Terrain-Attentive Learning for Efficient 6-DoF Kinodynamic Modeling
on Vertically Challenging Terrain
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INTRODUCTION

» Despite their wide availability, wheeled
mobile robots are usually limited In terms of
mobility, mostly moving in 2D flat
environments.

* Recent advances in wheeled mobility have
shown that even conventional wheeled
vehicles without sophisticated hardware
modification have unrealized mobility
potential on vertically challenging terrain.

PROBLEM FORMULATION

* While most traditional 2D navigation
problems are defined In a 2D state space,
l.e., X € SE(2), our vertically challenging
terrain requires the state space to be
extended to X c SE(3).
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Our Terrain-Attentive Learning (TAL)
allows a learned 6-DoF kinodynamic
model to efficiently attend to the
specific underlying terrain for real
-time sampling-based planning.

Terrain-Attentive Learning (TAL)
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ALGORITHMS

» Data-Driven Kinodynamics:

To avoid the difficulty in analytically modeling
fo, We adopt a data-driven approach and 6 can
then be learned by minimizing a supervised loss
function:
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» Terrain-Attentive Learning (TAL):

The map and terrain-attentive encoders and the
terrain patch decoder are trained In an end-to-
end fashion using a self-supervised
representatlon l0sS:
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RESULTS

Model Prediction Error: TAL achieves lower
prediction error and variance than WMVCT, a
previous 6-DoF model based on decomposition
for efficiency, In all cases.
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	Slide 1: Our Terrain-Attentive Learning (TAL) allows a learned 6-DoF kinodynamic model to efficiently attend to the specific underlying terrain for real -time sampling-based planning. 

