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Abstract— As mobile robots become increasingly common
in human-centric environments, social navigation—adhering to
unwritten social norms rather than merely avoiding pedes-
trians—has drawn growing attention. Existing methods, from
hand-crafted techniques to learning-based approaches, often
overlook the nuanced context and scene understanding that
humans naturally exhibit. Inspired by studies indicating the
critical role of language in cognition and reasoning, we pro-
pose a new approach to bridge robot perception and socially
aware actions through human-like language reasoning. We
introduce Social robot Navigation via Explainable Interactions
(SNEI), a human-annotated vision-language dataset comprising
over 40K Visual Question Answering (VQA) pairs across 2K
unique social scenarios, drawn from diverse, unstructured
public spaces. SNEI contains perception, prediction, chain-of-
thought reasoning, action, and explanation, thereby allowing
robots to interpret social contexts in human language. We fine-
tune a Vision-Language Model, Social-LLaVA, on SNEI to
demonstrate the potential of language-guided reasoning for
high-level navigation tasks. Experimental evaluations—both
quantitative and qualitative—demonstrate that Social-LLaVA
can outperform state-of-the-art models.'.

I. INTRODUCTION

As mobile robots become more prevalent in human-centric
environments, there is a growing interest in social navigation,
augmenting traditional methods by aligning with human
social norms and rules rather than merely treating humans
as dynamic or static obstacles [1]. An extensive body of
work has addressed social robot navigation, ranging from
employing various hand-crafted navigation techniques based
on geometric and semantic understanding [2]-[4] to learning-
based methods using large-scale datasets [5], [6]. While
these methods have made progress toward achieving socially
compliant behaviors, they often fail to grasp the nuances of
the context and scene in the same way humans do.

Several studies suggest that language significantly influ-
ences human cognition, reasoning, and comprehension of
the world [7]. We posit that if robots’ actions are guided
by reasoning processes similar to human language-based
thought, they could exhibit behavior that more closely resem-
bles human behavior. If robots can perceive a scene, make
predictions like humans, engage in reasoning, and generate
action descriptions in human language, they are more likely
to translate their perception into actions that closely resemble
human behaviors Fig. 1.
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Fig. 1: Overview of Social-LLaVA, bridging perception to
socially compliant action through Chain-of-Thought reason-
ing using SNEI, a vision-language dataset for social robot
navigation.

To bring human language applications to robot naviga-
tion, Vision-Language Models (VLMs) and their reasoning
capabilities have received significant attention. There have
been several adaptations of VLMs in autonomous vehicles
(AVs) [8], [9], propelled by the availability of large-scale
datasets developed for autonomous driving in structured road
networks governed by clear traffic rules [9], [10]. Trained on
general image and language datasets, existing VLMs struggle
to understand complex social interactions, particularly in
spatiotemporal commonsense reasoning and the high-level
decision-making required for social robot navigation [11],
[12]. Moreover, AV datasets are not directly applicable to
social robot navigation. Unlike road environments, human-
populated spaces are inherently unstructured and guided
by unwritten, context-dependent social norms that can vary
significantly depending on the situation and different human
interpretations. To address this, we ask the question: How
can we leverage VLMs to use human language reasoning to
navigate social environments?

We introduce Social robot Navigation via Explainable
Interactions (SNEI), a human-annotated vision-language
dataset aimed at improving socially aware robot navigation.
SNEI contains over 40K manually annotated Visual Ques-

979-8-3315-4393-8/25/$31.00 ©2025 IEEE 17192

Authorized licensed use limited to: HOKKAIDO DAIGAKU KOHGAKUBU. Downloaded on December 17,2025 at 08:56:36 UTC from IEEE Xplore. Restrictions apply.



Explanation

I see two people in front of me,
engaged in conversation .... I am

without interrupting their
conversation.

Perception

The scene shows a narrow sidewalk with two people at a medium
distance from the robot, engaged in conversation. The person on the
right is wearing brown, while the person on the left is dressed in
black. There are spaces on both the left and right sides for the robot
to take a path.

Both individuals will remain stationary and keep talking with each
other. The path on the left and right will remain clear.

As both individ are stati y and d in conversation, and
the sidewalk is narrow, based on the robot's perception and prediction,
there is enough space on both the left and right sides. The robot should
turn right to navigate without interrupting the people.

Fig. 2: Proof-of-concept real-world example of Social-LLaVA, enabling the robot to understand context and social cues to
navigate, thereby avoiding interrupting people’s conversations. There is enough space between the two people for the robot
to pass, and it understands that they are talking, so it avoids disruption.

tion Answering (VQA) pairs spanning perception, prediction,
chain-of-thought reasoning, action, and explanation, which
enhance robot understanding and responses to their surround-
ings through natural language descriptions of social context,
visual cues, and behavioral patterns. SNEI is based on 2K
social scenarios, where a robot engages in direct interaction
with humans, from SCAND [5], a social robot navigation
demonstration dataset collected in diverse, human-crowded
public spaces and containing complex human-robot interac-
tion scenarios.

SNEI contains both categorical and free-form annotations,
broadening its applicability to various tasks such as spatial
reasoning, robot behavior explanation, and scene description.
These capabilities enhance other robot navigation tasks such
as instruction-following and object-goal navigation tasks.
The categorical portion of the SNEI dataset can be used
to evaluate Vision-Language Models (VLMs) across a range
of tasks, including spatial reasoning, object detection, and
human intention recognition.

Moreover, we fine-tune the LLaVA [13] Vision-Language
Model, referred to as Social-LLaVA, on SNEI to demonstrate
the effectiveness of the SNEI dataset. This adaptation is
specifically tailored to our dataset, enabling the generation
of high-level navigation action instructions through chain-of-
thought reasoning in human language. To demonstrate the ef-
fectiveness of the SNEI dataset, we evaluate the performance
of Social-LLaVA both quantitatively and qualitatively.

As shown in Table IV, our approach, Social-LLaVA out-
performs both GPT-4V [14] and GeminiGemini 1.5 Pro [15]
in overall performance. A small amount of hand-crafted
human data can significantly improve performance [16], [17],
as demonstrated by our quantitative analysis of over 400
VQA samples and qualitative analysis based on the average
scores from fifteen different human judges across 50 VQA

social navigation tasks.

II. RELATED WORK
A. Social Navigation

Extensive research has been conducted in the field of so-
cial robot navigation, driven by the need for robots to operate
safely and efficiently in human-populated environments [1],
[18]-[20]. The complexity of social navigation arises from
the necessity to consider a wide range of factors, such as
safety, comfort, politeness, and adherence to unwritten social
norms that humans instinctively follow [21]. Traditionally,
model-based approaches that rely on task-specific, hand-
engineered behaviors have been employed in social naviga-
tion. One of the earliest models is the Social Force Model
(SFM) [3], [22], which simulates human navigation by
modeling forces between individuals and obstacles. Another
is human-robot proxemics [23], [24], which focuses on the
spatial distances humans maintain around robots to ensure
comfortable interactions.

To overcome the limitations of hand-engineered features
and lack of adaptability, recent research has increasingly
turned to learning-based methods, such as Learning from
Demonstration (LfD) [25], [26]. These techniques allow
robots to learn socially compliant behaviors by observing and
replicating human demonstrations. Despite these advances in
learning-based methods, simply replicating human trajectory
from demonstrations in terms of perception-action pairs
without human-like reasoning in between can be overly
brittle and may not be sufficient to achieve socially aware
navigation in a wide range scenarios.

In this work, we posit that human-like language reasoning
and explanation between robot perception and action can
facilitate socially compliant navigation behaviors. Therefore,
we create SNEI dataset that incorporates human-like com-
prehension of social contexts in terms of language, including
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the ability to perceive the current situation, predict the actions
of other agents, and generate socially compliant navigation
behaviors through chain-of-thought reasoning.

B. Visual Instruction Tuning

Visual instruction tuning is a method of fine-tuning on an
image-text dataset that trains the model to follow textual in-
structions with visual inputs and generate the desired outputs,
thereby enhancing zero-shot performance on specific tasks.
The success of multimodal models, such as InstructBLIP [27]
and LLaVA [13], heavily depends on high-quality gen-
eral visual instruction tuning datasets [28]. Several general-
purpose datasets, mostly generated automatically or semi-
automatically, have demonstrated improvement on models’
performance [13], [29]. LLaVA [13] systematically con-
structed the LLaVAlInstruct-150K dataset by prompting GPT-
4 to generate questions and answers using image captions
and object bounding boxes from the COCO [30] dataset.
InstructBLIP [27] integrated VQA datasets for academic
tasks related to visual comprehension. JRDB-Social [31]
emphasize multi-person scene understanding and 2D/3D
bounding-box annotations for general robotic perception
in social contexts. In Autonomous Driving, DriveLM [9]
constructed a graph VQA dataset for training VLMs for end-
to-end driving. LingoQA [10] proposed a video QA dataset
for autonomous vehicle explainability. However, many com-
monly used instruction-tuning datasets have been found to
unexpectedly contain a considerable number of low-quality
instances, featuring incorrect or irrelevant responses, poten-
tially due to the (semi-)automatic nature of their collection
methods. On the other hand, several works have shown that
small, high-quality, human-curated datasets can boost model
performance compared to large-scale noisy datasets [16],
[17]. Based on these insights, and given that no existing
general-purpose datasets adequately address the complexities
of human-robot social navigation interactions (refer to our
experimental results for details), we propose a novel visual
instruction tuning dataset for social robot navigation.

III. THE SNEI DATASET
A. Motivation

To leverage human-language reasoning, a robot first needs
to transform its visual perception and the predictions derived
from it into language. Then, using established chain-of-
thought reasoning methods [32], it can produce high-level
actions through human-like language reasoning [33]. Inspired
by DriveLM [9], we hypothesize that mobile robots can
leverage a decision-making process that humans implicitly
perform, i.e., object-centric perception, prediction, and plan-
ning, in the format of language to describe each of these
three stages [34].

Our preliminary experiments with off-the-shelf state-of-
the-art VLMs reveal significant limitations in spatial reason-
ing, particularly in tasks critical to social robot navigation,
such as determining the relative positions of humans, esti-
mating their intent, and predicting their trajectories. As high-
lighted by Spatial VLM [11], these shortcomings in spatial

reasoning capabilities of state-of-the-art VLMs are attributed
more to the limitations of the common datasets used for
training than to the models’ architectures themselves. This
gap can be more pronounced for tasks involving complex,
dynamic environments with multiple interacting humans,
requiring precise understanding of both spatial relationships
and social cues. The majority of available VQA datasets
for visual navigation are either general-purpose or task-
specific, such as those for autonomous driving. However,
due to the distinct nature of these tasks, such datasets are
not directly applicable to mobile robot navigation in human-
populated public spaces. Furthermore, the (semi-)automated
methods used for their collection often result in a significant
amount of noise. To this end, we propose a dataset of
over 40K VQA instances annotated by humans for mobile
robot navigation in unstructured, crowded environments. To
the best of our knowledge, this is the first VQA dataset
specifically designed for social robot navigation. In summary,
SNETI is the first social robot navigation VQA dataset that
targets unstructured human-populated environments, jointly
focus on robot trajectories and human intentions, and offers
a multi-task evaluation.

B. Data Construction and Analyses

We provide two types of annotations: Categorical labels
ensure consistency and structure across key elements like
crowd density, agent types, and robot actions, while free-
form natural language annotations offer greater expressive-
ness and nuanced descriptions.

1) Categorical Labels: All annotations of this type are
selected from predefined categorical options to ensure con-
sistent labeling across the dataset. We use the following
categories:

o Context includes environment type, crowd density, in-
door/outdoor status, and terrain type;

« Robot includes robot goals, movement directions, speed
levels, and action intentions;

o Obstacle(s) includes type (e.g., walls and trash cans),
proximity, and position relative to the robot; and

o Agent(s) includes type (e.g., individuals, groups, and
bicycles), proximity, position relative to the robot, cur-
rent action, and heading direction.

2) Free-form natural language: All annotations of this
type take the form of natural language descriptions to cover
the following aspects:

o Perception describes the robot’s visual inputs, focusing
on humans, including their clothing color, position,
relative distance, action, and surrounding crowd density;

« Prediction assesses the potential future movement of
agent(s) within the scene;

« Chain-of-Thought Reasoning given the perception and
prediction, formulates a high-level natural language
instruction (e.g., Given the close proximity of the person
crossing the robot’s path from left to right, the robot
should stop, wait for the person to pass, and then
continue);
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Robot Action

Social Context

Agent Intention Recognition ~ CoT Reasoning  Manual Annotation

SACSON [26], MuSoHu [6], SCAND [5] v X
JRDB-Social [31] X v
SNEI v v

X X X
v X X
v v v

TABLE I: Comparison of SNEI with existing social navigation datasets.

o Final Action comprises high-level natural language
action commands (e.g., Stop and wait for clear path);
and

« Explanation includes a general explanation of what the
robot sees, what the robot does, and why.

We use the SCAND dataset [5], which is collected from var-
ious human-crowded public environments and contains intri-
cate human-robot interaction scenarios. We manually select
and label 2K scenarios including both direct human-robot
interactions and situations where the robot must interpret
social cues to navigate in a socially compliant manner [1].

The SNEI dataset is annotated by human following a
detailed and structured protocol to capture both categorical
and free-form information about social navigation scenarios.
Annotators are provided with a front-facing camera image
from the robot’s perspective and are tasked with filling out
spatiotemporal information about the agents and objects in
the scene. In the free-form annotations, annotators describe
the scene, predict agent trajectories, reason through chain-
of-thought (CoT) method, ensuring that nuanced, context-
dependent information is preserved. The annotation guide-
lines emphasize human-awareness in reasoning, ensuring that
the robot’s decisions prioritize human comfort and safety. For
example, if an agent is close, the annotator might label the
final action as ”’Stop” and explain, I am close to the person
with a backpack, so I am stopping to yield and avoid crossing
their path.” Given that social navigation can be subject to
multiple interpretations and variations, ensuring consistency
is crucial [1]. To maintain uniformity and reduce variability
in interpretation, all annotations are reviewed and verified
by the same person, ensuring high-quality and consistent
labeling throughout the dataset.

Table II shows the number of images for each type of
interaction in the SNEI dataset. As indicated by the numbers,
the majority of the dataset consists of images in very crowded
human environments.

IV. EVALUATION

In this section, we show that our dataset can enable
human-level language reasoning when facing social naviga-
tion interactions in human-crowded spaces.

A. Social-LLaVA

Using the SNEI dataset, we develop Social-LLaVA, a
VLM designed to exhibit human-like reasoning in social
navigation scenarios. The primary contribution of this work
is the introduction of a dataset tailored for mobile robot
navigation in human-crowded environments. We emphasize
that our focus lies in dataset development rather than algo-
rithmic innovation. To demonstrate the practical utility of the

TABLE II: The number of images for each interaction type
in SNEIL

Interaction Description #
Type Images
Against Traffic Navigating against oncoming traffic 161
With Traffic Navigating with oncoming traffic 358
Street Crossing Crossing across a street 75

Overtaking a person or groups of

Overtaking people 20
Navigating through a doorway where
S\(J) a;:‘(;\: the human opens or waits for others 31
y to open the door
Crossing
Stationary Walking across a line of people 25
Queue
Stairs Walking up and/or down the stairs 30
I Vehlcl.e Navigating around a vehicle 28
nteraction
Navigating -
Through Large Navigating am(():rrlcgjy vizrsge unstructured 1233
Crowds

SNEI dataset, we fine-tune an off-the-shelf, state-of-the-art
model as a proof of concept.

To test Social-LLaVA model fine-tuned on SNEI dataset,
a large-scale VQA benchmark with reliable performance is
required. However, to the best of our knowledge, SNEI is the
first human-annotated VQA benchmark designed for robot
social navigation, featuring both categorical and free-form
labels. We evaluate the effectiveness of SNEI in enhancing
performance on the general social navigation task, through
both quantitative and qualitative methods. On the test sub-
set of the dataset, we quantitatively assess the categorical
labels by calculating the average similarity scores across
different categories and comparing them against state-of-the-
art models. For the free-form portion of the dataset, which
requires human-level reasoning, contextual understanding,
and interpretation of social cues, we rely on expert evalu-
ations. Specifically, we ask human experts in the field to
rate the model outputs to ensure a fair and comprehensive
assessment.

We evaluate the dataset’s effectiveness by fine-tuning
LLaVA-v1.5-7B [13], a leading VLM, using Low-rank Adap-
tation (LoRA) [35]. The resulting model, Social-LLaVA,
exhibits improved social reasoning capabilities in navigation
interactions, as evidenced by both quantitative evaluations
and qualitative assessments from human experts.
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(b) Outpu

Perception

(a) Visual Inpu

Prediction

Chain-of-
Thought
Reasoning

Final Action

Explanation

Social-LLaVA

The robot is positioned in an indoor corridor observing a low number of people, with one
individual in a black shirt moving from north to south at a moderate distance.

The individual wearing the black shirt will continue their movement from north to south.
Considering the individual’s movement direction and their distance, the most prudent action is

to halt and give way. This prevents any potential collisions and maintains comfort for the
individual moving. Once the individual has passed, the robot can resume its journey north.

Stop and wait for clear path.

I am halting to give way to the individual in the black shirt approaching from the north.
This action ensures safety and comfort for both the individual and myself.

Perception hallway, maintaining a distance between each other.
Prediction Both individuals will continue walking northward.
Chain-of- q . . ST

Given the low crowd density and the current trajectory of the individuals, the
Thought i . ;
Reasoning robot should maintain its course with a slow speed to ensure a safe distance.

Continue moving forward slowly to maintain a safe distance from the

Final Action 4/ 4ividuals.

1 see two people ahead of me in the hall, both walking away and not engaging
with the surroundings. To ensure safety, I will continue moving forward at a

Explanation
slow speed while keeping my distance.

ChatGPT

There are two individuals in front of the robot, both walking northward in the

4 .
Gemini
A person is walking towards the robot in the middle of the hallway at a

medium distance. The person is wearing black shirt

The person will continue walking towards the robot.

1 should continue moving forward while maintaining a safe distance from the
person walking towards me.

Continue straight with a moderate speed.

I see a person walking towards me. [ will maintain a safe distance and
continue straight. What?: Continue Straight, Why?: Maintain a safe distance
from the person

Fig. 3: Qualitative results of our Social-LLaVA model fine-tuned on SNEI dataset compared against GPT4-V [14] and
Gemini 1.5 Pro [15]. (a) shows the visual input given to the models. Note that the given scenario involves a robot navigating
through a narrow passage partially obstructed by a pillar, while an individual approaches the robot. (b) illustrates the output
from Social-LLaVA, while (c) provides comparisons with GPT4-V and Gemini 1.5 Pro. Phrases in blue indicate accurate
reasoning and socially compliant results, while highlighted phrases mark instances of hallucination.

B. Quantitative Evaluation

To evaluate the categorical output of Social-LLaVA, we
assess the predicted agents in the scene (e.g., individuals,
groups, and bicycles). Agent-level similarity is computed as
the average of per-attribute matches, which include prox-
imity, position relative to the robot, current action (e.g.,
walking and standing), and heading direction. Specifically,
for each predicted agent j and ground truth agent i, where
i,j7 € {1,2,...,N} and N < 5 (max in dataset), we
compare their attributes and calculate an individual similarity
score. This process results in a similarity matrix representing
the correspondence between all predicted and ground truth
agents. To find the optimal assignment between agents, we
apply the Hungarian algorithm to minimize the overall cost,
defined as the inverse of similarity (cost = 1 — similarity).
This ensures each predicted agent is matched with the
most appropriate ground truth agent. For each matched pair,
we further evaluate two sub-groups of attributes: relative
position to the robot (degree and clock positions) and
intention (action type and relative direction), computed as
the average similarity of their respective attributes. Finally,
for each image, we report three key metrics: (1) average
agent similarity, calculated from matched pairs; (2) average
relative position similarity; and (3) average intention
similarity, providing a comprehensive evaluation of both
detection accuracy and attribute-level consistency. Given a
similarity matrix C' = [¢;;] of size n X n, the goal is to find

an assignment that maximizes the similarity:

n n
1 — min E E CijTig,

=1 j5=1 (1)

s.t.Zmij =1, Zﬂfij =1, z;; € {O, 1}
7 7

Table III compares Social-LLaVA’s performance with
SoTA VLMs on categorical labels from SNEI, focusing
on agent intention prediction and relative position to the
robot. Since the original LLaVA 1.5 required fine-tuning to
follow prompts, we excluded it from the comparison. Prior
research [12] has shown LLaVA underperforms compared to
GPT-4V.

Metric GPT-4V ~ Gemini 1.5 Pro  Social-LLaVA
Relative Position 0.42 0.43 0.36
Predicted Intention 0.21 0.22 0.26
Overall 0.30 0.32 0.29

TABLE III: A quantitative comparative analysis of the
performance of Social-LLaVA, GPT-4V, and Gemini 1.5
Pro on the categorical section of the SNEI. The reported
scores represent the average similarity between each model’s
predictions and the ground truth.

C. Qualitative VQA Evaluation

We evaluate the free-form natural language outputs gener-
ated by Social-LLaVA, compared against two other state-of-
the-art foundation models. We prompt Gemini 1.5 Pro [15]
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GPT4-V  Gemini 1.5 Pro  Social-LLaVA
Perception 3.11 3.45 4.0
Prediction 3.18 3.87 4.06
CoT 3.41 3.79 4.08
Final Action 2.77 3.46 4.19
Explanation 3.16 3.66 3.95

TABLE IV: A qualitative comparative analysis of the per-
formance of Social-LLaVA, GPT-4V, and Gemini 1.5 Pro on
the free-form section of the SNEI, based on average scores
per task as evaluated by fifteen human judges. These scores
range from 1 to 5.

and GPT4-V [14] with extensive explanations of the task.
The human rater chooses a score between 1-5 for each
VQA, and finally, we average over each task for each model.
Table IV shows the achieved scores from the three models
for each task. The results demonstrate that Social-LLaVA
achieves higher scores compared to GPT4-V and Gemini.
Figure 3 shows an example where a robot navigates a
narrow passage partially blocked by a pillar while a person
approaches. Social-LLaVA accurately perceives and predicts
the scenario, offering socially compliant actions through
effective reasoning. In contrast, GPT-4V and Gemini 1.5
Pro mistakenly advise continuing forward, which would
block the individual’s path. Notably, GPT-4V also produces
hallucinated outputs across perception, prediction, reasoning,
action, and explanation. This experiment underscores the
importance of high-quality VQA data for mobile robot nav-
igation, as it is essential for scene understanding, high-level
human trajectory prediction, and chain-of-thought reasoning,
which are missing from the pretraining datasets of current
state-of-the-art VLMs. We speculate that both aforemen-
tioned models would demonstrate significantly improved
few-shot performance if fine-tuned on our dataset. However,
we cannot validate this speculation, as image fine-tuning is
currently unavailable for these models.

D. Real World Robot Experiment

While SNEI dataset with the preliminary proof of concept,
Social-LLaVA model, shows potential for enabling socially
compliant robot navigation behaviors through explainable
interactions using language, producing concrete robot actions
based on language descriptions remains an open problem. In
this work, we present a simple proof-of-concept using a hard-
coded relationship between high-level language descriptions
and low-level robot actions (go straight, turn left, and turn
right). In Fig. 2, we showcase example of Social-LLaVA’s
output after training on our SNEI dataset in a real-world
setting, where it understands the context, interprets social
cues, and avoid interrupting people’s conversations.

V. LIMITATIONS

A. Ambiguity in Social Navigation

The complexity and unpredictability of human motion,
along with inconsistent behaviors across different individu-
als, further complicate accurate predictions and other down-

stream stages. Moreover, the absence of a clear definition
of social navigation [1] adds to the uncertainty. All these
factors make it challenging to generate accurate descriptions
and robust predictions for effective decision-making. These
challenges also further complicate SNEI data annotation
effort, considering that there may be multiple ways or
there may not be an agreed-upon way of socially compliant
behavior. With these challenges in mind, we aim to generate
the most accurate language descriptions possible from a
single image to reason based on them and generate high-
level actions. While Social-LLaVa serves as a proof-of-
concept for using language descriptions as a tool for social
robot navigation reasoning, particularly when more than
simple obstacle avoidance is required, how to address such
ambiguity when annotating data and during training remains
open problem. We acknowledge that both categorical and
free-form evaluations of Social-LLaVA can be affected by
variations in the ground truth label and may differ based on
the labeler.

B. Need for More and Diverse Data

While several research efforts show that with a small
amount of high-quality data it is possible to fine-tune
VLMs, the data-driven nature of these models should not
be overlooked [16]. We diversify the interactions in our
SNEI dataset as much as possible. However, it remains
limited to the scenarios present in the source dataset, SCAND,
which may not capture the full spectrum of human-robot
interactions in unstructured environments. Consequently, this
limitation could affect the model’s performance when de-
ployed in previously unseen environments.

C. Grounding Language to Action

Our work primarily focuses on havinge high-level human-
language instructions that promote socially compliant behav-
iors in various scenarios—such as waiting in line or using
off-road paths to avoid interrupting conversations—rather
than grounding those instructions. We acknowledge that
grounding the generated natural-language high-level actions
on the robot in real-world scenarios is still an open problem
and is not a trivial task.

VI. CONCLUSIONS

In this work, we introduce Social robot Navigation via
Explainable Interactions (SNEI), a vision-language dataset
specifically designed to bridge the gap between percep-
tion and socially compliant actions in crowded public en-
vironments through human-like language-based reasoning.
We demonstrate that Social-LLaVA, fine-tuned version of
LLaVA on SNEI, outperforms state-of-the-art systems such
as GPT-4V and Gemini in generating socially compliant nav-
igation descriptions. By leveraging language-based reasoning
using SNEI, our preliminary proof of concept demonstration
shows that robots can understand social interactions and
navigate unstructured social spaces, while observing human
social norms. Our results mark a promising step toward
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more intuitive and effective social robot navigation in real-
world public spaces through explainable human-language
reasoning.
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