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Abstract— Wheeled robots have recently demonstrated su-
perior mechanical capability to traverse vertically challenging
terrain (e.g., extremely rugged boulders comparable in size to
the vehicles themselves). Negotiating such terrain introduces
significant variations of vehicle pose in all six Degrees-of-
Freedom (DoFs), leading to imbalanced contact forces, varying
momentum, and chassis deformation due to non-rigid tires and
suspensions. To autonomously navigate on vertically challenging
terrain, all these factors need to be efficiently reasoned within
limited onboard computation and strict real-time constraints. In
this paper, we propose a 6-DoF kinodynamics learning approach
that is attentive only to the specific underlying terrain critical
to the current vehicle-terrain interaction, so that it can be
efficiently queried in real-time motion planners onboard small
robots. Physical experiment results show our Terrain-Attentive
Learning (TAL) demonstrates on average 51.1% reduction in
model prediction error among all 6 DoFs compared to a state-
of-the-art model for vertically challenging terrain.

I. INTRODUCTION

Despite their wide availability, wheeled mobile robots are
usually limited in terms of mobility, mostly moving in 2D
flat environments. After dividing their planar workspaces into
free spaces and obstacles, those robots are assumed to be
rigid bodies and efficiently find collision-free paths to move
from one point to another, using extremely simplified kin-
odynamic models, e.g., Ackermann-steering or differential-
drive. When facing vertically challenging terrain, e.g., spaces
filled with large obstacles like boulders or tree trunks where a
collision-free 2D path does not exist, roboticists have mostly
sought help from more sophisticated mechanical design, such
as legged, leg-wheeled, and articulated tracked vehicles [1],
[2] or adding active suspension systems [3], [4].

Recent advances in wheeled mobility have shown that
even conventional wheeled vehicles without sophisticated
hardware modification have unrealized mobility potential on
vertically challenging terrain [5]. With a set of minimal
hardware requirements, e.g., all-wheel drive, independent
suspensions, and differential lock, those simple vehicles can
also, at least with human teleoperation, venture into environ-
ments which would normally be deemed as non-traversable
obstacles by state-of-the-art autonomous navigation systems.

In order to achieve such unrealized mobility potential in
an autonomous manner, wheeled robots need to reason about
the complex vehicle-terrain interaction, including imbalanced
contact forces, varying momentum, and chassis deformation
due to non-rigid tires and suspensions. All these factors are
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Fig. 1: Two Sets of 6-DoF Kinodynamic Trajectory Predic-
tions by TAL and WMVCT [7] Compared to Ground Truth.

tightly dependent on the underlying terrain. In state-of-the-
art motion planners, e.g., sampling-based or optimization-
based, such vehicle-terrain interaction needs to be modeled
and computed for a large number of future terrain patches be-
neath candidate vehicle poses. For highly articulated systems,
efficient decomposition is possible to break down the model-
ing of the vehicle chassis and actuators (e.g., legs and active
suspensions) so that the chassis trajectory can be computed
separately in parallel and the low-level actuation solved using
fast control and optimization techniques [6]. Unfortunately,
for under-actuated convectional wheeled robots, the whole
system is fully coupled and such decomposition is not
possible, requiring sequential, un-parallelizable computation
along potential future robot trajectories.

To this end, we present Terrain-Attentive Learning (TAL),
a 6-DoF kinodynamics learning approach that is attentive
(only) to the specific underlying terrain critical to the current
vehicle-terrain interaction, so that it can be efficiently queried
in real-time motion planners onboard small robots. TAL
is combined with a state-of-the-art sampling-based motion
planner and allows to sequentially rollout future trajectories
in an efficient manner for downstream cost-based kinody-
namic planning. Using TAL, we demonstrate on average
51.1% reduction in model prediction error among all 6 DoFs
compared to another state-of-the-art kinodynamics modeling
approach for vertically challenging terrain [7] (Fig. 1).

II. RELATED WORK

This section discusses related work in terms of wheeled
robot kinodynamic modeling, off-road navigation, and
learning-based mobility.

A. Wheeled Robot Kinodynamic Modeling

Wheeled mobile robots have found a variety of real-
world applications, e.g., in autonomous delivery [8], ware-



house logistics [9], scientific exploration [10], and search
and rescue [11]. Thanks to their simplicity and efficiency,
differential-drive mechanism [12], Ackermann steering [13],
and omnidirectional wheels [14] can efficiently move robots
through their planar workspaces [15], [16], avoid 2D obsta-
cles [17]–[19], and reach their goals [13].

A simple wheeled robot kinodynamic model is the
differential-drive model, i.e., the robot turns from the dif-
ference in rotation speed of the left and right wheel(s).
Other types of common kinodynamic models for wheeled
robots include unicycle, bicycle, and Ackermann-steering
model [20], which turn by changing the orientation of the
(front) wheel(s). Realizing such extremely simplified models
may not be able to account for the imperfectness in the real
world, researchers have also developed models with higher
physics fidelity, e.g., friction and slip models [21], [22]. The
benefit of these simple models is that they can be queried
in an extremely efficient manner, allowing thousands of po-
tential future model rollouts to be evaluated for downstream
kinodynamic planning.

Most existing wheeled robot kinodynamic models, despite
their differences in fidelities, still assume the robot moves
in a 2D space and its motion is constrained in SE(2).
However, when facing off-road environments, especially
vertically challenging terrain, such an assumption no longer
holds and the workspace has to be extended to SE(3) [5],
[7]. Modeling in SE(3) faces challenges in terms of both
accuracy and efficiency: the significant variations of 6-DoF
vehicle pose caused by the variety of underlying terrain needs
to be precisely modeled, while such a model also needs to
be queried efficiently in real-time motion planners. Our TAL
approach aims at tackling both challenges simultaneously in
a data-driven manner using representation learning.

B. Off-Road Navigation

A large percentage of off-road navigation research has
focused on the perception side since the DARPA Urban
Challenge [23] and LAGR Program [24]. Extending from
the simple differentiation of obstacles and free spaces, off-
road perception systems need to consider semantic informa-
tion [25]–[31], such as gravel, grass, bushes, pebbles, and
rocks, and then devise cost functions based on the semantic
understanding for subsequent path and motion planning.

Recent research efforts have gradually moved towards
the mobility side. Inverse [32], [33] and forward [13], [34]
kinodynamic models have been created from real-world
vehicle-terrain interactions [35] to enable high-speed off-road
navigation. End-to-end learned mobility [36] has eliminated
the boundary between perception and mobility systems so
the whole navigation system can be learned in a data-driven
manner. Most existing off-road navigation work still assume
the vehicles are moving in a 2D plane, while deliberately
choosing which part of the 2D plane to drive on or modeling
how different terrain would affect the 3-DoF vehicle motion.

When facing vertical protrusions from the ground, e.g.,
large boulders or fallen tree trunks, most existing off-road

navigation systems still treat them as non-traversable obsta-
cles, e.g., with a large cost assigned to the corresponding
semantic class. In this work, we aim to allow vehicles to
efficiently reason about the consequences of interacting with
such vertically challenging terrain and autonomously plan
feasible motions to traverse through.

C. Learning-Based Mobility
Recent advancement in machine learning has been uti-

lized for robot mobility [37] using imitation [38]–[40] or
reinforcement learning [41]–[43]. Learning enhances robot
adaptivity [39], [44]–[49] and agility [50]–[52], increases
movement speed [13], [32], [33], [35], [36], [53], enables
visual-only navigation [40], [54]–[56], and creates socially
compliant mobile robots [44], [57]–[64].

While having the potential to learn from data, learning-
based mobility also faces challenges from being data-hungry
and computation-intensive, especially onboard a mobile
robot. TAL aims at alleviating the need of large-scale real-
world datasets from constraining the learning process only to
a forward kinodynamic model, which will be combined in a
Model Predictive Control (MPC) [65] setup. TAL also utilizes
representation learning [66] so that the learned kinodynamic
model can efficiently attend to only the specific underly-
ing terrain critical to the current vehicle-terrain interaction,
without extensive computation required to pre-process input
data.

III. APPROACH

We first formulate the problem of forward kinodynamic
modeling for wheeled mobility on vertically challenging
terrain. We then present how this problem is approached in
a data-driven manner to avoid the need of analytical vehicle-
terrain interaction models. Finally, we introduce our TAL
method which allows the learned 6-DoF kinodynamic model
to efficiently attend to the specific underlying terrain so that
it can quickly predict the next vehicle state in a MPC setup
for downstream kinodynamic planning.

A. Problem Formulation
While most traditional 2D navigation problems are de-

fined in a 2D state space, i.e., X ⊂ SE(2), our vertically
challenging terrain requires the state space to be extended to
X ⊂ SE(3). Traditional motion planners only move robots
in free space and avoid obstacles, as divisions of the whole
state space: X = Xfree ∪ Xobs. In contrast, our wheeled
robot needs to decide which obstacles should be avoided
(as making contact with them will cause immobilization or
damage, e.g., hitting a wall), while which ones it can drive
on top of (use them as support underneath the chassis),
considering a collision-free 2D path may not always exist
in vertically challenging environments.

We adopt a discrete vehicle forward kinodynamic model
in the form of

xt+1 = fθ(xt,ut,mt), (1)

where xt ∈ X , ut ∈ U , and mt ∈ M denote the vehicle
state, control input, and environment state respectively. xt
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Fig. 2: Terrain-Attentive Learning (TAL, Left) and 6-DoF Kinodynamics Learning (Right) Architecture: Flame and
temperature denote training and frozen parameters respectively.

includes the translations along the x, y, and z axis (x, y,
and z) and the rotations around them (roll, pitch, and yaw)
in a coordinate system, as well as their velocity components
when necessary. For control input, ut = (vt, ωt) ∈ U ⊂ R2,
where vt and ωt are the linear and angular velocity or
throttle and steering command. The environment state mt

includes all necessary information in the environment to
determine the next vehicle state xt+1, given xt and ut. Such
information can include terrain geometry and semantics.
Considering the fact that ground vehicle dynamics depends
primarily on the terrain topology and the high computational
overhead of using a full 3D map, we use a 2.5D terrain
elevation map to construct mt underneath the current vehicle
state xt to represent terrain topology and leave semantics
(e.g., slipperiness, deformability, and elasticity) as future
work. The motion planning problem is to find a control
function u : {t}T−1

t=0 → U that produces an optimal path
xt ∈ Xfree,∀t ∈ {t}Tt=0 from an initial state x0 = xinit to a
goal region Xgoal ⊂ X , i.e., xT ∈ Xgoal. The path needs to
observe the system dynamics fθ(·, ·, ·), parameterized by θ,
and minimize a given cost function c(x), which maps from
a state trajectory x : {t}Tt=0 → X to a positive real number.

B. Data-Driven Kinodynamics

Most existing 2D vehicle kinodynamic models only condi-
tion next state xt+1 on current state xt and input ut and are
significantly simplified using, e.g., differential-drive, unicy-
cle, bicycle, or Ackermann-steering mechanisms. However,
the inclusion of mt when moving in off-road environments,
especially on vertically challenging terrain, substantially
complicates the model. For example, driving the vehicle
toward a wall or an extremely large slope will get the vehicle
stuck; driving quickly on undulating terrain may cause the
vehicle to be airborne; Driving on extremely slanted terrain
may compromise vehicle stability and lead to rollover. How
different terrain characteristics may affect the vehicle-terrain
interaction is very difficult to analytically model.

To avoid the difficulty in analytically modeling fθ, we
adopt a data-driven approach. We assume a training dataset
of size N is available: D = {⟨xt,xt+1,mt,ut⟩Nt=1}. θ can
then be learned by minimizing a supervised loss function:

θ∗ = argmin
θ

∑
(xt,xt+1,mt,ut)∈D

∥fθ(xt,ut,mt)−xt+1∥, (2)

The learned vehicle-terrain forward kinodynamic model
fθ(·, ·, ·), e.g., instantiated as a deep neural network, can be
used to rollout future trajectories for minimal-cost planning.

C. Terrain-Attentive Learning (TAL)

In addition to the difficulty in precisely deriving analytical
models for fθ, another difficulty brought by the inclusion of
mt is the increased computation cost and reduced efficiency
during model query. The state-action transitions of simplified
2D kinodynamic models, when depending only on the cur-
rent state and input, can therefore be very quickly computed.
They can even be pre-computed and saved in advance, e.g.,
as state lattices [67] or pre-processed maps [68]. Conversely,
even given the same current state xt and input ut, different
mt as input will produce a variety of next state xt+1,
which will further affect the transition into xt+2, and so
on. In a MPC setup, such a sequential dependence of the
next state-action transition on the current one precludes
the possibility of processing the sequence of {mt}H−1

t=0 for
one single trajectory (with H as the planning horizon) in
parallel and therefore incurs extensive computation overhead
during sequential rollouts, especially when a large amount
of potential state-action transitions must be computed for
iterative, sampling-based motion planners [65]. Furthermore,
how to efficiently extract mt from raw perception within
limited onboard computation is also a challenging task.

Therefore, TAL utilizes self-supervised representation
learning to efficiently process robot perception into mt

(Fig. 2 left) and query the learned model fθ (Fig. 2 right)
in order to rollout and evaluate future candidate trajectories.



Fig. 3: 6-DoF Vehicle Trajectories of TAL, WMVCT, and Ground Truth with Increasing Horizon: TAL closely matches Ground
Truth even with a long horizon, while WMVCT significantly diverges.

Within a MPC planning cycle, the kinodynamic model needs
to quickly retrieve relevant environment state from the space
of all possible environment states, i.e., mt ∈ M . In our
wheeled mobility on vertically challenging terrain problem,
M is the terrain information space of all possible terrain
patches that can be extracted from an elevation map built by
an online mapping system [69]. Given a full 2.5D elevation
map E of the vertically challenging terrain in the gravity-
aligned world frame, the terrain patch underneath the robot
state xt is independent of the robot’s rollt, pitcht, and zt,
and can thus be extracted using only xt, yt, and yawt. Notice
that such terrain extraction requires translation, cropping, and
rotation operations of the original full elevation map and
therefore incurs an extensive amount of computation when
repeated many times in a sampling-based MPC setting. Fur-
thermore, consuming the terrain patch as kinodynamic model
input during every state-action transition is also extremely
computationally extensive. To use representation learning to
alleviate the computation overhead during deployment, we
generate a terrain patch dataset using many full elevation
maps {Ei}Ii=1 and terrain patches extracted from each of
them based on randomly sampled ⟨x, y, yaw⟩ tuples, denoted
as {Ei, {pji , ⟨x

j
i , y

j
i , yawj

i ⟩}Jj=1}Ii=1. As shown in Fig. 2
left, a map encoder em and a terrain-attentive encoder eta
embed the full elevation map E and ⟨x, y, yaw⟩ into their
latent spaces, before being concatenated and decoded using
a terrain patch decoder dtp. The map and terrain-attentive
encoders and the terrain patch decoder are trained in an end-
to-end fashion using self-supervised representation loss:

LTAL =

I∑
i=1

J∑
j=1

∥pji − dtp(em(Ei), eta(⟨xj
i , y

j
i , yawj

i ⟩))∥. (3)

The latent embeddings of the full elevation map and
⟨x, y, yaw⟩ contain sufficient information to reconstruct the
terrain patch, and therefore can be used as mt.

The parameters for the learned map and terrain-attentive
encoders, em and eta, are then frozen during downstream
6-DoF kinodynamics learning (Fig. 2 right). The optimal
kinodynamics parameters θ∗, in the form of a state-action
encoder esa and kinodynamics predictor pkd, are learned

using the kinodynamics loss defined in Eqn. (2). During
a single deployment planning cycle, the large map encoder
will only need to be queried once and produce one elevation
map embedding, while the small terrain-attentive encoder,
state-action encoder, and kinodynamics predictor will be
queried for every state-action transition. The learned kinody-
namic model can then be efficiently queried for subsequent
sampling-based MPC planning.

D. Implementations

1) Terrain Attentive Learning: TAL leverages a 3-layer
Convolutional Neural Network (CNN) as the map encoder
(em) that produces a latent embedding zm ∈ R160×6×6. In
parallel, the terrain-attentive encoder (eta), a 2-layer Multi-
Layer Perceptron (MLP), produces a latent embedding zta ∈
R160×6×6, the same size as zm. The second embedding
zta serves as attention weights, which are subsequently
multiplied with zm and passed through one linear layer
producing a latent embedding mt ∈ R64×6×6 as the final
terrain representation. The terrain patch decoder dtp is a 4-
layer Convolutional Transpose Network to reconstruct the
patch corresponding to the robot footprint with a 0.24m2

area in the real world. We use Mean Squared Error as the
loss function to guide the reconstruction process.

2) 6-DoF Kinodynamics Learning: The kinodynamics
learning consists of the pre-trained TAL model with the
addition of the state-action encoder esa and the kinodynamics
predictor pkd. The state-action encoder esa incorporates two
MLPs each with two layers to encode state (xt) into zs ∈ R16

and action (ut) into za ∈ R16. Then we concatenate zs and
za into zsa. This zsa is then further concatenated with the
terrain representation, mt, obtained from the TAL model.

The concatenated vector, consisting of zsa and mt, is
subsequently fed into the kinodynamics predictor pkd, a 2-
layer MLP, to predict the next state xt+1. During this stage,
the weights of em and eta are frozen, and only the weights
of esa and pkd, i.e., fθ, are updated through training.

IV. EXPERIMENTS

We conduct experiments to verify that our TAL model is
able to produce accurate future vehicle state prediction based
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Fig. 4: Model Prediction Error of TAL and WMVCT: Average One-Step 6-DoF Positional and Angular Error (Left); Prediction
Error vs. Prediction Step (Middle and Right). TAL achieves lower prediction error and variance than WMVCT in all cases.

on the current state xt, current action ut, and underlying
terrain mt. We compare the prediction from TAL against an-
other state-of-the-art 6-DoF vehicle kinodynamic model for
vertically challenging terrain used in the WMVCT planner [7].
We also deploy the TAL model in a sampling-based planner
and show it can be used to genreate feasible motion plans to
navigate through vertically challenging terrain.

A. Robot, Testbed, and Data

We implement TAL on an open-source, 1/10th-scale, un-
manned ground vehicle, the Verti-4-Wheeler (V4W) plat-
form [5]. The robot is equipped with a low-high gear
switch and lockable front and rear differentials enhancing
its mobility on vertically challenging terrain. For simplicity,
in our datasets and experiments, we only use low-gear and
always lock both differentials and leave the investigation of
the effect of low/high gear and locked/released differentials
on kinodynamics to future work. For perception, we use
the onboard Microsoft Azure Kinect RGB-D camera and
perform Visual Inertia Odometry (VIO) [70]. We use an
open-source tool to build real-time elevation map [71] based
on the depth input. For computation, an NVIDIA Jetson Orin
NX computer is available onboard.

We construct a 3.1m×1.3m rock testbed with a maximum
height of 0.6m (Fig. 1). For comparison, the V4W has a
height of 0.2m, width of 0.249m, and length of 0.523m
with a 0.312m wheel base. The numerous rocks on this
rock testbed can be easily reconfigured in order to facilitate
data collection and mobility experiments in a wide variety of
configurations. Apart from the rock testbed, we also create a
foam testbed of 1m×0.5m with a height of 0.4m to test the
generalizability of the model in unseen environments. Note
that in addition to unseen topology, this testbed also has
different friction dynamics compared to the rock testbed.

We collect 30 minutes of data on the rock testbed and 30
minutes of data on a planar surface. We use a 9:1 ratio to
split train and test data and report all results on unseen test
data. The dataset contains VIO for vehicle state estimation,
elevation maps built from depth images, and teleoperated
vehicle controls including throttle and steering commands.
A variety of 6-DoF vehicle states are included in the rock

Fig. 5: Diverse 6-DoF Vehicle States in the Dataset.

testbed data, including vehicle rollover and getting stuck.
Example 6-DoF vehicle states are shown in Fig. 5.

B. Trajectory Prediction Visualization

Fig. 3 visualizes a set of predicted trajectory examples
by TAL and WMVCT compared against the ground truth at
different horizon steps. At horizon 16, all three trajectories
are close to each other; At horizon 40, WMVCT fails to
consider the resistance from a large rock and reaches much
farther than TAL, whose length is similar to the ground
truth; At horizon 56, TAL follows the ground truth direction
in general, while WMVCT deviates to the left; At horizon
64, significant error is accumulated by WMVCT, causing the
red trajectory reaching out of the elevation map and then
penetrating the rocks, but TAL still closely follows the ground
truth.

C. 6-DoF Prediction Accuracy

We compare the accuracy of the TAL model in predict-
ing the next 6-DoF vehicle state with the model used in
WMVCT [7]. For efficiency, the WMVCT model decomposes
the 6 DoFs into three parts: x, y, and yaw are determined by
a simple planar Ackermann-steering model; z is based on the



TABLE I: Comparison of Success Rate and Average Time.

OL RB BC WMVCT TAL

Success Rate 0/10 0/10 7/10 10/10 10/10
Average Time - - 12.28±2.69 16.76±1.44 16.53±1.08

elevation map value at (x, y); roll and pitch are computed
using a neural network which takes as input a terrain patch
located at (x, y) and aligned with yaw. Fig. 4 left shows
the average error with standard deviation in predicting the
6-DoF vehicle state. Except the negligible difference in z-
position of the robot, TAL outperforms WMVCT for all other
DoFs by a wide margin, with significantly smaller variance.
Averaged among all DoFs, TAL achieves 51.1% reduction
in modeling error and 62.5% reduction in error standard
deviation. Fig. 4 middle and right shows the 6-DoF predic-
tion error of the models with respect to different prediction
steps. With increasing steps, error significantly accumulates
for WMVCT and the increasing variance indicates higher
uncertainty, while TAL can predict the positions as well as
the angles with more accuracy and smaller variance.

D. On-Robot Deployment

We deploy TAL with the Model Predictive Path Integral
(MPPI) planner [72] on V4W. The MPPI planner operates
by rolling out 400 candidate trajectories at each time step,
extending its planning horizon to 20 steps into the future.
For sampling diverse control sequences, the MPPI planner
uses a normal distribution centered around the actual control
sequence executed in the last time step by the robot. This set
of candidate control sequences, along with the elevation map,
is then fed into the TAL model. For each time step within
each trajectory, TAL predicts the resulting 6-DoF state of the
robot based on the initial or the last predicted state. These
resultant states are then fed to a custom cost function, which
takes into account the Euclidean distance to the goal along
with the roll and pitch values of the predicted states. The cost
function penalizes the states with high roll and pitch values,
which incentivizes the robot to prioritize trajectories that
maintain stable vehicle poses while approaching the goal.
The performance of the MPPI in conjunction with TAL is
assessed on unseen test rock configurations after shuffling
the rock testbed. To be specific, we manually increase the
navigation difficulty by introducing “tricky corners” for the
robot to avoid in order to maintain low roll and pitch
angles. We then conduct a series of experiments, running
10 trials each for MPPI with TAL, the WMVCT planner [7],
and Behavior Cloning (BC) [73]–[75] using the same training
data, as well as two baselines provided by the Verti-Wheelers
project, i.e., Rule-Based (RB) and Open-Loop (OL) [5]. To
be specific, the WMVCT planner uses a fixed set of vehicle
state trajectory rollouts, which are not dependent on the
vehicle action but a set of pre-determined arcs, and then
employs a PID controller to track such state trajectories. The
goal is consistently set across the rock testbed for all trials.

Table I presents the success rate and average traversal
time (for successful trials) of all five methods. The “tricky

corners” cause trouble for OL and RB every time and the
V4W either gets stuck or rolls over, achieving zero successful
trials. BC fails three trials due to the same reasons. WMVCT
with the decomposed 6-DoF model performs similarly as
MPPI with TAL. The significantly higher accuracy does not
directly translate to much better navigation performance.

E. Discussions

In our experiments, the TAL model achieves significantly
better prediction accuracy compared to the WMVCT model
in all six DoFs and does not accumulate extensive error
during long-horizon prediction. However, such a superior
model accuracy does not translate to higher success rate
when being used in the MPPI planner. We posit that the
reason for a missing direct correlation between significantly
higher model accuracy and better navigation performance is
the MPPI planner’s extensive computation demands. While
the WMVCT planner is able to quickly update the plan using
an extremely efficient but inaccurate model, the MPPI planner
takes longer to converge when using the high-accuracy TAL
model. This increased computational cost leads to a reduction
in the planning frequency, which further hinders the robot’s
ability to react and avoid risky obstacles in time. Such an
observation motivates future investigation into the tradeoff
between high model fidelity and planning frequency.

V. CONCLUSIONS

This work introduces Terrain Attentive Learning (TAL) for
6-DoF kinodynamics learning, focusing on extracting impor-
tant features that influence robot-terrain interaction. Specif-
ically, we pre-train neural networks to use robot poses as
attention weights. These attention weights guide the extrac-
tion of important underlying features from the elevation map,
utilizing patch reconstruction as a form of self-supervision.
With the pre-trained networks, TAL predicts the next vehicle
state based on the current pose, control input, and elevation
map. This approach enables efficient deployment in real-
time planners for small robots with limited computational
resources. We quantitatively and qualitatively show that TAL
can accurately predict the next robot state, which helps to
plan feasible, stable, and efficient paths through vertically
challenging terrain in a sampling-based motion planner.
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[59] A. Francis, C. Pérez-d’Arpino, C. Li, F. Xia, A. Alahi, R. Alami,
A. Bera, A. Biswas, J. Biswas, R. Chandra et al., “Principles and
guidelines for evaluating social robot navigation algorithms,” arXiv
preprint arXiv:2306.16740, 2023.

[60] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand):
A large-scale dataset of demonstrations for social navigation,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11 807–11 814,
2022.

[61] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343–1350.

[62] D. M. Nguyen, M. Nazeri, A. Payandeh, A. Datar, and X. Xiao, “To-
ward human-like social robot navigation: A large-scale, multi-modal,
social human navigation dataset,” in 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2023.

[63] J.-S. Park, X. Xiao, G. Warnell, H. Yedidsion, and P. Stone, “Learn-
ing perceptual hallucination for multi-robot navigation in narrow

hallways,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 10 033–10 039.

[64] J. Hart, R. Mirsky, X. Xiao, S. Tejeda, B. Mahajan, J. Goo, K. Baldauf,
S. Owen, and P. Stone, “Using human-inspired signals to disam-
biguate navigational intentions,” in International Conference on Social
Robotics. Springer, 2020, pp. 320–331.

[65] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2016, pp. 1433–1440.

[66] A. Payandeh, K. T. Baghaei, P. Fayyazsanavi, S. B. Ramezani,
Z. Chen, and S. Rahimi, “Deep representation learning: Fundamentals,
technologies, applications, and open challenges,” IEEE Access, vol. 11,
pp. 137 621–137 659, 2023.

[67] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[68] X. Cai, M. Everett, J. Fink, and J. P. How, “Risk-aware off-road
navigation via a learned speed distribution map,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 2931–2937.

[69] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, and
M. Hutter, “Elevation mapping for locomotion and navigation using
gpu,” 2022.

[70] K. Chen, R. Nemiroff, and B. T. Lopez, “Direct lidar-inertial odome-
try: Lightweight lio with continuous-time motion correction,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 3983–3989.

[71] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger,
and M. Hutter, “Elevation mapping for locomotion and navigation
using gpu,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 2273–2280.

[72] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357,
2017.

[73] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989,
pp. 305–313.

[74] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[75] M. H. Nazeri and M. Bohlouli, “Exploring reflective limitation of
behavior cloning in autonomous vehicles,” in 2021 IEEE International
Conference on Data Mining (ICDM), 2021, pp. 1252–1257.


	Introduction
	Related Work
	Wheeled Robot Kinodynamic Modeling
	Off-Road Navigation
	Learning-Based Mobility

	Approach
	Problem Formulation
	Data-Driven Kinodynamics
	Terrain-Attentive Learning (tal)
	Implementations
	Terrain Attentive Learning
	6-DoF Kinodynamics Learning


	Experiments
	Robot, Testbed, and Data
	Trajectory Prediction Visualization
	6-DoF Prediction Accuracy
	On-Robot Deployment
	Discussions

	Conclusions
	References

