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Abstract— Thermal cameras offer robust perception in ex-
treme low-light conditions where most RGB cameras fail.
However, their unimodal temperature sensing is insufficient for
robot mobility tasks, especially in off-road environments, where
both geometric and semantic information (e.g., obstacles vs.
free space, traversable vs. non-traversable areas, and rough vs.
smooth terrain) are crucial for navigation. This paper utilizes
multimodal Self-Supervised Learning (SSL) with LiDAR, IMU,
and elevation during training to learn a versatile thermal
representation space for thermal-only inference to enable four
off-road mobility tasks, i.e., depth estimation, traversability
estimation, roughness prediction, and navigation policy. We
systematically study the efficacy of different auxiliary sensor
modalities during SSL training on the downstream tasks.
Our experiments on a large-scale thermal dataset for off-road
mobility demonstrate our improved thermal representation
across various downstream tasks and show it can navigate a
physical ground robot in no-light conditions using thermal-only
input.

I. INTRODUCTION

Robust autonomous navigation in unstructured off-road
environments presents significant challenges for robotic sys-
tems, particularly under degraded perceptual conditions such
as nighttime operation or the presence of atmospheric ob-
scurants like fog, dust, or smoke [1]. These conditions
severely impair the functionality of commonly employed
perception sensors. Standard RGB cameras, while providing
rich textural and color information, fail dramatically in
low-light or no-light scenarios and are easily hampered by
visual obscurants [2]. LiDAR sensors, widely used for their
ability to provide precise 3D geometric data crucial for map-
ping and obstacle avoidance, suffer significant performance
degradation in adverse weather like heavy rain, snow, fog,
or dust due to laser beam scattering and absorption [3].
RADAR sensors offer robustness to weather and lighting
conditions but typically lack the spatial resolution needed
for detailed environmental modeling and object classification
[4]. Furthermore, active sensors like LIDAR or RADAR emit
detectable signals, which can be undesirable in applications
requiring stealth [5]. Consequently, there is a critical need
for perception solutions that enable reliable robot mobility
around the clock, especially in challenging off-road environ-
ments, ideally leveraging passive sensing modalities.

Thermal infrared camera, specifically Long-Wave Infrared
(LWIR) sensors operating in the 8-14 pm range, addresses
the significant challenges posed by no-light conditions for
autonomous navigation [2]. Operating passively by detecting
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Fig. 1: Leveraging multimodal self-supervised pretraining
with auxiliary modalities, SBT’s thermal-only representation
allows a ground robot to perform a variety of off-road
mobility tasks, for which temperature alone is not sufficient.

emitted thermal radiation, they function effectively in com-
plete darkness and varying illumination levels. Moreover,
thermal imaging often exhibits superior penetration capabili-
ties through atmospheric obscurants like fog, smoke, and dust
compared to visible-light cameras and, in some cases, Li-
DAR. However, thermal sensors are not without limitations.
Thermal images primarily represent the spatial distribution
of temperature, which lacks the explicit 3D geometric infor-
mation provided by LiDAR or the rich texture and color cues
available from RGB cameras (in good lighting) [6]. This can
impact tasks such as depth estimation, fine-grained obstacle
characterization, and detailed terrain analysis. Additionally,
thermal image signatures can be ambiguous due to variations
in surface emissivity or environmental effects (e.g., wet
surfaces appearing cooler than their surroundings).

To address this informational deficit, we introduce Seeing
Beyond Temperature (SBT, Figure 1), a framework that
learns to overcome the limitations of unimodal thermal
sensing by adopting a learning with privileged informa-
tion paradigm. We conduct an offline, multimodal Self-
Supervised Learning (SSL) pretraining phase that operates
under good perceptual conditions in dark environments,
where auxiliary sensors—including LiDAR, IMU, and ele-
vation—provide clean, high-fidelity data. During this phase,
SBT distills the rich geometric and dynamic information
from these privileged modalities into a learned thermal
representation. The resulting pretrained thermal encoder,
now infused with an implicit understanding of the world’s
structure and dynamics, can then be deployed for thermal-



only inference. This allows the robot to perform a variety
of complex off-road mobility tasks in challenging no-light
conditions where the auxiliary sensors would be degraded or
entirely unavailable.

The main contributions of this work can be summarized as:

1) We propose SBT, a multimodal SSL framework to
learn enhanced thermal representations by leveraging
auxiliary LiDAR, IMU, and elevation data during
pretraining.

2) We conduct a systematic ablation study analyzing the
impact of different combinations of auxiliary modali-
ties on the quality of the learned thermal representa-
tions for thermal-only inference.

3) We demonstrate that our learned thermal representa-
tions can achieve improved performance on multiple
downstream off-road mobility tasks: depth estimation,
traversability estimation, roughness prediction, and
navigation policy, compared to task-specific baselines.

4) We validate our approach on a large-scale real-world
dataset collected in challenging nighttime off-road
conditions and demonstrate that the learned thermal
embeddings can navigate a physical robot platform
with thermal-only input.

II. RELATED WORK

We review related work in off-road autonomy, thermal per-
ception for robot mobility, and self-supervised robot learning.

A. Off-Road Autonomy

Navigating unstructured off-road environments poses sig-
nificant perception challenges distinct from structured set-
tings, demanding a sophisticated understanding of complex
terrain geometry and ambiguous semantics to accurately
assess risks [7]-[11]. Research efforts have significantly ad-
vanced perception and navigation capabilities for off-road au-
tonomy [12], [13]. For instance, visual self-supervised meth-
ods like V-STRONG [14] have learned terrain traversability
directly from images, leveraging vision foundation mod-
els and contrastive learning to improve generalization in
diverse outdoor areas. Systems such as TNES [15] have
demonstrated how fusing semantic information from RGB
cameras with geometric data from LiDAR enables robust
real-time traversability mapping and navigation for heavy
machinery like excavators in complex work sites. Addressing
the specific challenge of semantic understanding, frameworks
like OFFSEG [16] have improved segmentation performance
on off-road datasets by pooling classes and using color
segmentation for finer details within traversable regions.
Furthermore, pushing beyond simple geometric or semantic
considerations, competence-aware navigation systems like
CAHSOR [17] have leveraged multimodal self-supervision
(vision, inertia, and speed) to learn complex 6-DoF vehicle
kinodynamics, enabling safer high-speed maneuvering by
reasoning about the consequences of actions on varied ter-
rain. Due to the complementary nature of sensors like LIDAR
(geometry) and RGB cameras (semantics/appearance), mul-
timodal sensor fusion, as seen in approaches like TNES [15],

has become a standard technique to achieve robust perception
across diverse conditions. However, this reliance on sensor
fusion, particularly involving RGB cameras or active sensors
such as LiDAR, introduces a critical vulnerability: These sys-
tems often fail in complete darkness, adverse weather, or sce-
narios requiring stealth, where passive perception becomes
necessary. This limitation motivates alternative sensors, such
as thermal cameras, capable of operating effectively in these
demanding conditions.

B. Thermal Perception for Robot Mobility

Thermal cameras offer unique advantages for perception
in challenging environmental conditions, a capability increas-
ingly recognized through the development of dedicated mul-
timodal datasets. For instance, ViViD++ [18] has provided
diverse visual data targeting varying luminance conditions;
M2P2 [19] has specifically focused on passive perception for
off-road mobility in extreme low-light scenarios. GO [20] has
included thermal data alongside other sensors for general un-
structured environments. Building upon the potential demon-
strated by such data resources, recent specific applications
include ThermalVoyager [21], which has explored thermal
cameras for autonomous navigation, but focused primarily on
structured on-road environments with well-defined features.
Shin et al. [22] have developed techniques for thermal
monocular depth estimation, maximizing self-supervision
from thermal images for effective depth and ego-motion
learning. However, these approaches either target structured
environments or address only one specific perception task,
leaving a critical gap in terms of comprehensive thermal-only
perception for different off-road mobility tasks in extreme
conditions. SBT directly addresses this gap by enhancing
thermal representations through multimodal self-supervised
learning.

C. Self-Supervised Robot Learning

Self-supervised learning has emerged as a powerful
paradigm for developing robust perceptual representations
without relying on extensive manual annotations, particularly
valuable for robotics applications in complex, unstructured
environments. In the context of off-road mobility, several
approaches have leveraged SSL to improve downstream task
performance [17], [23]-[30]. Most existing self-supervised
approaches for off-road navigation rely on sensor fusion
during both training and deployment. Jeon et al. [31] used
RGB and depth inputs at deployment time while leveraging
robot trajectories for self-supervision. Similarly, Gasparino
et al. [32] integrated RGB and depth information using
convolution layers, with the robot’s trajectory serving as self-
generated ground truth. IRISPath [33] enhances costmaps
for off-road navigation through early IR-RGB fusion for day
and night traversability. Agidius et al. [34] took a different
approach, using only RGB at deployment time while employ-
ing semantic traversability estimation with pose-projected
features during training. While these methods advance the
state of the art in traversability estimation and navigation,
they rely on RGB cameras during inference, which fail in



no-light conditions, where our thermal-only approach excels.
On the other hand, recent datasets such as M2P2 [19] provide
an opportunity to investigate thermal perception for off-
road mobility in no-light conditions. SBT directly leverages
M2P2 and develops a SSL framework that systematically
leverages auxiliary modalities during pretraining to enhance
thermal representations, enabling robust thermal-only infer-
ence across multiple off-road mobility tasks, a capability not
demonstrated in previous research.

III. APPROACH

SBT is a two-stage process comprising a multimodal self-
supervised pretraining phase, followed by training down-
stream tasks on the learned representation (Figure 2). In the
pretraining stage, we leverage auxiliary sensing modalities
(LiDAR, IMU, and 2.5D elevation) alongside thermal im-
ages to learn versatile thermal representations that capture
geometric and semantic terrain information, which otherwise
does not exist in thermal-only input. Notice that while we
choose representative LIDAR, IMU, and elevation, other aux-
iliary modalities can be easily incorporated when necessary.

A. Learning Enriched Thermal Features with Auxiliary Sen-
sors

The core of SBT lies in its multimodal self-supervised
pretraining strategy. The objective is to train a thermal image
encoder such that its output feature embeddings contain
information more than temperature, e.g., geometric structure
and dynamic interaction cues, guided by the auxiliary sensors
during training.

LiDAR is chosen for its direct measurement of the envi-
ronment’s 3D structure, yielding precise point-cloud data that
capture detailed spatial layout, object shapes, and distances.
This explicit 3D information is crucial for grounding the
learned thermal features in the physical geometry of the
scene, directly compensating for the lack of inherent geo-
metric features in thermal images. Since LiDAR points are
sparse we project the 3D points onto the thermal camera
frame using the LIDAR-Camera extrinsics and intrinsics. We
then interpolate the sparse projected points to create dense
depth maps. IMU provides high-frequency measurements of
the robot’s linear acceleration and angular velocity, offering
a dynamic, proprioceptive view that directly reflects the
physical interaction with the terrain. This proprioceptive
modality captures effects such as vibrations and changes in
body motion induced by the different surfaces, which thermal
images cannot convey. Complementing the raw LiDAR data,
we utilize 2.5D elevation maps [35] as a processed pseudo-
modality specifically curated to represent the most relevant
geometric information for off-road mobility. Derived from
LiDAR point clouds and IMU data, these maps offer a
structured 2.5D grid encoding critical ground attributes such
as height, slope, and local roughness within the vicinity
of the robot. Including elevation maps guides the thermal
representation towards mobility-critical geometric attributes.
This processed geometric view serves as a bridge between
the raw spatial data from LiDAR and the dynamic interaction

data from IMU, facilitating the infusion of navigable surface
characteristics into the thermal representation.

By integrating these three modalities, raw geometry (Li-
DAR), raw dynamics (IMU), and processed mobility-focused
geometry (Elevation Maps), SBT aims to produce thermal
representations that not only capture spatial thermal varia-
tions, but are also implicitly aware of the underlying terrain
structure, composition, and the dynamic interactions they
afford.

B. Self-Supervised Representation Learning for Off-Road
Navigation

SBT’s SSL framework is built around a shared vision
encoder that processes multiple thermal and auxiliary inputs
into an augmented embedding space (Figure 2 left). At its
core, a ResNet-50 [36] is used to process all modalities,
including thermal images, LiDAR-derived depth images, and
2.5D elevation maps. For inertial measurements, a dedicated
IMU encoder is used to process the high-frequency IMU
signals over synchronized two-second windows, being pro-
cessed into Power Spectral Density (PSD) of linear acceler-
ations and angular velocities. The initial embeddings y from
each encoder are then passed through a dedicated projector
head. The projector head maps the features into a common,
high-dimensional latent space, producing the final feature
vectors z¢, z!, z%, and z°¢ (for thermal, LiDAR, IMU, and
elevation, respectively) upon which the self-supervised loss
is computed.

We treat each modality as a different “view” of the
same off-road environment, analogous to how multi-view
self-supervised learning treats two augmented images [37].
Crucially, our goal is not to perform pixel-wise fusion, but
to learn a semantically unified, shared embedding of scene
structure across modalities. For instance, the model is trained
to learn that the abstract concept of a “rock” should produce
a similar feature vector, whether it is perceived as a specific
thermal signature in the camera view or as a cluster of high-
elevation points in the Bird’s-Eye-View (BEV) elevation
map.

We achieve this alignment by applying a redundancy-
reduction loss between the thermal latent and each auxiliary
latent representation.

Barlow Twin Loss. We adopt the Barlow Twins (BT) self-
supervised objective [38] to drive the cross-modal feature
alignment. Originally proposed for two augmented images,
here we extend it to align four carefully selected complemen-
tary modalities: thermal images, LiDAR point clouds (rep-
resented as depth images), IMU signals, and 2.5D elevation
maps. For any thermal-auxiliary pair (¢, a) with a € {l,4, e},
we first normalize each latent dimension throughout the batch
to zero mean and unit variance. We then compute the BT loss
for each pair:

d
£ =3 - 1) 4 A ()
i=1 i#j
where \ is a trade-off parameter and C'»%) is the cross-
correlation matrix computed between the outputs 2! and z¢.
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Fig. 2: Overview of our SBT Pretraining Pipeline (Left) and four Downstream Tasks (Right).

The total loss is the sum of losses for each thermal-auxiliary
pair: _
‘CTotaLLoss - Lg’il‘) + E](?f”IZ‘) + Eg'f) .

By minimizing Lrotal Loss, the model is trained to distill Li-
DAR geometry, IMU-derived dynamics, and terrain elevation
structure directly into its temperature-based features.

C. Downstream Tasks

The goal of the SSL pretraining is to distill geometric
and dynamic awareness into our SBT thermal embeddings in
order to enable a diverse set of downstream off-road mobility
tasks (Figure 2 right). For each downstream task, we freeze
the SBT encoder and use it as a feature extractor, attaching
a lightweight task-specific head to map the thermal feature
embedding to the desired output. This head is trained in a
supervised manner using task-specific labels. This paradigm
enables us to systematically measure how effectively self-
supervised thermal features support various terrain under-
standing and mobility objectives, without access to auxiliary
sensor data at inference time.

Depth Estimation. Accurate depth estimation is funda-
mental for obstacle avoidance and 3D scene understanding.
Monocular Depth Estimation (MDE) is inherently challeng-
ing due to scale ambiguity and reliance on image cues.
Thermal MDE faces additional difficulties due to lower
resolution, less texture, and potential noise compared to
RGB MDE. To predict depth map, we attach a convolutional
decoder to the frozen SBT encoder. The decoder uses five
up-sampling stages with bilinear interpolation and skip-
connections from the encoder to recover spatial detail. We
train this head using a composite loss function:

Ldeplh = 0.15[;@1 + 0.85Lssim + 0~6Lgrad + 0.3 Lgmooth

where L1 loss L,, measures pixel-wise absolute differences,
the Structural Similarity loss Lgspv captures structural de-
tails, the gradient consistency loss Lg,g enforces gradient
consistency, and the edge-aware smoothness 10ss Lgmooth

promotes spatial smoothness with edge-aware weighting. The
geometric knowledge implicitly encoded in the SBT thermal
features, derived from LiDAR and elevation map supervision
during pretraining, is expected to improve MDE accuracy
compared to baseline approaches.

Traversability Estimation. Traversability estimation in-
volves predicting a per-pixel likelihood map (range: 0-1)
indicating safe navigation regions from a single thermal
image. This segmentation task is critical for path planning
in unstructured environments where RGB-based methods
struggle with no-light or obscured conditions. To generate the
ground-truth binary mask for this task, we project the robot’s
future footprint into each thermal image using odometry
poses from Direct LiDAR-Inertial Odometry [39]. For a
sequence of poses, a canonical set of points representing the
robot’s footprint is transformed into the camera frame and
projected to the pixel coordinates. For each segment of the
projected path, a perspective-aware footprint is rasterized.
The width of this footprint is dynamically scaled based on
its distance form camera, accurately representing the robot’s
constant physical width as it moves through the scene. The
aggregation of these filled footprints creates a complete
binary mask, labeling the projected path as traversable with
pixel values of 1 and all other areas as non-traversable with
pixel values of 0.

The decoder head comprises of upsampling layers with
spatial attention gates, integrating multi-scale skip connec-
tions from the frozen SBT encoder. Dilated convolutions and
bilinear interpolation recover fine-grained 256x256 spatial
resolution while preserving mobility-critical features high-
lighted by the attention modules. Training uses a combination
of binary cross-entropy (BCE) and Dice loss:

Liyav = LacE + Lpice,

where BCE penalizes each pixel’s classification error and
encourages well-calibrated confidence scores, while the Dice
term directly maximizes overlap between prediction and



ground truth, making it robust to class imbalance (i.e., small
traversable regions) and sharper boundary alignment.

Roughness Prediction. Terrain roughness is a critical task
for autonomous ground vehicles operating in complex, off-
road environments. Estimating roughness enables a robot
to anticipate mechanical vibrations, maintain stability, adapt
speed, and proactively avoid hazardous or high-drag terrain
patches. Robust roughness prediction is essential for safety,
comfort, and mission success, especially when geometric
sensors like LiDAR are noisy, occluded, or unavailable.

To estimate roughness, we leverage proprioceptive mea-
surements from the robot’s onboard IMU as ground truth.
For each thermal image, we synchronize and aggregate IMU
data (linear accelerations and gyroscopic angular velocities)
collected as the robot traverses the terrain segment appearing
in the image. We compute temporal jerk (the derivative
of the linear acceleration in the z-axis a;.) and high-
frequency power in gyroscope signals (particularly roll g,
and pitch g,, rates). These features are combined into a
scalar weighted sum:

Roughness = wj.|a;.| + Wyz|Gaz| + Wey|Gay|

where weights for vertical shocks w;, = 0.075, and ro-
tational disturbances wg, = wg, = 0.475. The weight-
ing scheme intentionally places much greater emphasis on
gyroscopic terms (roll and pitch rates) than on vertical
acceleration jerk. In off-road robotics, roll and pitch dis-
turbances correspond to sustained, high-frequency shaking
caused by uneven or sloped terrain. The vertical acceleration
jerk, though important for detecting sharp bumps, is down-
weighted to prevent isolated spikes (such as single impacts
or sensor noise) from dominating the roughness score. This
fusion mirrors the qualitative “felt” experience of roughness
by a ground vehicle. The roughness decoder is a lightweight
regression head attached to the frozen SBT encoder. Given a
thermal image, the encoder produces a d-dimensional feature
embedding, which is passed through three fully connected
layers with BatchNorm and ReLU activations. The final
output layer produces a single scalar prediction for the
terrain roughness score corresponding to the input image.
Performance is assessed via Mean Squared Error (MSE) loss.
Optimization is performed using AdamW optimizer. This
setup allows the model to robustly map thermal visual cues to
experienced terrain roughness, even in the absence of explicit
geometric or proprioceptive signals at inference time.

Navigation Policy. We evaluate the utility of the SBT
thermal representations for navigation policy learning using
Behavior Cloning (BC) [40], [41]. Given a stream of front-
facing thermal images as input, the goal is to learn a policy
my that outputs the appropriate action a; = [v;, w;] for each
timestep t, where v; is the linear velocity and w; is the
angular velocity command. Our navigation policy consists
of a pretrained, frozen SBT vision encoder followed by a
lightweight multi-layer perceptron (MLP) policy head. The
policy head is trained with mean squared error loss.

IV. EXPERIMENTS

We evaluate the effectiveness and demonstrate the ver-
satility of the thermal representations learned by SBT. We
detail our experimental setup, compare our method to estab-
lished baseline approaches, and present quantitative results
on all four downstream mobility tasks. An ablation study
is conducted to analyze the contribution of each auxiliary
modality during pretraining. Finally, we provide qualitative
visualizations to offer further insight into our approach’s
performance. We also deploy the navigation policy and
depth estimation downstream tasks on a physical robot to
demonstrate real-world off-road navigation with thermal-
only input in no-light conditions.

A. Experiment Setup

All experiments are conducted on the M2P2 dataset [19],
a large-scale dataset to facilitate night-time off-road robot
navigation research. This dataset provides synchronized mul-
timodal data streams essential for our approach, including
thermal camera imagery (T), LIDAR sensor point clouds (L),
and IMU measurements (I).

To assess the contribution of each auxiliary modality, we
conduct pretraining in three distinct ablation configurations:

e (T+L): Pretraining on Thermal and LiDAR only, using
£l

e (T+L+I): Pretraining on Thermal, LiDAR, and IMU,
with a summed objective LS’T” + Eg’%).

e (T+L+I+E): Pretraining on Thermal, LiDAR, IMU,
and Elevation, minimizing the total loss LTotal Loss =
L+ ol + 2.

All pretraining configurations are trained with
AdamW [42], and a batch size of 128 for 500 epochs.
The BT hyperparameter A\ is set to 5 x 1073, Due to
computational limitations, for Thermal + LiDAR + IMU +
Elevation pretraining, we use a batch size of 64.

We benchmarked the computational performance of our
thermal-only inference pipeline for all downstream tasks on
the physical robot’s hardware. The results, including latency,
frame rate, and memory usage, are detailed in Table I

TABLE I: Computational Performance for all Downstream
Tasks on the Husky A200 robot (NVIDIA RTX 3060, 12GB).

Task Latency FPS GPU Mem. Total Params
(Encoder + Downstream Head)

Navigation Policy  20.12 ms  49.70 127 MB 23.5M+2.7M

Depth Est. 32.86 ms 3043 1284 MB 23.5M+305.7M

Traversability Est.  27.76 ms ~ 36.02 1305 MB 23.5M+311.3M

Roughness Pred. 2296 ms  43.55 121 MB 23.5M+1.1IM

For all four downstream tasks (Depth Estimation,
Traversability Estimation, Roughness Prediction, Navigation
Policy), the SBT encoder is frozen. Only a lightweight, task-
specific decoder head is trained. Inference for all tasks uses
only thermal image input.

B. Baselines

To demonstrate the performance of the SBT thermal
representations, comparisons are made against state-of-the-



art baseline methods specifically designed for each off-road
mobility task:

o Depth Estimation: We compare against Thermal-
MonoDepth [22], a self-supervised monocular depth
estimation method on thermal images. Benchmarking
against ThermalMonoDepth allows us to examine how
well the SBT representations distill geometric priors
into the thermal features in a way that directly benefits
pixel-wise depth under challenging off-road and night-
time conditions.

o Traversability Estimation: We compare against
STEPP [34]. STEPP performs semantic traversability
estimation by projecting future poses and leverages
pose-projected features to label traversable regions.
Since STEPP was originally trained on RGB data, we
train the STEPP model on M2P2.

+ Roughness Prediction: We do not find any relevant
thermal-based (or RGB-based) roughness prediction
method with open-source implementation for us to
(adapt based on M2P2 and) compare against. So we
implement our own end-to-end approach that regresses
from thermal image.

« Navigation Policy: We compare against the end-to-
end BC approach in M2P2 [19]. M2P2 BC directly
regresses from thermal images to linear and angular
velocity commands without a pretraining process that
leveraging auxiliary modalities like LiDAR, IMU, and
elevation.

C. Quantitative Results

The performance of the SBT representations learned with
three different modality combinations during pretraining
is quantitatively evaluated and compared to corresponding
baselines (see Table II).

The results clearly demonstrate that all variants of SBT
(T+L, T+L+I, and T+L+I+E) outperform their baselines
corresponding to each downstream off-road mobility task
(except T+L+I for roughness prediction MSE), showcasing
the effectiveness and versatility of the learned SBT thermal
representations. Within SBT, the difference in task per-
formance caused by different input modality combinations
during pretraining is more subtle. The addition of IMU data
(T+LA+I) results in a slight degradation in depth estimation
performance compared to the T+L model (Abs Rel 0.152 vs.
0.163), yet provides a notable improvement in traversability
precision (0.911 vs. 0.923). This is a key finding, as it high-
lights a fundamental tradeoff in multimodal representation
learning. While dynamics cues from the IMU are highly
beneficial for traversability estimation and navigation, they
introduce signals that are non-informative or act as noise
for a purely static, geometric task like depth estimation.
When trained with IMU data, the learning objective pulls the
feature space away from a purely geometric optimum to also
encode vehicle motion, resulting in the minor performance
degradation on the static depth task. The further addition of
elevation maps (T+L+I+E) consistently boosts segmentation
metrics, particularly IoU and F1, emphasizing the value

of structured terrain priors for identifying safe navigable
surfaces. Notably, roughness prediction and navigation policy
tasks exhibit stable performance across all configurations,
indicating that SBT’s thermal backbone, once seeded with
geometric information, generalizes well to dynamics and
control-relevant information with or without explicit IMU
or elevation supervision. Overall, these findings illustrate
that geometric, inertial, and structural modalities each offer
synergistic benefits for representation learning, but their
relative impact depends on the demands of the downstream
task.

D. Qualitative Results

To complement the quantitative findings, we present qual-
itative examples demonstrating the impact of SBT’s multi-
modal representation learning on downstream tasks in no-
light off-road environments.

Figure 3 top shows the thermal input, ground truth depth,
and reconstructed depth by ThermalMonoDepth [22] and
SBT. ThermalMonoDepth does not produce depth qualita-
tively similar to the ground truth, while SBT captures most
depth information with some blurred details. For traversabil-
ity estimation, Figure 3 bottom shows that SBT is able
to produce a traversable mask that correctly identifies the
nontraversable area due to the tree trunk on the left, while
STEPP [34] does not generate satisfactory results.

Thermal Input

Ground Truth Depth

ThermalMonoDepth [15]

SBT (Ours)

- 1

|

SBT (Ours)

Thermal Input

Fig. 3: Qualitative Comparison of Depth Estimation (top)
and Traversability Estimation (bottom).

Ground Truth Traversability Mask

STEPP [27]

E. Physical Demonstration

To validate real-world performance, we deploy the learned
navigation policy on a Clearpath Husky A200 robot on
an unseen 50-meter, mixed-terrain off-road trail at night
(Figure 4). The trail consists of a narrow paved path bor-
dered by surrounding forest. The demonstration confirms
that the knowledge distilled from multimodal pretraining
enables successful generalization, allowing the robot to nav-
igate using only thermal input. Occasional minor human
interventions are required when encountering sharp turns.
These interventions underscore the performance gap between
short-horizon navigation and the capabilities required for
extended missions, which demand more sophisticated spatial



TABLE II: Quantitative Comparison across Pretraining Configurations and Baselines.

Task Metric T+L  T+L+I T+L+I+E Baseline
TMD [22]
Abs Rel | 0.152 0.163 0.162 1.162
S RMSE | 3.424 3.624 3.464 9.477
Depth Estimation s 1 078 0772 0781 0.300
62 T 0.953 0.943 0.946 0.468
63 T 0.986 0.981 0.982 0.620
STEPP [34]
ToU 1 0.865 0.862 0.870 0.1257
Traversability Estimation F1 1 0.927 0.926 0.928 0.2233
Precision 1 0.911 0.923 0.914 0.8266
Recall 1 0.945 0.928 0914 0.1291
End-to-End
Roughness Prediction MSE | 0.004 0.005 0.004 0.004
M2P2 BC [19]
Navigation Policy MSE | 0.006  0.006 0.007 0.009
and temporal reasoning. Thus, while our approach establishes [2] A. S. Bhadoriya, V. Vegamoor, and S. Rathinam, “Vehicle

foundational capability for thermal-only navigation in no-
light conditions, robust long-horizon off-road autonomy at
night remains an open challenge for future work.

Fig. 4: Physical robot navigation in near-darkness using
SBT’s thermal-only navigation policy, showing Husky robot
at the beginning (left), middle (center), and end (right) of a
successful, collision-free navigation sequence on a 50-meter
off-road trail.

V. CONCLUSIONS

We present SBT, a self-supervised multimodal representa-
tion learning framework that leverages thermal, LiDAR, in-
ertial, and elevation perception during pretraining to enable a
variety of downstream, thermal-only, off-road mobility tasks
in no-light conditions, i.e., depth estimation, traversability
estimation, roughness prediction, and navigation policy. Our
experiments demonstrate that SBT consistently surpasses
established, task-specific baselines for each downstream task
on challenging nighttime datasets. Through our systematic
ablation study, we show that each auxiliary modality, geo-
metric, inertial, and structural, provides different levels of
benefits to the thermal representation, depending on the
specific downstream off-road mobility task.
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