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Abstract— Safety has been of paramount importance in
motion planning and control techniques and is an active area
of research in the past few years. Most safety research for
mobile robots target at maintaining safety with the notion of
collision avoidance. However, safety goes beyond just avoiding
collisions, especially when robots have to navigate unstructured,
vertically challenging, off-road terrain, where vehicle rollover
and immobilization is as critical as collisions. In this work,
we introduce a novel Traversability-based Control Barrier
Function (T-CBF), in which we use neural Control Barrier
Functions (CBFs) to achieve safety beyond collision avoidance
on unstructured vertically challenging terrain by reasoning
about new safety aspects in terms of traversability. The neural
T-CBF trained on safe and unsafe observations specific to
traversability safety is then used to generate safe trajectories.
Furthermore, we present experimental results in simulation and
on a physical Verti-4 Wheeler (V4W) platform, demonstrating
that T-CBF can provide traversability safety while reaching the
goal position. T-CBF planner outperforms previously developed
planners by 30% in terms of keeping the robot safe and mobile
when navigating on real world vertically challenging terrain.

I. INTRODUCTION

Field robots deployed in real-world applications often need
to traverse unstructured, complex, and unpredictable off-road
terrain, where safety becomes a top priority. The robotics
community has developed numerous techniques to address
motion planning safety: Traditional model-based control
methods, including Hamilton-Jacobi Reachability Analysis,
Control Barrier Functions, Control Lyapunov Functions,
and Model Predictive Control, have proven effective but
struggles with scalability and generalizability across diverse
environments. To overcome these limitations, data-driven
approaches [1], [2] are emerging, offering improved adapt-
ability to new environments but at a price of lacking formal
safety guarantees.

Despite such a plethora of techniques, most research
on mobile robot safety is centered around collision avoid-
ance, defining safety in motion planning as the ability to
keep robots within obstacle-free regions. However, in field
robotics, safety takes on a more complex meaning, as robots
must operate in challenging terrain where the traditional
notion of collision avoidance is no longer adequate. Fig. 1
illustrates a wheeled robot navigating unstructured terrain,
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Fig. 1: Unsafe configurations of a wheeled robot navigating verti-
cally challenging terrain. Such risks can be mitigated by a planning
algorithm that emphasizes traversability safety beyond traditional
collision avoidance.

highlighting scenarios where the robot becomes unsafe when
it gets stuck or rolls over in different configurations on
vertically challenging terrain [3]. These configurations can
be avoided by motion planning algorithms that emphasize on
safety beyond collision avoidance, e.g., traversability factors
such as vehicle rollover and immobilization.

Recent advancements in designing scalable and general-
izable Control Barrier Functions (CBFs) for mobile robots
show promises to facilitate traversability safety beyond colli-
sion avoidance. Leveraging machine learning to learn CBFs
from data enhances adaptability to diverse environments.
To improve generalizability, observation-based approaches
have been introduced, offering greater scalability compared
to traditional state-based CBFs. These approaches utilize
perception inputs, such as LiDAR point clouds or camera im-
ages, to extract environmental obstacle information. Existing
CBFs in these approaches learn a distance function from the
observations to maintain safe distance from obstacles. How-
ever, extending the safety notion beyond obstacle avoidance
to off-road traversability safety remains a challenge.

To address this challenge, this work proposes a
Traversability-based Control Barrier Function (T-CBF) to en-
able traversability safety for navigation of wheeled robots on
unstructured and vertically challenging terrain using onboard
perception inputs. The main contributions are threefolds: (1)
The introduction of a novel approach to construct a CBF that
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extends the concept of safety to traversability by incorpo-
rating perception-based information. (2) Demonstrating the
generalizability of T-CBF to previously unseen unstructured
environments. (3) A statistical evaluation and experimental
verification of T-CBF on an autonomous Verti-4 Wheeler
(V4W) [4] platform in diverse environments. The results
demonstrate that T-CBF providesmay prevent the theoretical
guarantees outlined in Section V from fully applying in
real-world scenarios. To support the practical effectiveness
of our learned certificates, the following section presents
experimental results demonstrating that the controller con-
sistently operates safely and achieves its objectives across
diverse simulated and physical environments. traversability
safety beyond collision avoidance while navigating complex,
vertically challenging, unstructured environments.

II. RELATED WORK

This section discusses the related work on navigation in
unstructured environments, the application of CBFs to ensure
safety in navigation, and their extension to learning-based
approaches.

A. Navigation in Unstructured Environments

Navigation for wheeled robots in unstructured off-road
environments presents significant challenges. Existing work
have investigated various challenges and planning algorithms
for navigation in unstructured off-road environments [5]–
[7]. Due to complexity of modeling system dynamics and
terrain interactions, most approaches utilize machine learning
to learn kinodynamic model [8]–[10] or reduce uncertainty
in terrain interactions [11]. However, these methods do not
explicitly ensure traversability safety which is crucial for
navigation in unstructured terrain.

B. Control Barrier Functions

The classical formulation of CBFs provides safety guaran-
tees in various robotics applications. Rabiee and Hoagg [12]
integrated CBFs into the Model Predictive Path Integral
(MPPI) algorithm to ensure safety of sampled trajectories.
Similarly, Grandia et al. [13] applied CBFs within a Model
Predictive Control framework to determine safe foot place-
ments for legged robots navigating structured terrain such as
stepping stones. For robotic manipulation, Dai et al. [14]
employed CBFs for object avoidance using differentiable
optimization solvers while maintaining safety guarantees.
Furthermore, Patterson et al. [15] utilized CBFs to regulate
self-contact in soft-rigid robots, demonstrating their versatil-
ity in maintaining safe interactions across different robotic
domains. The classical approaches struggles to generalize to
new environments and are often overly conservative in order
to provide formal safety guarantees.

C. Learned Control Barrier Functions

With the growing adoption of data-driven methods, CBFs
are becoming increasingly significant in robotics applica-
tions. In general, synthesizing a CBF requires a mathematical
formulation that can either be learned by a neural network

or directly incorporated as a constraint in an optimization
framework. For approaches utilizing perception data, Long
et al. [16] developed a CBF that is created online using
range sensing for obstacle avoidance, and Dawson et al. [17]
designed a hybrid controller incorporating a learned CBF
to navigate using LiDAR point cloud data. Similarly, Abidi
et al. [18] leveraged camera sensor images to construct
a vision-based learned CBF for obstacle avoidance while
maintaining a safe following distance. Additionally, Harms et
al. [2] introduced a neural CBF-based safety filter for quadro-
tor navigation in unknown environments. These approaches
demonstrate the effectiveness of machine learning in de-
signing scalable CBFs that generalize to new environments.
Reinforcement learning has also been used in conjunction
with CBFs to develop safe navigation policies for obstacle
avoidance [19].

However, all these approaches focus on collision avoid-
ance as a safety concept, which is not sufficient for naviga-
tion on unstructured terrain. This research extends prior work
on CBFs from collision avoidance to traversability safety.

III. PRELIMINARIES

Consider a closed-loop non-linear control affine system,

ẋ = f(x,u),
o = k(x,m)

(1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are the robot state
and control input respectively. o ⊂ RL∗W is the onboard
observation, which is a 2.5D elevation map for vertically
challenging terrain with L and W being length and width of
the elevation patch. k(·, ·) maps the state x and environment
variable m, which is the terrain underneath the robot, to
the 2.5D elevation map observation o. f(x, u) is locally
Lipschitz continuous function.

Definition 1: A set S ⊂ Rn is called a forward invariant
set for the system (1), if for any x(t0) ∈ S there exists an
input trajectory ut ∈ U such that x(t) ∈ S ∀t ≥ t0 under
system (1) [20].

Definition 2: (Control Barrier Function) The system (1)
is considered safe if x(t) ∈ Xs ⊂ X , ut ∈ Us ⊂ U , ∀t ≥
0, where Xs and Us are safe states and safe control inputs
respectively.

Let S ⊂ Xs be a zero-superlevel set for a smooth
continuous differentiable function h : Rn → R that satisfies
the following conditions:

S = {x ∈ X |h(x) ≥ 0} (2a)

∂S = {x ∈ X |h(x) = 0} (2b)

Int(S) = {x ∈ X |h(x) > 0} (2c)

where ∂S is the boundary and Int(S) is the interior of set S
respectively. For forward invariant set S, the function h with
property that S = {x ∈ X |h(x) ≥ 0 } and {x ∈ X | dh

dx (x) =
0} ∩ {x ∈ X |h(x) = 0} = ∅ is a control barrier function
if there exists an extended class K∞ function α(·) such that
for the system (1) :

h(x) > 0 ∀x ∈ S, (3a)
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sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)) (3b)

where [Lfh(x)+Lgh(x)u] = ḣ(x, u) and Lf and Lg are Lie
derivatives. Hence, satisfying (3b) makes safe set S forward
invariant and u a safe control.

IV. METHODOLOGY

Based on the preliminaries, we present T-CBF for safe
navigation in vertically challenging terrain.

A. Traversability-based Control Barrier Function

Since obstacle avoidance alone is insufficient for safely
traversing complex unstructured terrain, we introduce T-CBF,
a neural CBF, that is trained on real world observation data
and robot dynamic model. The neural network architecture
of T-CBF is illustrated in Fig 2. The network takes a 2.5D
elevation map patch of size 100 by 40 pixels as input, cap-
turing the elevation information of the terrain. The elevation
patch is passed through a series of 2D convolution layers
followed by a series of feed-forward layers. The control
actions are encoded using an encoder, which is then used
in the loss function (described in IV-B), to train the model.
Fig 2 illustrates the output of the T-CBF, which is the safe
region (dotted red boundary) based on traversability safety.

Formulating safety constraints for high dimensional sys-
tems on unstructured terrain is complicated due factors
such as suspension and tire deformation, varying tire-terrain
friction, vehicle weight distribution and momentum, etc.
To address this, we utilize manually driven runs to collect
data and identify unsafe states (Fig. 1) of the robot based
on the following criteria: Denote the robot state as xt =
(xt, yt, zt, rt, pt, ϕt), where the first three are translational
(x, y, z) and last three are rotational (roll, pitch, yaw) com-
ponents respectively along x, y, and z axis, and control input
as ut = (vt, ωt), where v is translational velocity and ω is
angular velocity which also correlates to steering curvature.

1) pt ≥ pthresh: Pitch angles greater than a threshold
value as large pitch angles lead to robot getting stuck;

2) ϕt ≥ ϕthresh: Roll angles greater than a threshold as
large roll angles increases the risk of vehicle rollover;

3) (∆x,∆y,∆z) < ∆thresh and (u > uthresh): Smaller
robot position changes with greater velocity and steer-
ing commands, compared to their respective thresh-
olds, indicates that the robot is immobilized, e.g., due
to insufficient contact with the terrain or tire slipping.

The first two inequalities can be added as constraints in
an optimization framework to maintain safety as those can
be predicted by a learned kinodynamic model. However the
third inequality is difficult to enforce as a constraint because
of the many different factors, as described above, which
are involved in robot-terrain interactions after the control is
applied. In T-CBF we learn a control barrier function from
the samples of safe and unsafe observations which can be
applied as a constraint to a control optimization problem.

Fig. 2: T-CBF Neural Network Architecture: The observations
(elevation maps) are processed through a neural network as CBF
and control actions are processed through an encoder. The loss
function helps learn a CBF enforcing satisfaction of Eqns. (4a),
(4b), and (4c). The output, safe region (dotted red boundary), is
obtained by sampling observations on elevation map from a fixed
position with different control commands.

B. Learning T-CBF from Observations

Unlike traditional state-based formulations of CBFs, we
define CBF as function of state x and observations o ∈
O ⊂ Ro [2] [17]. This enables the CBF to generalize into
new environments where new observations can be used to
create CBF defining safe regions around the robot. The T-
CBF based on observations h : O → R is defined as:

h(o, x) ≥ 0 ∀o ∈ O,∀x ∈ Xsafe, (4a)

h(o, x) < 0 ∀o ∈ O,∀x ∈ Xunsafe, (4b)

h[o(f(xt, u))] ≥ −αh(h(o, xt)), ∀u ∈ Usafe,∀x ∈ Xsafe
(4c)

where 0 ≤ αh < 1 is an extended class K∞ function. We
formulate our CBF similar to Harms et al. [2] and use the
switching set approach to avoid the observation dynamics
approximation that comes from differentiating h(o, x) and
results in d

dth(o, x) = h[o(f(xt, u))] which represents the
state dynamics of the system. The formulated CBF is a
Discrete Time Control Barrier Funtion.

To train the network illustrated in Fig. 2, we use the
following loss function using the elevation map, ot and ot+1

at time t and t+ 1, as an observation input:

Loss = c1
∑

(ot)
i∈Ounsafe

ReLU(h(ot)
i+ϵ1) + (5a)

c2
∑

(ot)
i∈Osafe

ReLU(ϵ2-h(ot)
i) + (5b)

c3
∑

(ot,ot+1)
i∈Osafe

ReLU(ϵ3-(h(ot+1)
iue+α(h(ot)

i))). (5c)

In the loss function, the terms (5a) and (5b) ensure satisfac-
tion of safe and unsafe observation inequalities in (4a) and
(4b) respectively, which is a standard practice in training
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a neural CBF. However, we add (5c) explicitly to enforce
satisfaction of equation (4c). In unstructured environment, a
terrain patch can be safe to traverse with a control command
u, but unlike collision avoidance, the same patch can also
become unsafe with another control command u′, hence we
explicitly incorporate encoded control command ue in the
equation (5c) of the loss function to formulate traversability
safety. Thresholds ϵ1, ϵ2, ϵ3 ≥ 0 are added to enforce strict
satisfaction of all the inequalities and weights c1, c2, c3 ≥ 0
are hyper-parameters.

The learning process involves training the T-CBF network
using a small data set of over 4,000 real-world observation
samples, evenly distributed between safe and unsafe sets with
20% reserved for validation. We train the network for 150
epochs using the Adam Optimizer.

C. Planning Algorithm
We formalize the navigation planning problem as a control

optimization framework:

u = argmin
u

λ1∥u∥ +λ2 Cgoal+λ3 Cstab, (6a)

s.t. umin ≤ u ≤ umax, (6b)

ht+1 + α(ht) ≥ 0. (6c)

The resulting trajectory adheres to both the system constraint
(6b) and the CBF constraint (6c) making it traversability safe.
To encourage goal-directed behavior, we incorporate a cost
term, Cgoal, which penalizes control actions leading to states
that deviate from the goal position as shown in equation (7).
xg and yg are x and y component of goal position and wx

and wy are weights for x and y components respectively.

Cgoal = wx|xt − xg|+ wy|yt − yg| (7)

Additionally, we introduce a stability cost, Cstab shown in
equation (8), to penalize control actions that result in states
with excessive pitch pt and roll rt which are weighted by
wp and wr respectively.

Cstab = wr|rt|+ wp|pt| (8)

Given the challenges of mathematically formulating robot
dynamics on unstructured terrain, we employ a learned
forward kinodynamic model, TAL [21], to predict new
states based on control inputs. λ1, λ2, λ3 are weights with
λ1 ≫ λ2 ≫ λ3 to give more importance on minimizing
the control action. The optimization is run in loop for
the planning horizon of 10 steps which provides adequate
foresight to ensure safe and stable motion towards the goal.
The optimization terminates once the robot reaches within
0.1 m of the goal state.

V. EXPERIMENTS

To validate that T-CBF provides traversiability safety on
unstructured vertically challenging terrain and is able to
generalize to new environment, we compare the performance
with WM-VCT [4] and TAL [21], previously developed
planners to solve the same problem. We conduct experiments
both in simulation and on a physical robot in real world
environment.

Fig. 3: T-CBF validation test (from left to right): V4W receives start
and goal (red) states in safe region. We intentionally set a global
path that goes through a non-traversable terrain patch (blue). T-CBF
navigates the robot towards the goal state and pauses the robot in a
safe state. Robot topples and immobilizes with WM-VCT and TAL
when attempting to traverse unsafe terrain.

A. Robot and Testbed

The robot used for the physical experiments is a V4W
platform [3], an open-source, 1/10th-scale unmanned ground
vehicle. The robot features a low-high gear switch and
lockable front and rear differentials, enhancing its mobility
on vertically challenging terrain. For perception, we utilize
the onboard Microsoft Azure Kinect RGB-D camera to
generate elevation map and to run Visual Inertia Odometry
[22]. Real-time elevation maps are generated using an open-
source tool that processes the depth data and all onboard
computation runs on an NVIDIA Jetson Orin NX.

To support experimentation, we construct a 3.1m × 5m
rock testbed with a maximum height of 0.6m. For reference,
the V4W is 0.2m high, 0.249m wide, 0.523m long, with a
wheelbase of 0.312m. The testbed consists of reconfigurable
rocks, enabling flexible data collection and mobility testing
across diverse terrain configurations.

We categorize the testbed into three difficulty levels—low,
medium, and high—based on elevation changes. In the low-
difficulty setting, rocks are evenly arranged to minimize
elevation variation, ensuring a continuous surface without
gaps. The medium difficulty level introduces increased el-
evation changes along with small gaps, which may cause
the robot to lose traction or become temporarily stuck.
At the high-difficulty level, significant elevation variations
are introduced, with rock placements designed to challenge
the robot’s stability, potentially causing rollovers or im-
mobilization. Additionally, wooden slats and spray foam
are incorporated to introduce further variations in terrain
complexity.

B. T-CBF Validation

To evaluate the safety performance of T-CBF, we configure
the testbed to simulate unsafe traversable scenarios. We con-
duct experiments using the WM-VCT and TAL algorithms,
which lack explicit safety constraints, and compare their
results with T-CBF. Throughout our experiments, we assume
that the robot’s start and goal positions are located in a
safe region. Unlike the other planners, T-CBF successfully
prevents the robot from entering in unsafe states and getting
immobilized. The robot remains mobile and capable of
searching alternate paths towards goal position. In contrast,
WM-VCT and TAL become immobilized while attempting
to navigate the unsafe terrain. The results are presented
in Fig. 3. This experiment validates that T-CBF is able to
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Fig. 4: Experimental evaluation of T-CBF. A & B: Simulation run of robot avoiding unsafe regions while navigating challengin terrain. 1:
Robot initialization with start and goal pose in safe region. 2-4: Robot navigating unstructured vertically challenging terrain and avoiding
nontraversable unsafe regions to reach the goal position with corresponding bottom images showing traversability-based safe regions
(dotted red boundary) on elevation map computed by T-CBF and resulted trajectories in green.

Task Planner Success Rate ↑ Traversal Time (s) ↓ Mean Roll (rad) ↓ Mean Pitch (rad) ↓

Simulation
T-CBF 60.7% 26.80 ± 2.30 0.100 ± 0.30 0.073 ± 0.08
TAL 58.2% 25.20 ± 2.75 0.105 ± 0.35 0.076 ± 0.07
WM-VCT 40.12% 24.37 ± 2.52 0.154 ± 0.38 0.089 ± 0.11

Real World - Low
T-CBF 10/10 17.92 ± 2.08 0.131 ± 0.13 0.059 ± 0.08
TAL 10/10 16.63 ± 2.27 0.136 ± 0.24 0.061 ± 0.07
WM-VCT 9/10 17.10 ± 2.10 0.154 ± 0.10 0.079 ± 0.07

Real World - Medium
T-CBF 10/10 18.70 ± 1.10 0.154 ± 0.13 0.087 ± 0.07
TAL 9/10 17.39 ± 2.27 0.166 ± 0.24 0.091 ± 0.04
WM-VCT 8/10 18.16 ± 2.10 0.173 ± 0.20 0.102 ± 0.06

Real World - High
T-CBF 10/10 17.92 ± 1.08 0.176 ± 0.10 0.115 ± 0.03
TAL 7/10 16.99 ± 2.27 0.189 ± 0.14 0.131 ± 0.02
WM-VCT 6/10 14.16 ± 1.10 0.197 ± 0.20 0.153 ± 0.08

TABLE I: Performance metrics for various planners across different tasks (best in bold).

provide traversability safety when navigating unstructured,
vertically challenging terrain. While this validation analysis
provides useful evidence, it does not constitutes a formal
proof. Practical limitations like perception and localization
noise and learned neural network architecture may prevent
the theoretical grantees in Section IV from fully applying in
real world scenarios. To support the practical effectiveness
of our learned certificates, the following section presents
experimental results demonstrating that the controller con-
sistently operates safely and achieves its objectives across
diverse simulated and physical environments.

C. Performance Comparison

After validating T-CBF’s traversability safety beyond colli-
sion avoidance, we compare its performance with WM-VCT
and TAL in both simulation and real-world experiments.
Differential locks of V4W are disabled for the real-world
experiments.

1) Simulation: For simulation we use Verti-Bench [23],
a comprehensive and scalable off-road mobility benchmark
designed for extremely rugged, vertically challenging terrain

featuring diverse unstructured off-road elements. Built on
the high-fidelity multi-physics dynamics simulator Chrono,
Verti-Bench captures variations across four orthogonal di-
mensions, i.e., geometry, semantics, obstacles, and scal-
ability. It provides metrics to compare the performance
of different planners on unstructured vertically challenging
terrain with different configurations and difficulty levels.
We run WM-VCT, TAL, and T-CBF on 30 Verti-Bench
environments with terrain difficulty level categorized as low,
medium and high. In Each simulation scenario the robot has
a specific start and goal position in safe region, and the
robot has to navigate the challenging terrain with various
surface geometry and semantics to reach the goal location.
The success rate in simulation is the percentage of time
the robot successfully reaches the goal position. Table I
shows the overall success rate, traversal time, mean roll,
and mean pitch for low, medium, and high difficulty levels
combined. T-CBF outperforms other planners in reaching
goal location while remaining safe and maintains mobility.
It achieves lower roll and pitch angles with the smallest
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variance, demonstrating T-CBF’s superior safety. It is not
as aggressive as TAL and WM-VCT and results in longer
traversal time. The performance margin against TAL is small
because of excess tire slipping in different terrain surface
textures and the distribution shift in the observations of
elevation map in simulation as training for T-CBF is done
on real world data only.

2) Real World: For real-world evaluation, the planners are
tested in the rock testbed designed to create varying terrain
complexities. The testbed includes reconfigurable rocks to
adjust difficulty levels, spray foam covered with green car-
pet, and wooden slats to introduce surface variations. Each
planner is executed 10 times at each of three difficulty levels,
resulting in a total of 90 physical runs. The success criteria
in real world testing is defined as the ability to keep robot
safe, i.e., the robot can move around by executing control
actions and searching for feasible paths towards the goal
position. Table I summarizes the experimental results for the
three planners on low, medium and high difficulty levels.
In the low difficulty environment all planners work well.
However, as the complexity of the environment increases,
WM-VCT and TAL are unable to generate trajectories to
navigate without getting immobilized by either getting stuck
or rolling over in many trials. T-CBF outperforms other
planners in keeping the robot safe and mobile in all difficult
and complex scenarios. It also achieves the smallest and
most stable roll and pitch angles. The traversal time of T-
CBF planner is longer compared to others because it has to
navigate around the unsafe regions to reach goal location.

VI. CONCLUSIONS

This work introduces a novel approach for leveraging
learned Control Barrier Functions (CBFs) to enable wheeled
robots to safely navigate unstructured, vertically challenging
terrain. Unlike traditional safety measures that primarily fo-
cuse on collision avoidance, the proposed T-CBF framework
learns traversability safety from a limited dataset of manually
collected runs. Experimental results demonstrate and validate
the effectiveness of T-CBF in maintaining both safety and
mobility across diverse, vertically challenging environments,
showcasing its adaptability to varying terrain configurations
and complexities. Given the significant impact of terrain
interactions on navigation in unstructured and vertically chal-
lenging terrain, incorporating multiple perception inputs can
enhance situational awareness and traversability safety. In
future work, we aim to extend this framework by integrating
observations from camera sensors to enrich terrain perception
and further increasing the robustness of T-CBF for field
robotics applications.
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