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VL-TGS: Trajectory Generation and Selection Using
Vision Language Models in Mapless
Outdoor Environments

Daeun Song Y, Member, IEEE, Jing Liang

Abstract—We present a multi-modal trajectory generation and
selection algorithm for real-world mapless outdoor navigation in
human-centered environments. Such environments contain rich
features like crosswalks, grass, and curbs, which are easily inter-
pretable by humans, but not by mobile robots. We aim to com-
pute suitable trajectories that (1) satisfy the environment-specific
traversability constraints and (2) generate human-like paths while
navigating on crosswalks, sidewalks, etc. Our formulation uses a
Conditional Variational Autoencoder (CVAE) generative model en-
hanced with traversability constraints to generate multiple candi-
date trajectories for global navigation. We develop a visual prompt-
ing approach and leverage the Visual Language Model’s (VLM)
zero-shot ability of semantic understanding and logical reasoning
to choose the best trajectory given the contextual information
about the task. We evaluate our method in various outdoor scenes
with wheeled robots and compare the performance with other
global navigation algorithms. In practice, we observe an average
improvement of 20.81 % in satisfying traversability constraints and
28.51 % in terms of human-like navigation in four different outdoor
navigation scenarios.

Index Terms—Motion and path planning, task and motion
planning, integrated planning and learning.

1. INTRODUCTION

APLESS outdoor navigation requires robots to compute
trajectories or directions in large-scale environments
without relying on pre-built maps. This problem is particularly
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important for global navigation in outdoor settings, where cre-
ating and maintaining accurate maps is impractical due to dy-
namic changes such as constructions [1], [2]. Unlike map-based
methods that depend on detailed geometric representations of
the environment [3], [4], [5], mapless techniques rely directly on
sensory input [6], [7], requiring robots to adapt to environmental
changes and navigate through unknown spaces without the need
for prior knowledge.

Traditionally, both map-based and mapless navigation ap-
proaches have relied on traversability analysis based on geo-
metric shapes, often using LiDAR data to identify navigable
regions [6], [7], [8]. While this approach is effective for detecting
larger obstacles and general terrain features, it faces challenges
in nuanced environments [9], [10]. Features such as short grass,
curbs, and low-profile flower beds can be challenging for LIDAR
to detect due to their subtle and low-profile characteristics.
Additionally, while geometric environmental data is sufficient
for navigation in obstacle-rich environments, it falls short in
human-centered environments.

Navigating human-centered outdoor environments requires
advanced scene understanding to ensure safety and reliabil-
ity [11]. Robots must not only recognize physical features,
such as walkways, crosswalks, and paved paths, but also in-
terpret their intended use within the environment and navi-
gate accordingly. For example, paved roadways may only be
temporarily used when construction blocks the sidewalk, but
they can always be used to cross a street when marked with
a zebra crossing. This involves identifying areas designated for
pedestrian movement, detecting obstacles or temporary changes,
and understanding how these elements influence viable paths.
Achieving this requires contextual reasoning to understand and
adapt to the implicit rules and expectations of human-centered
environments [12].

To build such contextual understanding of the environment,
many existing methods [9], [13] rely on segmentation or classifi-
cation [14], [15]. However, these require extensive training with
ground truth data and are limited to labeled datasets. This limita-
tion hinders their generalizability to unknown scenes. Recent ad-
vances in Large Language Models (LLMs) and Vision Language
Models (VLMs) have demonstrated strong zero-shot capabilities
across a wide range of tasks, including logical reasoning [16],
[17] and visual understanding [18], [19]. VLMs, in particular,
have the ability to process and understand both visual and
textual information, enabling them to perform a wide range of
multi-modal tasks. Their ability to reason contextually and adapt
their outputs to align with implicit environmental rules makes
them ideal for navigating human-centered outdoor spaces.
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Fig. 1. Trajectories generated and selected using VL-TGS in outdoor naviga-
tion. The example path includes three different types of scenarios: (A) flower bed
and curb, (B) corner, and (C) crosswalk. On the top, the map pin icon marks the
goal behind the building, with the red solid or dashed line highlighting the robot’s
path. On the bottom, candidate trajectories are marked in red lines with numbers.
The green path corresponds to the trajectory computed using VL-TGS. Overall,
VL-TGS is capable of generating diverse, geometrically traversable paths and
selecting semantically feasible trajectories for navigation in human-centered
environments.

Main Results: We present VL-TGS, a novel multi-modal
approach for trajectory generation and selection in mapless out-
door navigation (Fig. 1). Our method combines LiDAR-based
geometric information with RGB image data for comprehen-
sive traversability analysis and scene understanding. Using a
CVAE-based [20] approach, we first generate multiple candidate
trajectories based on the LiDAR scene perception. A VLM is
then employed for trajectory selection based on the environ-
mental context understanding through RGB image data. While
VLMs lack the capability to produce precise spatial outputs,
they can effectively utilize visual annotations to guide the selec-
tion process among a discrete set of coarse options [21], [22],
[23]. By incorporating VLMs, our approach enables human-
like decision-making to select optimal trajectories from the
candidates, ensuring they align with geometric traversability
constraints while addressing the contextual demands of global
navigation. We demonstrate the effectiveness of our approach
in outdoor scenarios featuring diverse human-centered environ-
ments and navigation challenges, such as crossing streets at
crosswalks and adhering to walkways. The major contributions
of our work include:

1) A novel integrated trajectory generation and selection
method, VL-TGS, to generate multiple candidate trajecto-
ries using a CVAE-based approach and to select the most
suitable trajectory using the VLM with visual prompting.
Our CVAE-based trajectory generation method generates
multiple candidate trajectories that are traversable consid-
ering the geometrical information retrieved from the Li-
DAR sensor. Our VLM-based trajectory selection method
selects the best trajectory, which is traversable, in terms
of both a geometric and semantic manner suitable for a
human-centered environment.

2) We explore the use of a visual prompting approach to
enhance the spatial reasoning capabilities of VLMs in
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the context of trajectory selection. By incorporating visual
markers such as lines and numerical indicators within the
RGB image, we provide explicit guidance to the VLM.
We conduct ablation studies, first demonstrating the im-
portance of providing high-quality candidate trajectories,
and then comparing the effectiveness of having a visual
marking method.

3) We evaluate VL-TGS in four different outdoor scenarios.
We measure the satisfaction rate of traversability con-
straints and the Fréchet distance with respect to a human-
teleoperated trajectory. We compare the results with state-
of-the-art trajectory generation approaches. We observe
an average improvement of 20.81% in the traversability
satisfaction rate and 28.51% in the Fréchet distance. We
also qualitatively demonstrate the benefits of our approach
over other methods.

II. RELATED WORK

This section reviews related works on outdoor robot naviga-
tion, with a particular focus on trajectory generation.

A. Outdoor Robot Navigation

Reinforcement-learning-based  motion  planning  ap-
proaches [24], [25] use an end-to-end structure to take
observations and generate actions or trajectories. However,
these methods are designed for short-range navigation, and
on-policy reinforcement learning approaches also suffer
from the reality gap. Map reconstruction with path planning
approaches [26], [27] provides a solution for global planning
by building a map during navigation, but these approaches
require a large memory for the global map. To address this
issue, NoMaD [28] and VINT [29] use topological maps to
reduce memory usage for navigation, but these approaches
require topological nodes to be predefined, making them
unsuitable for fully unknown environments. To overcome
these limitations, our approach uses a CVAE-based trajectory
generation method [6] to generate trajectories and leverages
VLMs to select the optimal trajectory to reach the goal.

B. Vision Language Models in Navigation

Recent breakthroughs in Language Foundation Models
(LFMs) [30], encompassing VLMs and LLMs, demonstrate
significant potential for robotic navigation. LM-Nav [31] em-
ploys GPT-3 and CLIP [19] to extract landmark descriptions
from text-based navigation instruction and ground them in im-
ages, effectively guiding a robot to the goal in outdoor en-
vironments. VLMaps [32] propose a spatial map representa-
tion by fusing vision-language features with a 3D map that
enables natural language-guided navigation. CoW [33] per-
forms zero-shot language-based object navigation by com-
bining CLIP-based maps and traditional exploration meth-
ods. Most of these researches focus on utilizing VLMs for
high-level navigation guidance by extracting text-image scene
representation. For low-level navigation behaviors, VLM-
Social-Nav [34] explores the ability of VLM to extract socially
compliant navigation behavior with the interaction with social
entities like humans. CoNVOI [35] uses visual annotation to
extract a sequence of waypoints from camera observation to
navigate robots. PIVOT [22] uses visual prompting and opti-
mization with VLMs in various low-level robot control tasks

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 03,2025 at 01:46:29 UTC from IEEE Xplore. Restrictions apply.



SONG et al.: VL-TGS: TRAJECTORY GENERATION AND SELECTION USING VISION LANGUAGE MODELS

CVAE-based
Trajectory
Generator

LiDAR Data (o,)

. D ®—

Velocities (0, )

5793

Context-based
Prompt (/)

L

VLM-based

Visual
Marking
Module

Image (i)

Fig. 2.

Annotated Image (i’)

—

Trajectory
Selector

-

Architecture: Our approach consists of two stages: CVAE-based trajectory generation and VLM-based trajectory selection. In the first stage, our

attention-based CVAE takes consecutive frames of LiDAR point clouds and robot velocities as input, generating multiple diverse trajectories. These trajectories are
sorted and visually marked with lines and numbers in the robot-view RGB image. In the second stage, our VLM-based trajectory selection module identifies the
best trajectory number based on semantic feasibility, ensuring it lies on the sidewalk, avoids structures, crosses at zebra crossings, and adheres to other contextual

rules.

including indoor navigation. It shows the potential of a visual
prompting approach for VLMs in robotic and spatial reasoning
domains.

Building on these approaches, our work uses a VLM to guide
low-level navigation behavior by understanding contextual and
semantic information about the surroundings. We use visual an-
notations [21], [22], [35], [36], such as lines and numbers, to aid
the VLM to effectively comprehend spatial information. Instead
of randomly generating the candidates like in PIVOT [22], we
use a generative model-based trajectory generation approach to
produce diverse candidate trajectories that ensure traversability
for the VLM to choose from.

III. APPROACH

In this section, we formulate the problem of mapless global
navigation and describe our approach.

A. Overview

Our approach computes a trajectory in a mapless environment
for global navigation. Mapless global navigation requires a robot
toreach a distant target beyond its immediate surroundings with-
out relying on a pre-built map. To achieve this, we utilize multi-
modal sensor data, combining both geometric and RGB visual
information, to iteratively generate local trajectories that guide
the robot towards the goal. Our approach follows a two-stage
pipeline, as illustrated in Fig. 2. In the first stage, we generate
multiple candidate trajectories, each spanning a fixed length
(e.g., 10 m) that satisfy the geometric traversability constraints.
Then, we select the best trajectory based on human-like decision-
making. Given a target goal g € O,4, we use a GPS sensor to
provide the relative position between the target and the current
location. Our goal is to compute a trajectory, 7, that aims to
provide the best path to the goal, and that satisfies the traversabil-
ity constraints of the scenario, 7 = VL-TGS(Y, i, 0, g), where
o = {o0;,0,,1} represents the robot’s observations. o; € O,
represents LiDAR observations, o, € O, indicates the robot’s
velocity, and i€ Z represents the RGB images from the
camera. ¢ € L represents the language instructions to the
Vision-Language Models (VLMs) for acquiring traversable
trajectories.

We use Conditional Variational Autoencoder (CVAE) [6] to
process the geometric information, o; € O, from the LiDAR
sensor and the consecutive velocities, o, € O,, from the robot’s
odometer. We efficiently generate a set of trajectories lying
in geometrically traversable areas, 7 = CVAE(o;, 0,). These
generated trajectories cannot handle geometrically similar but
color-semantically different situations, such as crosswalks as
shown in Fig. 1(C). Therefore, we use VLMs to provide scene
understanding from the RGB images.

However, the generated real-world waypoints from CVAE and
the image observations are in two different modalities. To fuse
these, we overlay the trajectories onto the images. VLMs are then
used to assess whether the trajectories align with the contextual
constraints of the environment. We assume that VLMs can infer
common-sense reasoning from the images. We place these num-
bers at the end of each trajectory, starting from 0. The numbers
indicate the order of distances to the goal, with the lowest number
corresponding to the trajectory with the shortest distance. Thus,
we map the real-world trajectories to image pixel-level objects
by

(n,7c) = M(CVAE(0;, 0,), K), M

where K denotes the conversion matrix from the real-world
LiDAR frame to the image plane, 7. denotes the converted
trajectories, and n € A are the numbers corresponding to each
trajectory.

Given the language instruction ¢, the image i with the con-
verted trajectories 7., and numbersn € A/, our VLM selects one
traversable trajectory based on the color-semantic understanding
of the scenarios:

T =VLM({,i, T, n). 2)

We choose the trajectory with the highest probability as the
human-like trajectories, max P(7|¢,1,7.,n). Therefore, the
problem is defined as:

max P(7|(,i,T.,n). 3)

B. Geometry-Based Trajectory Generation

The trajectory set, 7, is generated by a CVAE to generate
trajectories with associated confidences. For each observation
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Algorithm 1: Multi-Modal Trajectory Generation and Se-
lection Algorithm.

Given : LiDAR point cloud o;, robot’s velocities 0,,
transformation matrix K, threshold d;,
instruction ¢, RGB image i
Initialize: trajectory set 7 = {}, time stamp ¢ = 2

1 while the robot is running do

2 T, = CVAE(0y, 0,);

3 T=T.UT;

4 (n,7:.) =M(T,K);

5 7 = VLM(/, 1, T, n);

6 if ¢+ > t then

7 | 7.DEQUEUE();

8 end

{0;,0,}, we calculate the condition value ¢ = f.(o;,0,) for
the CVAE decoder, where f.(-) denotes the perception encoder.
The embedding vector is then calculated from c as z = f.(c),
with f,(-) representing a neural network.

To generate a sufficient number of candidates for the robot’s
navigation, we need to create multiple diverse trajectories that
cover all traversable areas in front of the robot. Since the decoder
is designed to generate a single trajectory from one embedding
vector, producing a variety of diverse trajectories requires the
use of representative and varied embedding vectors. We project
the embedding vector z onto orthogonal axes by linear transfor-
mations, each projected vector corresponding to one traversable
area. Then we generate trajectories based on the condition c:

z, = Ag(c)z + bi(c) = hy, (2), 4)

where hy, denotes the linear transformation of z. Using each
embedding vector zj, the decoder generates a trajectory Ty,
as p(Tk|zk, ¢, Zi). T, € T represents generated trajectories. zy,
and Zj, are the embedding vectors of the current trajectory and
the set of other trajectory embeddings, respectively. The training
of the trajectory generator is the same as MTG [6], where we
use traversability loss, CVAE lower bound, and diversity loss to
train the model.

C. VLM-Based Trajectory Selection

Algorithm 1 highlights our procedure of using VLMs to select
a suitable trajectory from candidate trajectories. t7 denotes the
time steps 7 contains. 7, denotes a new set of trajectories
generated by CVAE. While the generated trajectories 7, ef-
fectively cover the traversable areas in front of the robot [6],
the deep-learning-based generative model cannot guarantee the
consistent generation of traversable trajectories. To address this,
we sample consecutive t = 2 time steps, introducing redundancy
to increase the likelihood that at least one of the generated
trajectories will be traversable. Given the collected trajectories
in 7, we convert them to the image plane with numbers, where
we sort the trajectories in terms of heuristic, which is the distance
between the last waypoint of the trajectory and the goal, as shown
in (1).

Considering that trajectories generated at consecutive time
steps often overlap significantly, we refine the set of candidates
T. This is done by selecting only representative trajectories to
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form a subset 7' C T based on their Hausdorff distances:
VT, Tm € T’y dp (T, Ti) > di, where n # m, (5)

where dj, (-, -) represents the Hausdorff distance. This process
removes trajectories that are too similar, improving the clarity
of visual annotations on the image while ensuring diversity.

We then project the trajectories 7' from the robot’s frame to
the image plane by transformation matrices K, 7. = P.(7", K).
Following the trajectory generation sequence, we annotate the
trajectories with numbers, n.

Finally, we use the VLM to select the best trajectory in terms
of satisfying traversability and social compliance. The annotated
trajectories (n, 7.) and the current observation image i are input
into the VLM with the prompt instruction £. The VLM selects the
best trajectory, 7, in terms of traversability, social compliance,
and traveling distance to the goal, as shown in (2). The following
is the instruction prompt instruction ¢ provided to the model:

g )
I am a wheeled robot that cannot go over high bumps. This
is the image I am seeing right now.

Pick one path that I should follow to navigate safely towards
the goal, like what humans do. Remember that I must walk
on pavements, avoid rough, bumpy terrains, and follow the
rules. I cannot go over/under the curbs. The lowest number
indicates the shortest path to the goal. Pick only one.
Provide the answer in this form: { ‘trajectory’: []}

A J

Given the selected trajectory 7, our motion planner generates
the corresponding robot action a to follow it. The VLM is
re-prompted each time it returns a response. Although our VLM-
based trajectory selector operates at a relatively low frequency,
i.e., every 2 to 4 seconds, the trajectory generator efficiently
produces 10 m trajectories, ensuring the latency remains man-
ageable.

IV. EXPRIMENTAL RESULTS

In this section, we present the implementation details and the
experimental results of our approach.

A. Implementation Details

Our approach is tested on a Clearpath Husky equipped with
a Velodyne VLP16 LiDAR, a Realsense D435i camera, and a
laptop with an Intel i7 CPU and an Nvidia GeForce RTX 2080
GPU. We use CVAE with an attention mechanism to generate
multiple trajectories [6] (approximately 10 m each) and use GPT-
4V [37] to select the best traversable trajectory.

The training dataset [38] for our CVAE-based trajectory gen-
eration model contains three parts: 1) LiDAR point cloud and
robot velocities, 2) binary traversability maps, shown in the right
column of Figs. 4 and 5, 3) randomly generated diverse targets
with the shortest ground truth trajectories to the targets. The
binary traversability map is constructed from LiDAR points and
is used only for training and evaluation. The map is not used
during inference.

To validate VL-TGS, we present qualitative and quantitative
results compared with MTG [6], VINT [29], NoMaD [28],
PIVOT [22], and CoNVOI [35]. We evaluate the performance
in four challenging benchmark scenarios:
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Qualitative Results: The top row shows the generated trajectories using all the methods, MTG [6] in green, VINT [29] in blue, NoMaD [28] in orange,

PIVOT [22] in cyan, CoNVOI [35] in purple, and VL-TGS in red. The bottom row shows the candidate trajectories in gray marked with numbers and the selected
trajectory in red using VL-TGS. VL-TGS can generate and select a trajectory that is both geometrically and semantically feasible.

® Flower bed: A robot navigating a paved area next to a
flower bed. The robot must stay on the paved path and
avoid entering the flower bed.

¢ Curb: A robot navigating on a sidewalk, which is distinctly
separated from the roadway by a curb. The robot must stay
on a sidewalk or select a traversable trajectory to go around
the curb.

e Crosswalk: A robot crossing the street. The robot must
stay on the crosswalk when crossing the street.

¢ Behind the corner: When the target is behind an obstruc-
tion, and there is a large open space ahead, the straight path
may lead to an obstacle. The robot must choose a trajectory
to navigate around the corner.

These scenarios pose challenges for navigation without se-

mantic understanding, yet they are common in human-centered
environments.

B. Qualitative Results

Fig. 3 shows the resulting robot trajectories corresponding to
six different approaches in four different scenarios. The upper
row shows the trajectories generated by all the comparison
methods including ours and the lower row shows the results of
VL-TGS with the candidate trajectories (gray) and the selected
one (red).

As MTG relies solely on LiIDAR’s geometric data, it is unable
to deal with traversability differences in flower beds, curbs,
and crosswalks, where structure alone provides little distinction.
Also, in the corner case where the goal is located around a bend
or behind a structure, MTG tends to fail by attempting to cut
through rather than effectively navigating around the structure.
The performances of VINT and NoMaD heavily depend on the
quality of pre-built topological maps. While they perform well
when following straight paths with distinct visual features, such
as a crosswalk, they often struggle in environments with turns
or significant scene variations. While PIVOT selects the most
semantically feasible trajectory from the given candidates, it
does not explicitly detect geometric information and its random
trajectory generation disregards both geometric and semantic
information, potentially resulting in no viable options for the
VLM to choose from. Compared to other methods, CoNVOI

generally produces trajectories that are both geometrically and
semantically feasible. However, its zigzag motion results in non-
smooth robot movements. As shown in the bottom row of each
scenario in Fig. 3, our approach produces diverse trajectories
and selects the best one that is traversable and contextually
appropriate.

C. Quantitative Results

To further validate VL-TGS, we evaluate the methods using

two different metrics:

e Traversability: The ratio of the generated trajectory lying
on a traversable area. The binary traversability map, ini-
tially generated using LiDAR, is used for evaluation. This
metric is calculated as:

M
tr(A,7) = Z (A, W), Wy, €T, ©)

m=1

where c(-, -) tells if the waypoint w,, is in the traversable
area A.
¢ Fréchet Distance w.r.t. Human Tele-operation: Fréchet
Distance [39] is one of the measures of similarity be-
tween two curves. We measure the similarity between the
trajectories generated by the methods and the trajectory
tele-operated by human.
A lower distance indicates a higher degree of similarity.
Table I reports the results averaged over 20 different frames,
with five repetitions for each frame, scenario, and method. Fig. 3
shows one of the examples. In the Input column, L indicates
LiDAR point cloud and I indicates RGB images. While MTG,
ViNT, NoMad, and PIVOT rely on a single sensory input, CoN-
VOI and VL-TGS utilize both LiDAR point clouds and RGB
images. The results demonstrate that VL-TGS outperforms other
state-of-the-art approaches in most of the cases. Specifically, we
achieve at least 3.35% and at most 47.74% improvement in terms
of average traversability, and at least 19.62% and at most 40.99%
improvement in terms of average Fréchet distance. Overall,
the average improvement rates are approximately 20.81% for
traversability and 28.51% in Fréchet distance.
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TABLE I
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QUANTITATIVE RESULTS: COMPARISONS WITH STATE-OF-ART METHODS

Metric Method Input Scenario
Flower bed Curb Crosswalk Corner
MTG [6] L 58.19 £ 16.65 67.12 £ 1565 61.82 £ 1095 44.71 £+ 18.35
Travers- ViNT [29] I 63.62 £ 1849  78.37 £ 17.94 84.78 + 3.16 4495 £+ 17.16
ability NoMaD [28] 1 75.64 £ 15.04 83.13 £ 10.04 79.24 £ 1336 77.38 £ 18.59
%) 1 PIVOT [22] I 64.75 £ 19.63 79.58 £ 12.86 76.78 £ 10.41  68.66 £+ 15.76
CoNVOI [35] I+L 81.10 £+ 9.98 75.68 + 12.86  86.24 4+ 12.63  88.46 + 11.45
VL-TGS (Ours) I+L 87.22 + 10.27 89.93 + 7.11 87.44 + 9.78 78.00 £+ 7.79
MTG [6] L 6.61 £ 1.91 8.40 + 6.30 10.42 £+ 2.53 9.93 + 3.04
Fréchet ViNT [29] I 10.43 £ 2.92 10.78 £ 3.08 8.94 + 2.29 12.71 £ 243
Distance NoMaD [28] I 7.65 £+ 3.32 8.71 + 3.53 11.87 £ 2.99 9.62 £ 2.60
(m) | PIVOT [22] 1 8.41 + 1.85 7.86 £ 1.55 10.53 £ 3.00 948 + 3.15
CoNVOI [35] I+L 11.64 £+ 0.47 12.24 £+ 1.12 11.33 £ 1.26 12.36 £ 2.15
VL-TGS (Ours) +L 527 £ 1.65 7.93 + 1.28 6.38 £ 2.95 8.49 + 2.29

The bold values indicate the best-performing metrics for each scenario.

In Table I, we observe that MTG produces very low results in
terms of traversability. This is not only because our benchmark
scenarios were selected based on scenarios that are difficult to
detect with LIDAR, but also because MTG often fails to consider
traversability while focusing on optimality to the goal. In terms
of Fréchet distance, MTG and VL-TGS produce good results
because they output smooth trajectories similar to a human-
operated trajectory we compare against. In contrast, CONVOI
generates a linear trajectory that differs significantly from typi-
cal human-operated trajectories, resulting in a lower similarity.
CoNVOI generates short trajectories using only two waypoints,
reducing the likelihood of waypoints landing in non-traversable
areas and leading to a high traversability result. However, in
practice, intermediate points may still fall into non-traversable
regions. Both VINT and NoMaD are image-based navigation
approaches, but NoMaD outperforms ViNT in 3 out of 4 cases in
terms of traversability and Fréchet distance. While both perform
well in straight-line following scenarios (e.g., crosswalks), they
tend to go off-course when robots are taking turns or the scenar-
ios are dynamic. Additionally, since some of our flower bed and
curb scenarios included smooth turns, their variance is notably
high. As PIVOT generates random straight-line candidates, its
performance is inconsistent, exhibiting high variation in results.
The result demonstrates that VL-TGS generates human-like tra-
jectories in human-centered environments while ensuring good
traversability.

D. Ablation Studies

To evaluate the capability of different components of our inno-
vations, we compare VL-TGS with two different settings. First,
we compare by removing our CVAE-based trajectory generator.
Instead, we randomly generate trajectories. This approach aligns
with the method utilized by PIVOT, but we omit their iterative
questioning mechanism as part of our ablation study. Second,
we compare by removing our VLM-based trajectory selector.
Instead, we select a trajectory by using a heuristic to select
the shortest travel distance to the goal, which aligns with the
approach, MTG.

Ablation on Trajectory Generator: Fig. 4 illustrates the
ablation study to evaluate the effectiveness of our CVAE-based
trajectory generator. The red lines and numbers are the inputs
given tothe VLM. The green line indicates the selected trajectory
by the VLM. PIVOT randomly generates the sub-goal targets

(b) PIVOT (a) CoNVOI

(¢) VL-TGS

=== Candidates === Final Trajectory

Fig. 4. Ablation Study on the Trajectory Generator: The left shows the
generated candidate trajectories (red) and the selected trajectory (green) in the
robot-view image. The right shows the top-down view image of the traversability
map. The cyan color represents the final selected trajectory, and the yellow
color represents the human-driven trajectory. Compared with CoNVOI [35] and
PIVOT [22], VL-TGS generates the trajectory closest to the human-driven one,
which keeps the robot on a safe pavement surface.

and linearly connects them. We randomly generate 10 endpoints
that are within 5 m to 15 m ahead and then linearly connect the
points to generate trajectories. It represents the approach of a
VLM-based trajectory selector without a CVAE-based trajectory
generator. Because the target is randomly generated, it often fails
to generate good candidate trajectories. We also compare with
CoNVOI, which adopts a different approach to generating can-
didates for the VLM. CoNVOI marks obstacle-free regions with
numerical labels, employs the VLM to select suitable labels, and
connects them with straight lines to form a trajectory. However,
while the marked regions are obstacle-free, this method does not
consider the waypoints between the labels. Consequently, the
generated trajectories may intersect obstacles, as demonstrated
in Fig. 4(b). VL-TGS utilizes the strengths of the CVAE-based
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(a) MTG

(b) VL-TGS

=== Candidates === Final Trajectory

Fig.5. Ablation Study on the Trajectory Selector: Compared with MTG [6],
which selects trajectories based on the shortest distance heuristic, VL-TGS se-
lects the trajectory closer to human-like decision-making, going around the large
obstruction.

TABLE II
REAL WORLD EXPERIMENT RESULTS

Method Number of Travel Travel
Failures |  Distance (m) | Time (sec.) |
MTG [6] 8 111.65 201
NoMaD [28] 6 100.79 168
CoNVOI [35] 13 115.77 257
VL-TGS (Ours) 4 97.53 151

trajectory generator to produce high-quality candidates for the
VLM to evaluate and select from. The study highlights the
critical role of having high-quality candidate trajectories, em-
phasizing the significance of an effective trajectory generator.

Ablation on Trajectory Selector: Fig. 5 illustrates the ab-
lation study to evaluate the effectiveness of our VLM-based
trajectory selector. MTG uses a CVAE-based approach to gen-
erate multiple trajectories and select the optimized trajectory
based on a heuristic, the distance to the goal. It represents a
CVAE-based trajectory generator without a VLM-based trajec-
tory selector. When comparing MTG and VL-TGS, MTG gener-
ates a traversable trajectory but often overlooks small, dynamic
obstacles such as humans. Additionally, when the target goal
is located behind a building, MTG attempts to cut through the
building, generating the shortest trajectory to the goal, whereas
VL-TGS selects a trajectory that appropriately navigates around
it. The study highlights the importance of the trajectory selector.
Rather than relying on a heuristic to choose from candidate tra-
jectories, our VLM-based trajectory selector enables human-like
decision-making, driven by the robot’s visual perception of the
environment.

E. Real Robot Experiment

In order to demonstrate our approach in the real world, we
performed experiments in the real world. Fig. 1 and Table II show
the result of our robot experiments, showcasing a navigation task
that incorporates all four scenarios. Each method was evaluated
in a single run, and failures were counted whenever human

5797

intervention was required to recover the robot. The supplemen-
tary video further highlights the resulting robot motions and
compares them with other methods.

In our real robot experiments, we use GPS data to determine
both the current robot position and the target goal, which is
located approximately 100 m away, positioned behind a building
obstruction. To navigate toward the goal, our approach contin-
uously generates 10 m trajectories in a recursive manner. These
generated trajectories are then executed using the Dynamic Win-
dow Approach (DWA) [40], ensuring smooth and adaptive mo-
tion planning. We compare our method against three alternative
approaches: MTG, NoMaD, and CoNVOI. VL-TGS exhibits
the least number of failures while achieving the shortest travel
distance and time.

F. Discussions

Low Frequency of Online Large VLMs: A notable lim-
itation of using large VLMs for navigation is their relatively
low operational frequency, with outputs typically taking 2 to 4
seconds in our experiments. This latency makes them unsuitable
for high-frequency real-time decision-making. However, our
approach mitigates this issue effectively by generating relatively
long trajectories of approximately 10 m, reducing the need for
frequent updates. This allows the robot to continue moving
smoothly without waiting for constant re-evaluation. Addition-
ally, the motion planner ensures the robot continues to follow the
selected trajectory while waiting for the VLM’s decision. This
design allows us to leverage the VLM’s contextual reasoning
capabilities without compromising navigation reliability. Fur-
thermore, the improvements in VLM processing speed could
further enhance system responsiveness.

More Challenging Scenarios: Although our benchmark sce-
narios focus on stationary environments, our approach is capable
of handling dynamic scenarios involving moving obstacles. As
illustrated in Fig. 5, our CVAE-based trajectory generator pro-
duces traversable candidate trajectories when evaluated against
atraversability map. However, it often overlooks small, dynamic
obstacles, such as humans. To complement this, our VLM-based
trajectory selector incorporates such factors to identify and select
feasible trajectories. Furthermore, while the VL-TGS module
generates and selects a trajectory, the underlying motion planner
ensures that the robot adheres to it while dynamically adjusting
its motion in response to unexpected obstacles in real time. We
employ the DWA as the motion planner for our experiments, but
this can be replaced with any other local planning algorithm. In
this letter, our primary focus is to demonstrate that VLM can
effectively handle human-centered environments that require
contextual understanding, such as pedestrian walkways and
crossings, ensuring that navigation decisions align with social
and environmental cues. We establish our benchmark to reflect
these challenges.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose VL-TGS, a novel multi-modal Trajectory Gen-
eration and Selection approach for mapless outdoor navigation.
VL-TGS integrates a CVAE-based trajectory generation method
with a VLM-based trajectory selection process to compute geo-
metrically and semantically feasible, human-like trajectories in
human-centered outdoor environments. Our approach achieves
a20.81% improvement in traversability and a 28.51% improve-
ment in similarity to human-operated trajectories on average.
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Our method has a few limitations. Since VL-TGS relies on
VLM, its performance can depend on the robustness of the VLM.
However, with the ongoing improvements in VLM technology,
it is expected that the robustness of our approach will also
improve. Furthermore, our trajectory generation method can
be substituted with more advanced approaches in the future,
offering the potential for further performance enhancements.
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