability models are trained on 10 min of manual driving
data over flat concrete floor and turf, making the tall bushes
and skateboard ramp OOD at test time. For the vegetation and
dirt traction priors, we empirically tune the maximum dirt slope
s™M8* (15) to correspond to 30° and the maximum vegetation
height A™2* (16) to be 0.2 m which is slightly greater than the
0.15 m wheel diameter. To prevent damaging the hardware, we
do not consider PI and Vanilla because their predictions for OOD
terrain are unreliable. Therefore, we only consider PIETRA, the
physics prior, and EVORA that avoids OOD terrain. All models
are trained with the learning rate of le—4, entropy weight of
le—4 and physics loss weight of 0.1 when applicable. We set a
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Snapshots of the start of the two missions with short and tall vegetation. From the onboard camera view, the robot builds semantic elevation map online,

which is processed to generate CVaR of the traversability values. Due to limited space, we only show the CVaR of the predicted linear traction aligned with the
robot heading for each method and overlay the initial best trajectories. For EVORA, we additionally show the OOD contour that the robot avoids.
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Fig. 9. Hardware experiment results showing that PIETRA achieves the best
time to goal and success rate. To avoid OOD terrain, EVORA takes wide turns
that increase the time to goal and the odds of going out of bound. While the
physics prior achieves better time to goal than EVORA, it suffers from more
failures due to inaccurate traction estimates on the flat terrain.

Start Goal

PIETRA (Proposed) EVORA ~—— EVORA's OOD Contour === Phys. Prior

Veg. Elevation (m)
0.2

Dirt Elevation (m)
0.2 03

Trial Time
PIETRA: 7.7 5
EVORA: 8.4 5

— Phys. Prior: 8.0's

Trial Time
PIETRA: 6.6 5
EVORA: 7.3 5

— Phys. Prior: 7.7 s

S s > TN
AN - A

Short Vegetation Scenario

Tall Vegetation Scenario

Fig. 10.  Full trajectories, terrain maps and trial time of representative trials.
PIETRA chooses between vegetation and the ramp based on vegetation height.
While the physics prior and PIETRA share similar traversability assessment
for tall vegetation and the ramp, the physics prior overestimates the terrain
traction of the concrete floor, making the robot frequently go around the ramp
and vegetation. EVORA detects and avoids the OOD terrain unseen during
training, causing undesirable wide turns due to limited steering authority.

fixed risk tolerance of a = 0.5 for the risk-aware planner. Note
that MPPI runs at 10 Hz on GPU with a 5 s planning horizon and
1024 rollouts, and the generation of CVaR maps runs at 5 Hz
with the map dimension of 81 x 96 with 13 yaw discretizations.

B. Navigation Results

The robot is tasked to navigate to a fixed goal without leaving
the bounding box of the arena or violating the roll and pitch
constraints of 30° and 45° respectively, while deciding whether
to drive on vegetation, climb over the ramp, or stay on the
concrete floor. We vary the elevation and density of bushes and
repeat each method 20 times. Some snapshots of the start of
the missions are visualized in Fig. 8 for scenarios with short
and tall vegetation. The success rates and the time to goal
of the successful trials are reported in Fig. 9, showing that
PIETRA achieves the best performance. PIETRA violates the
roll constraint once because the robot drives off the down-ramp
prematurely. EVORA has 3 out-of-bound failures because the
robot frequently takes wide turns to avoid OOD terrain, which
makes the robot more likely to miss the goal and leave the
bounding box. The physics prior leads to 2 out-of-bound failures
because it misses the goal region slightly due to over-optimistic
traction estimates. The physics prior also leads to 2 roll violations
due to driving off the down-ramp prematurely.

Representative trials in Fig. 10 show that PIETRA goes over
vegetation when the bushes are short, but it goes over the ramp
when the bushes are tall. In comparison, the large OOD regions
force EVORA to take wide turns. Interestingly, the robot using
the physics prior favors the concrete floor. To explain this phe-
nomenon, Fig. 8 shows the predicted CVaR of linear traction for
each method, suggesting that the physics prior is over-confident
about the traction of the concrete floor. This further shows that
PIETRA combines the best of EVORA and physics prior in that
it relies on the learned model in ID terrain, but falls back to the
physics model in OOD terrain.

VII. CONCLUSION AND FUTURE WORK

We presented PIETRA, a self-supervised traversability learn-
ing method that incorporates physics knowledge explicitly via
the custom physics prior and implicitly via the physics-informed
training loss. Extensive simulations and hardware experiments
show that PIETRA improves learning accuracy and navigation
performance under significant distribution shifts.
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One of the limitations of PIETRA is its large memory foot-
print due to discretization, so improvements are needed for
higher-dimensional systems. Moreover, PIETRA relies on ac-
curate terrain features and state estimation, but the risk due to
uncertain sensing and estimation may need to be addressed for
some real-world environments. Lastly, PIETRA can be further
improved by leveraging data augmentation [17], differentiable
physics simulators [37] and neuro-symbolic networks [38].
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