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Abstract—Quadruped robots demonstrate exceptional po-
tential for navigating complex terrain in critical applica-
tions such as search-and-rescue missions and infrastructure
inspection. However, autonomous traversal of confined 3D
environments—including tunnels, caves, and collapsed struc-
tures—remains a significant challenge. Existing methods often
struggle with rigid gait patterns, limited adaptability to diverse
geometries, and reliance on oversimplified environmental as-
sumptions. This paper introduces a Reinforcement Learning (RL)
framework that combines procedural environment generation
with policy distillation to enable robust locomotion across various
tunnel configurations. Our approach leverages a teacher-student
training paradigm, where specialized expert policies trained on
procedurally generated tunnel geometries transfer their knowl-
edge to a unified student policy. This strategy eliminates the need
for complex reward shaping in end-to-end RL training, simplify-
ing the process by breaking down complicated tasks into smaller,
more manageable components that are easier for the robot to
learn. By synthesizing diverse tunnel structures during training
and distilling navigation strategies into a generalizable policy,
our method achieves consistent traversal across complex spatial
constraints where conventional approaches fail. We demonstrate,
through both simulation and real-world experiments, that our
method enables quadruped robots to successfully traverse chal-
lenging, confined tunnel environments.

I. INTRODUCTION

The field of legged robotics has witnessed remarkable
progress in recent years, with modern quadruped platforms
demonstrating unprecedented agility across unstructured out-
door terrain [1]-[3]. (e.g., [4] demonstrating robust adaptation
to sand, mud and other terrains). Much research has focused on
enabling robots to navigate challenging ground conditions [5]-
[7], with approaches ranging from sensorized paws that iden-
tify terrain properties [8] to sophisticated control algorithms
that maintain stability on uneven surfaces [9]. End-to-end
systems using egocentric vision have demonstrated impressive
capabilities in traversing stairs, curbs and stepping stones [7],
while learning-based methods now enable locomotion across
risky terrains with sparse footholds [10]. However, a critical
capability gap persists in confined three-dimensional (3D)
environments where spatial constraints impose 360° navigation
challenges. Such scenarios demand not only ground-level
obstacle negotiation but also precise coordination of body
posture, limb articulation, and environmental awareness to
avoid ceiling collisions and lateral obstructions. Applications
ranging from mine shaft inspections to urban disaster response
require robots to operate in tunnel-like spaces characterized
by irregular cross-sections, tight turns, and limited visual ac-
cessibility—environments where current locomotion strategies
frequently fail.
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Fig. 1: sQUID is deployed in real-world tunnel environments,
demonstrating the adaptability and robustness of the proposed
approach. The quadrupedal robot relies on limited visual
perception to navigate confined spaces, successfully traversing
narrow passages and uneven terrain.

Existing methods for navigating confined spaces primarily
rely on either geometric planning with static gaits [11] or
end-to-end Reinforcement Learning (RL) trained on simplified
environmental models [12]. Although hierarchical frameworks
that combine classical controllers and learned components
appear promising, they encounter three core limitations [13]:
(1) oversimplified training that fails to capture real-world
structural diversity, (2) highly specialized policies that require
substantial retuning for new tunnel shapes, and (3) sensitivity
to sensory noise that undermines performance during deploy-
ment. Recent work by Buchanan et al. [11] demonstrates
body-posture adaptation via a two-layer elevation map but
remains constrained to predefined gait patterns, thereby failing
to represent more diverse geometries (limitation (1)) and
necessitating specialized retuning (limitation (2)). Meanwhile,
RL-based approaches [13] can produce dynamic motions in
cluttered environments yet remain tied to narrow training
setups (limitation (1)) and often degrade under sensor noise
(limitation (3)), preventing robust transfer to real-world sce-
narios.

In this paper, we present SQUID (Skill-fused Quadrupedal
locomotion Using Imitation and Distillation), which leverages
multi-expert learning and policy distillation [14] to enable
robust traversal through confined tunnel environments. SQUID
addresses limitations (1), (2), and (3) described above by
introducing a privileged learning framework that combines
procedural environment generation with policy distillation.
Our approach is grounded in two central observations: first,
that explicitly modeling the geometric variability of real-
world confined 3D spaces (i.e., generating diverse tunnel
geometries) is critical for overcoming oversimplified train-
ing setups (limitation (1)). Second, decoupling perception-
handling strategies from core locomotion is key to robust
generalization—hence we initially train specialized “expert”
policies with privileged information (focusing on locomotion),
and later integrate perception as we transfer their expertise to



Fig. 2: Quadruped robot executing its learned locomotion policy to traverse a confined tunnel, dynamically adjusting its posture

to maintain stability and clearance.

a unified student policy. By doing so, we reduce specialization
and the need for policy retuning (limitation (2)) and mitigate
sensitivity to noisy real-world sensors (limitation (3)). Unlike
prior work that trains a single policy on fixed obstacle dis-
tributions, our teacher—student architecture leverages multiple
expert policies—each proficient in a distinct tunnel class—and
distills their knowledge into a single model through supervised
learning. This final policy can robustly handle a wide range of
3D constraints, effectively consolidating the locomotion skills
of multiple experts while minimizing further environment-
specific tuning.

The contributions of this work are threefold:

1) Tunnel Simulation Pipeline: A procedural generation
system creating 3D tunnel environments with parame-
terized geometric variations (cross-section asymmetry,
slope transitions, etc.) that exceed the diversity of exist-
ing confined 3D training environments.

2) Privileged Policy Distillation: A teacher—student training
paradigm that combines adversarial environment sam-
pling with gradient matching to consolidate specialized
expert policies into a single model capable of han-
dling four distinct tunnel classes, thereby minimizing
environment-specific retuning.

3) Perceptual Noise Robustness: Experimental validation
showing successful real-world deployment using only
depth images under partial sensor occlusion and IMU
drift.

II. RELATED WORK

In the field of legged robotics, navigating confined spaces
presents unique challenges that have been addressed through
various methodologies. This section provides an overview of
the existing literature, categorized into classical and hierarchi-
cal planning approaches, reinforcement learning techniques,
privileged learning frameworks, and procedural environment
generation methods.

A. Classical and Hierarchical Planning Approaches

Early strategies for confined-space navigation relied on
classical planning and optimization techniques. Buchanan et
al. [11] introduced perceptive whole-body planning using
elevation mapping and motion optimization to adapt robot pos-
ture in narrow environments. However, this approach depends
on predefined motion primitives, which may not generalize
well to irregular geometries. Similarly, Wellhausen et al. [15]
developed ArtPlanner, a sampling-based method employing

reachability abstraction for legged robots operating in subter-
ranean settings. This method necessitates handcrafted foothold
safety heuristics, potentially limiting adaptability in dynamic
terrains. Chestnutt et al. [16] proposed global navigation
strategies using contact configuration graphs; however, the
computational complexity of this approach poses challenges
for real-time applications.

B. Reinforcement Learning for Confined-Space Locomotion

Reinforcement Learning (RL) has emerged as a powerful
tool for enhancing adaptability in unstructured environments.
Xu et al. [13] proposed a hierarchical RL framework that
combines classical waypoint planning with low-level poli-
cies for 360° obstacle avoidance, achieving successful real-
world deployment in vertical shafts. However, reliance on
explicit path planning can introduce coordination challenges
between hierarchical layers. Miki et al. [17] presented a two-
level policy utilizing 3D volumetric representations to navi-
gate under overhangs, though this approach requires separate
terrain generators for each environment class. Rudin et al.
[18] demonstrated end-to-end RL for dynamic skills such
as leaping and crawling; however, their monolithic training
framework faced difficulties in sustained confined navigation
due to limited state memory. Additionally, approaches like
Safe Locomotion within Confined Workspaces [19] using RL
have been explored to enhance safety and adaptability in con-
strained environments. These studies underscore RL’s potential
but also highlight challenges in consolidating specialized skills
across diverse geometries.

C. Privileged Learning and Policy Distillation

Privileged learning frameworks have been instrumental in
improving simulation-to-reality transfer by decoupling per-
ception and control. Hwangbo et al. [20] trained teacher
policies with full state observability and subsequently distilled
these navigation skills into vision-based student policies via
behavioral cloning. Lee et al. [3] extended this approach by
incorporating curricular hindsight experience replay, facilitat-
ing fall recovery and high-speed terrain adaptation. Despite
these advancements, single-policy architectures often struggle
with conflicting skill requirements in multi-constraint spaces.
Recent developments in policy distillation, such as Reinforce-
ment Learning with Demonstrations and Guidance (RLDG),
have shown that RL-generated training data can enhance the
precision of generalist policies by 40% over human demon-
strations [21]. Chebotar et al. [21] demonstrated gradient-
based distillation for unified control across manipulation tasks;
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Fig. 3: Simulation training environment for tunnel analysis.
The upper portion of the image displays a tunnel block with
its measurements and axis orientations. The lower section
presents four distinct cross-sectional views of the tunnel, il-
lustrating different structural variations used in the simulation.

however, this approach does not directly address the unique
dynamics of legged locomotion in confined volumes.

D. Procedural Environment Generation

Procedural environment generation has become a corner-
stone for training robust policies in diverse settings. Miki
et al. [12] employed wave function collapse algorithms to
synthesize confined spaces with overhangs, enhancing the
training diversity for RL policies. Kumar et al. [4] developed
automatic terrain difficulty curricula to promote agile locomo-
tion, enabling robots to adapt to varying terrain complexities.
Rudin et al. [18] created parkour courses featuring gaps and
vertical obstacles; however, their parametric generators lacked
the geometric diversity necessary for tunnel-like constraints.
Our work advances this paradigm by introducing a physics-
aware procedural tunnel generator capable of producing four
distinct architectural classes (e.g., triangular, circular) with
randomized dimensions, and slope transitions, thereby exceed-
ing the variability present in prior datasets.

III. METHOD

Our framework combines procedural environment genera-
tion, privileged expert training, and vision-based policy dis-
tillation to enable robust quadrupedal navigation through con-
fined tunnels. The system architecture progresses through three
stages: (1) generating diverse tunnel geometries with parame-
terized difficulty levels, (2) training specialized expert policies
for each tunnel class using privileged simulator information,
and (3) distilling multiple experts into a single vision-based
student policy through imitation learning.

A. Procedural Tunnel Generation

At the core of our approach is a procedural tunnel generation
system designed to address the shortcomings of static and
oversimplified training setups. Unlike traditional methods that
train RL policies in fixed, predefined environments, our frame-
work dynamically generates diverse tunnel configurations,
exposing the robot to a broad range of spatial constraints.
This ensures that the learned locomotion strategies remain
adaptable rather than overfitting to a single geometry. The
transitions in Fig. 2 illustrate how the quadruped dynamically
adjusts its posture as it moves through a tunnel, adapting to
changes in spatial constraints.

Each tunnel is constructed as a 3D block with a hollowed-
out pathway for the robot to traverse (Fig. 3). To systematically
vary the spatial constraints, we define four primary tunnel
classes, each with tunable difficulty parameters (Table I).
These tunnel classes include:

o The equilateral triangle tunnel (A) presents a sharp, an-
gular interior that demands careful body rotation and fre-
quent limb adjustments, with the available space shrink-
ing as the edges shorten.

e The full-circle tunnel (()) offers a uniformly enclosed
structure where reducing the radius progressively in-
creases the difficulty, forcing the robot to crouch or adjust
its gait dynamically.

o The half-circle tunnel () introduces additional complex-
ity by randomly flipping its Z-normal, requiring adapta-
tion to inverted terrain.

o The gap tunnel () features a central void with elevated
side shelves, posing a challenge for stable foothold se-
lection, especially as the gap widens or the shelf angles
increase.

Although these geometric primitives appear simple, they
are highly expressive in capturing fundamental locomotion
challenges. Real-world confined spaces often exhibit sharp
angles, uneven terrain, varying clearance, and rotational asym-
metries, all of which are represented in our tunnel classes.
Additionally, the procedural nature of our framework prevents
the learning process from being constrained to fixed obstacle
distributions. Key environmental factors such as tunnel width,
height, curvature, and inclination vary continuously across
training episodes, ensuring a rich distribution of training data.
By randomly rotating certain tunnels, flipping their orienta-
tions, and altering their connectivity, we force the robot to
develop generalizable motion strategies rather than memoriz-
ing specific paths.

To further improve adaptability, our tunnel configurations
are sequentially connected during training. The robot begins
in simpler environments and gradually progresses to more
complex ones, encountering increasingly tight, irregular, or
asymmetric spaces. This curriculum-based approach ensures
that the policy learns effective locomotion strategies incre-
mentally, reinforcing fundamental movement principles before
tackling highly constrained navigation.



Tunnel Class Cross-section Geometry

Difficulty Parameters

Generation Method

Triangle A Three equal sides

Circle O
Half-Circle

Closed circular profile
Semicircular arc

Edge length I; = [y — 0.1d, Rota-
tion 6 ~ U(0,360°)

Radius r4 = rg — 0.05d

Radius r4 = rg — 0.07d, Z-normal

Random rotation per seg-
ment

Fixed orientation

Flipped Z-normal

€ {—1,+1} (random)

Central side

shelves

Gap - gap with

Gap width g4 = go + 0.2d, Shelf
angle ¢g = ¢ + 5°d

Symmetric shelves

TABLE I: Tunnel geometry specifications, detailing the cross-section geometry, difficulty parameters, and generation methods

used for each tunnel class.
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Fig. 4: Training pipeline for SQUID. Teacher policies are first
trained using RL with privileged information for each tunnel
class. Distillation transfers expert knowledge to a unified
student policy, which is trained using onboard sensing.

By synthesizing a wide variety of tunnel structures and
exposing the robot to continually changing spatial constraints,
our method avoids the common pitfalls of static training
environments. The result is a locomotion policy that retains the
flexibility and robustness needed for real-world deployment,
effectively bridging the gap between structured simulation
training and unpredictable, confined 3D spaces.

B. Privileged Teacher Policies

The teacher policies are trained using RL framework, map-
ping observations to actions that enable the robot to navigate
tunnel environments of varying difficulty. Each teacher policy
is trained independently within its assigned tunnel class, ensur-
ing specialization in handling the unique constraints of that en-
vironment. Given that we define four tunnel classes—triangle
(D), circle (), half-circle (), and gap tunnel (F-)—we
train four expert policies, one for each tunnel class. These
experts leverage privileged state information during training
to learn locomotion strategies, which are later distilled into a
single deployable student policy. To be specific, the i-th expert
policy is denoted as:

Trgi%)ert (a’t | St f)a

where, s; represents the state at time ¢, including propriocep-
tive and exteroceptive observations; £ denotes privileged simu-
lator information, which includes ground-truth environmental
details that are unavailable during student policy execution;
and a; is the action taken at time ¢.

1) Observation Space: The observation space consists of
proprioceptive and exteroceptive measurements that provide
comprehensive information about the robot’s motion and sur-
roundings. Specifically, in the observation space, base linear
and angular velocities (v, wy) capture the robot’s movement
dynamics; gravity vector orientation provides information
about the robot’s pose relative to gravity; joint positions
and velocities (q;,q;) track the robot’s joint configurations;
previous actions maintain temporal consistency in decision-
making; and terrain measurement is a 108-dimensional grid
around the robot’s base, encoding distances from the terrain
surface to the robot’s body height. By incorporating both
proprioceptive and terrain-based sensory inputs, the teacher
policies have access to high-fidelity state information, enabling
them to learn robust locomotion strategies tailored to their
specific tunnel class.

2) Action Space: Each expert policy outputs a 12-
dimensional action vector, corresponding to desired joint
positions for the 12 motors (three per leg). These actions
are passed through a Proportional-Derivative (PD) controller,
which converts them into motor torques for actuation:

T = kp(qf — q;) + ka(4] — ;)

where q;-i and q;? are the desired joint positions and velocities
given by the teacher policy, q; and q; are the current joint
positions and velocities, and k, and k4 are proportional and
derivative gains controlling the system stiffness and damping.
Using joint position control instead of direct torque control
ensures stable learning and efficient locomotion, as the system
does not need to model complex actuator dynamics explicitly.

3) Reward Function: The reward function encourages effi-
cient, stable, and collision-free locomotion while minimizing
energy consumption. It is formulated as a weighted sum of
individual reward terms (Table II), where each term reinforces
a specific desirable behavior.

To ensure precise trajectory tracking, we include linear
velocity tracking (ry) and angular velocity tracking (ruy),
which encourage the robot to match a target translational
velocity v, ., and yaw rate wy ., respectively. These terms



penalize deviations from the desired motion commands. To
maintain stable locomotion, vertical velocity (ry,) and hor-
izontal angular velocity penalties (r,,) discourage excessive
fluctuations in body movement. Additionally, joint motion
(rjm) and torque penalties (r;) ensure smooth and efficient
actuation by penalizing high joint accelerations, velocities, and
large torque outputs. Collision avoidance is enforced through
a collision penalty (ren), which assigns negative rewards
for contacts with tunnel walls, encouraging safer navigation
through constrained spaces. Finally, step duration reward (7sep)
is introduced to promote structured footstep timing. It is based
on the air time ¢,y of each leg f, ensuring a balance between
stance and swing phases. A reference duration of 0.5 is used
to encourage stable and efficient gaits. This reward struc-
ture ensures that expert policies learn collision-free, energy-
efficient, and dynamically stable locomotion strategies while
generalizing across a variety of tunnel environments.

Reward Equation Description
Term
V* -V 2 . . .
Tly exp —% Linear velocity tracking
lwg . —wb, 2 II? . .
Tav exp | ——%35 Angular velocity tracking
Tvp —vg Vertical velocity penalty
Tap wab,msz Horizontal angular veloc-
ity penalty
Tim —ll&;11? — [la;1? Joint motion penalty
rr —|l7;11? Joint torque penalty
Teoll —Tollision Collision penalty
4
Tstep Z (tair, — 0.5) Step duration reward
F=1

TABLE II: Reward Terms for Privileged Teacher Policies

C. Student Policy Using Distillation

Once the four expert policies (wéfgz,m) are trained, we employ
a policy distillation framework to consolidate their knowledge
into a single vision-based student policy (Fig. 4). Unlike the
experts, which rely on privileged simulator information, the
student policy learns to navigate using depth images and
historical proprioception, making it suitable for real-world
deployment.

To achieve this, we use Dataset Aggregation (DAgger)
[22], an iterative imitation learning approach that mitigates
distribution shift by collecting on-policy rollouts under the
student policy while receiving corrective feedback from the
teacher policies. The student policy is denoted as:

mo(at|se, 2¢), )

where s; is the current state, consisting of proprioceptive
inputs; z; represents the depth image encoding environmental
obstacles; and a, is the action controlling the robot’s motion.
The distillation objective is to minimize the discrepancy
between the student and expert actions, formulated as:

4
L(G) = ETNﬂ'e Z 14 (Trfg)l(z)erl(sh 5), o (St7 Zt)) ) (2)
=1

Fig. 5: Parallelized training of quadrupedal robots in confined
tunnels (inset), with a zoomed-in view of a single environment.

where £(-) is a loss function (e.g., Mean Squared Error or
Cross-Entropy Loss) that quantifies the alignment between
expert and student actions, and 7 represents the trajectory
distribution under the student policy. This gradient-based dis-
tillation process enables the student policy to inherit robust
locomotion behaviors from the teachers across all tunnel
classes without requiring privileged information.

IV. EXPERIMENTAL RESULTS

In this section, we present an extensive evaluation of SQUID
through simulation-based trials and real-world deployments.
We first outline the experimental setup and performance met-
rics. We then compare our method against several baselines,
conduct ablation studies to understand the contribution of each
component, and finally discuss real-world test results.

A. Experimental Setup and Metrics

1) Robot Platform and Simulation: We use a simulated
Unitree Go2 quadruped robot configured with 12 actuated
joints. All simulation experiments are conducted using Isaac
Gym [23], allowing parallelized training and testing across
multiple tunnel environments. The robot’s onboard sensor
suite in the simulation includes forward-facing depth camera
providing 64x48 pixel images; an Inertial Measurement Unit
for orientation estimates; and joint encoders for proprioceptive
feedback. We train and evaluate on four tunnel classes with
increasing difficulty levels controlled by parameters in Table
I and values in Table III. Training is conducted using massive
parallelization (Fig 5) for each tunnel class where the columns
are generated as a chain of tunnel blocks, with increasing
difficulty, connected via narrow passages.

2) Implementation and Training: The teacher policies uti-
lize a multi-layer perceptron architecture with tanh activation
functions. These policies are trained using Proximal Policy
Optimization (PPO) [24]. For the student policy, we employ
a convolutional neural network [25] encoder to process depth
images, followed by a Gated Recurrent Unit [26] to maintain
temporal context across frames and proprioceptive history.
The student network’s final layers map encoded features to
the 12-dimensional joint position action space. All training is
conducted on an NVIDIA RTX 3090 GPU, enabling paral-
lelization of 2048 environments in Isaac Gym. The teacher
policies converge after approximately 10,000 iterations (~8
hours of training time per tunnel class). During distillation,
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Fig. 6: Success Rate comparison across different tunnel classes and difficulty levels. Each plot represents a specific tunnel

geometry, showing the performance of various methods (

, HP, and SQUID) as the difficulty increases. The SQUID policy

consistently outperforms baselines, particularly in constrained environments like triangular and gap tunnels.

depth images are augmented with random noise and occasional
dropout to improve robustness against sensor imperfections in
real-world deployment.

3) Performance Metrics: We adopt four metrics reported
as average over 50 trials per tunnel type and difficulty level:
Success Rate is the percentage of trials in which the robot
successfully reaches the tunnel exit without collisions that
cause a reset; Trajectory Completion Time is the average time
taken to traverse a tunnel segment; Collision Frequency is
the number of body collisions with tunnel walls, measured
per meter traveled; and Energy Consumption is the sum of
the absolute motor torques over a traversal, normalized by
distance.

Tunnel Class Low Medium High
Triangle A lg = [0.42m,0.48m]  lq = [0.35m,0.42m]  lg = [0.30m,0.35m]
0~ U(0,90°) 0 ~ U(0,180°) 0 ~ U(0,360°)
Circle O rq =1[0.22m,0.24m] rg=[0.16m,0.22m] rq = [0.12m,0.18m)|
Half-Circle (| rq = [0.40m,0.42m] 74 = [0.35m,0.40m] rq = [0.25m,0.32m]
Gap +H ga = [0.1m, 0.2m) ga = [0.2m, 0.35m] ga = [0.35m, 0.4m]

$a = [0°,5°]
TABLE III: Difficulty Parameters for Tunnel Classes.

$a = [5°,10°] $a = [10°,15°]

B. Comparison with Baselines

We compare SQUID against two baselines in simulation
using difficulty parameters from Table III. Vanilla RL (V-RL)
is a single PPO agent trained end-to-end on all tunnel classes
simultaneously with similar observation space as teacher poli-
cies. Hierarchical Planner (HP) [13] is a two-layer system
where a high-level planner generates waypoints and a low-
level controller executes footstep motions. The planner uses
elevation mapping for obstacle detection.

1) Success Rate: Fig. 6 presents the Success Rates across
tunnel classes and difficulty levels. SQUID achieves the high-
est Success Rates across all configurations with the most
noticeable advantage in triangular and gap tunnels, where
constrained navigation demands precise body articulation. HP
performs well in structured tunnels (like Circle) but struggles
in environments requiring adaptive motion strategies (like
Gap). V-RL suffers from poor generalization, failing frequently
in complex geometries and high difficulty levels.

\' VRL —— HP —— SQUID (Ours)}

Low Difficulty Medium Difficulty High Difficulty

>

Fig. 7: Comparison of Completion Time (CT), Collision
Frequency (CF), and Energy Efficiency (EE) across difficulty
levels. SQUID outperforms and HP, maintaining faster
traversal, lower collisions, and better energy efficiency, with
increasing advantages in higher difficulty tunnels.

2) Traversal Efficiency, Collision Avoidance, and Energy
Consumption: The radar plots in Fig. 7 summarize three key
performance metrics—Completion Time, Collision Frequency,
and Energy Consumption—across low, medium, and high
difficulty levels. These three interdependent aspects directly
impact the efficiency and robustness of the locomotion policy.
To maintain a consistent interpretation where higher values
indicate better performance, these metrics have been inverted
in the plot.

Completion Time: SQUID consistently achieves faster traver-
sal speeds compared to HP, which tends to be overly cautious.
While HP ensures stability, it sacrifices speed, leading to long
Completion Time. V-RL occasionally stalls in tight spaces,
further increasing traversal time. SQUID strikes an effective
balance, maintaining fast but stable motion across varying
tunnel geometries.

Collision Frequency: SQUID exhibits the lowest collision
rates, benefiting from its multi-expert knowledge transfer.
It effectively maintains clearance from tunnel walls while
adapting dynamically to asymmetric structures. HP struggles
in tunnels requiring whole-body posture adaptation, while V-
RL frequently collides due to erratic foot placements and
inadequate control in constrained spaces.



Energy Consumption: SQUID achieves greater energy ef-
ficiency by ensuring smoother gait transitions and reducing
unnecessary corrective movements. HP, although stable, ex-
pends more energy due to its slow traversal, which increases
total energy expenditure. V-RL is the least efficient, consuming
excessive energy due to frequent stops, unstable gaits, and
inefficient motor commands.

C. Ablation Studies

To systematically assess the contribution of key components
in our SQUID framework, we conduct a series of ablation
experiments, selectively modifying critical elements and eval-
uating their impact on policy performance. The results, sum-
marized in Table IV, report the Success Rates under different
ablation settings. These experiments provide insights into the
importance of multi-expert learning, procedural generation,
privileged perception, and structured reward shaping.

1) Single Teacher vs. Multiple Teachers: To test the neces-
sity of multiple expert policies, we train a student policy using
only a single teacher, specifically the expert trained in circular
tunnels. The resulting policy exhibits moderate success in
environments similar to the training distribution but fails to
generalize to tunnels with asymmetric constraints, such as
triangular or gap tunnels. This highlights that policies trained
with a single teacher overfit to specific tunnel geometries,
leading to poor adaptability when encountering new structural
variations. In contrast, our multi-teacher approach, where each
expert specializes in a distinct tunnel class, provids a more
diverse knowledge base. The distilled student learns adaptive
behaviors across varying tunnel configurations, leading to
more consistent success across all settings.

2) Procedural Generation Disabled: To examine the role
of environmental diversity, we train a student policy in a
fixed, non-procedural environment where tunnel shapes re-
main constant across training episodes. The policy achieves
reasonable success in familiar scenarios but fails in tunnels
with unexpected variations in curvature, slope, or orientation.
Without exposure to procedural variations during training, the
policy becomes rigid, adapting poorly to real-world variations.
This confirms that procedural generation plays a crucial role
in promoting generalization by exposing the policy to a wide
range of environmental constraints.

3) Two-Layer Elevation Map vs. Ground Elevation Map:
We train teacher policies using a two-layer elevation map that
concatenates floor and ceiling elevations and compare them
to policies trained with only ground elevation maps. Policies
using the two-layer elevation representation fail to converge,
as the additional ceiling constraints introduce conflicting op-
timization objectives, leading to unstable body posture adjust-
ments and frequent stalls. In contrast, policies trained with
only ground elevation maps successfully learn stable locomo-
tion strategies, achieving better generalization and traversal ef-
ficiency. These results indicate that explicitly encoding ceiling
constraints increases learning complexity without improving
policy performance, suggesting that alternative ceiling-aware
representations should be explored.

Because teacher policies are trained in separate tunnel
classes, they can estimate ceiling elevation using only the
ground heightmap and adjust posture accordingly. They rely
on privileged information to estimate elevation changes, en-
suring smooth transitions at tunnel entries and exits. However,
distillation with ground elevation alone does not generalize,
requiring the student policy to use a depth map for exterocep-
tion.

4) Reward Shaping Simplifications: We further analyze
how structured reward functions contribute to stable locomo-
tion by removing key components from the expert training
stage. Eliminating the collision penalty results in erratic move-
ment patterns, with the policy frequently making contact with
tunnel walls and ceilings due to the absence of a strong de-
terrent against risky postures. Similarly, removing the vertical
velocity penalty leads to an increase in destabilizing hopping
behaviors, particularly in environments with variable elevation.
These behaviors compromise stability and traversal efficiency,
underscoring the importance of structured reward shaping for
safe and effective locomotion.

Ablation Setting Success Rate

Full sQUID (Ours) 70 %
Single Teacher 35%
No Procedural Generation 39%
Two-Layer Elevation Map 19%

TABLE IV: Success Rates (%) for different ablation settings,
demonstrating the impact of key SQUID components.

D. Real-World Deployment

To assess the sim-to-real transferability of our SQUID policy,
we deploy the trained model on a Unitree Go2 quadruped
in a controlled tunnel environment (Fig. 1). The real-world
setup consists of three 1-meter tunnel segments with circle,
half-circle, and triangular cross-sections, constructed using
plywood barriers and curved PVC enclosures. The tunnels are
designed to replicate the constrained geometries encountered
in simulation, minimizing the sim-to-real transfer gap.

The quadruped is equipped with a 4D LiDAR, which
generates depth images that are processed through an encoder
network before being passed to the deployable SQUID policy.
Unlike simulation, where the robot has access to precise
state information, the real-world deployment introduces sensor
noise and depth artifacts, providing a challenging test for
generalization.

The robot successfully navigates the tunnel environments
while adapting to real-world inconsistencies. Minor deviations
in tunnel structure and occasional sensor occlusions lead to
variations in locomotion strategies, requiring the policy to
make real-time adjustments. Despite these challenges, the
robot maintains stable traversal and completes tunnel passages
without requiring manual intervention. Future improvements
can focus on refining perception models to better handle sensor
noise and occlusions, further enhancing robustness in real-
world conditions.



V. CONCLUSIONS AND FUTURE WORK

This paper presents SQUID, a RL framework combining pro-
cedural environment generation and privileged policy distilla-
tion to achieve robust quadrupedal locomotion in confined 3D
tunnel environments. SQUID leverages multiple expert teacher
policies trained on diverse procedurally generated tunnel ge-
ometries and distills their specialized knowledge into a unified
vision-based student policy, effectively addressing limitations
of existing methods such as overspecialization, sensitivity to
sensor noise, and reliance on simplified environmental as-
sumptions. Experimental results demonstrate that SQUID con-
sistently outperforms baseline approaches across various tun-
nel geometries and difficulty levels, achieving higher success
rates, faster traversal times, fewer collisions, and improved
energy efficiency. Real-world deployment further validates
the robustness of SQUID under realistic sensor conditions.
Future work includes enhancing perception robustness through
advanced sensor fusion techniques, integrating online terrain
reconstruction for dynamic adaptation, exploring multi-robot
coordination within confined spaces, and generalizing the
procedural generation pipeline to more complex subterranean
environments.
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