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Abstract— Autonomous driving in off-road environments
presents significant challenges due to the dynamic and un-
predictable nature of unstructured terrain. Traditional kin-
odynamic models often struggle to generalize across diverse
geometric and semantic terrain types, underscoring the need for
real-time adaptation to ensure safe and reliable navigation. We
propose VertiAdaptor (VA), a novel online adaptation framework
that efficiently integrates elevation with semantic embeddings
to enable terrain-aware kinodynamic modeling and planning
via function encoders. VA learns a kinodynamic space spanned
by a set of neural ordinary differential equation basis functions,
capturing complex vehicle-terrain interactions across varied
environments. After offline training, the proposed approach
can rapidly adapt to new, unseen environments by identifying
kinodynamics in the learned space through a computationally
efficient least-squares calculation. We evaluate VA within the
Verti-Bench simulator, built on the Chrono multi-physics en-
gine, and validate its performance both in simulation and on
a physical Verti-4-Wheeler platform. Our results demonstrate
that VA improves prediction accuracy by up to 23.9% and
achieves a 5X faster adaptation time, advancing the robustness
and reliability of autonomous robots in complex and evolving
off-road environments.

I. INTRODUCTION

Off-road autonomous navigation represents one of the
most challenging frontiers in robotics, where vehicles must
traverse complex, unstructured environments characterized
by varying terrain properties, obstacles, and dynamic con-
ditions. State-of-the-art off-road perception and planning
systems often degrade under distribution shift inevitable in
real-world enviornments [1], [2]. As a result, reliable off-road
navigation requires both enhanced terrain understanding and
online kinodynamics adaptation to accommodate changing
vehicle-terrain interactions [3].

To improve terrain awareness, many systems augment
geometric maps with semantics information. Elevation map-
ping has emerged as an efficient geometric representation
for ground robots, with mature real-time implementations
available [4]. In parallel, new off-road datasets and platforms
enable robust terrain semantic segmentation that extends
beyond urban domains [5]. Recent advances in learning-
based traversability estimation [6]–[8] and vision models
that couple geometry with semantics (e.g., bird’s-eye view
traversability [9] and multi-head terrain prediction [10])
further strengthen the integration of elevation and semantics
in off-road settings. Nevertheless, unifying elevation and
semantics with real-time adaptation within a single frame-
work remains an open challenge, due to the large space and
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Fig. 1: Facing a variety of constantly changing elevation
and semantics on vertically challenging, off-road terrain,
autonomous mobile robots need to quickly adapt their terrain
understanding through online kinodynamics adaptation to
achieve safe and efficient navigation.

variability of the elevation and semantic input and limited
onboard computation.

To address this limitation, meta-learning offers a promis-
ing path toward rapid online adaptation. Meta-trained kino-
dynamic models can be quickly updated with a small amount
of recent data to track changes such as new terrain or partial
system failures [11]. Recent advances in continuous-time
neural modeling, particularly neural Ordinary Differential
Equation (ODE), provide flexible function classes for system
dynamics while retaining ODE structure for integration and
control [12]. When combined with neural ODE, function
encoders have emerged as a powerful technique to learn
compact representations of complex function spaces [13].
These methods enable efficient adaptation to new scenarios
by parameterizing models within a learned basis function
space, allowing for rapid online adaptation without extensive
recomputation.

To push the boundaries of off-road wheeled mobility on
diverse and evolving vertically challenging terrain (Fig. 1),
we present VertiAdaptor (VA), a novel online adaptation
framework that efficiently integrates elevation with semantic
embeddings for terrain-aware kinodynamic modeling. Our
contributions can be summarized as follows:

• A unified terrain representation using the Sliced Wasser-
stein Autoencoder (SWAE) [14] to efficiently obtain
elevation and semantic embeddings beneath the vehicle;

• VA, the first SE(3) kinodynamics online adaptation
framework based on complex off-road elevation and se-
mantics that enables rapid kinodynamic model updates
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Fig. 2: VertiAdaptor Overview: The offline training phase combines elevation and semantic embeddings to train neural
ODE basis functions, i.e., state change rates {g1, g2, . . . , gk} integrated into state changes {G1, G2, . . . , Gk}. The online
adaptation phase uses a small set of new data to identify the coefficients, enabling kinodynamics to be represented as a
linear combination of basis functions.

through efficient least-squares optimization (Fig. 2);
• An extensive autoregressive evaluation of different

adaptation techniques, including Multi-Layer Percep-
tron (MLP) fine-tuning, Model-Agnostic Meta-Learning
(MAML) [15], neural ODE [12], and VA, for off-road
kinodynamic modeling; and

• Empirical validation of our method in simulated en-
vironments and on a physical Verti-4-Wheeler plat-
form [5], showcasing better performance over baselines.

II. RELATED WORK

In this section, we review related work in off-road mobility
using kinodynamic models, as well as online adaptation
techniques to mitigate distribution shift.

A. Off-road Mobility

Kinodynamic modeling has been fundamental in robot
motion planning, as it explicitly accounts for both kine-
matics and dynamics [16]. However, classical models suffer
from significant limitations when applied to diverse, real-
world, off-road enviornments. The assumption of known,
constant terrain parameters rarely holds in practice, and
the models often fail to capture nonlinear effects such
as dynamic loading, tire deformation, and complex multi-
terrain interactions. Considering the limitations of classical
approaches, learning-based methods for off-road mobility
have emerged as a promising alternative [3]. Prior work
has explored a variety of strategies, such as learning end-
to-end policies [17], data-driven kinodynamic models [18]–
[22], parameter adaptation [23]–[27], and cost functions [28],
[29]. These approaches have improved generalization across
terrain compared to purely classical methods. However, most
approaches assume that the learned dynamics remain static
after training, which limits their effectiveness in environ-
ments where vehicle–terrain interactions can change rapidly.

B. Meta Learning in Robotics

Meta-learning, or “learning to learn”, has significant ad-
vancement in robotics as a means of enabling agents to adapt
quickly to new tasks or environments with limited data. Early
approaches, such as MAML [30], demonstrate that policies

and models can be initialized to adapt rapidly with just a
few gradient updates. Such property is particularly useful
for robotics where real-world data collection is expensive.

Beyond episodic meta-learning, online adaptation meth-
ods have been proposed to handle dynamic environments.
Methods such as online meta-learning [30] and gradient-
based adaptation with memory [31], [32] allow robots to
continually update their models while retaining knowledge
of past tasks [32]. In off-road settings, where vehicle–terrain
dynamics shift rapidly, efficient online adaptation remains
critical for maintaining performance and safety. However,
gradient-based adaptation methods often suffer from com-
putational overhead and convergence issues during onboard
deployment, especially when facing complex kinodynamic
changes due to varying off-road elevation and semantics.

The concept of function encoders [13] represents a promis-
ing direction for kinodynamic model adaptation. By learning
a basis of function encoders that span the space of possible
dynamics, these methods enable rapid adaptation through
efficient linear combinations. Nevertheless, previous function
encoder approaches are primarily designed for 2D space with
motion constrained to SE(2), which no longer holds when
confronting off-road environments, especially vertically chal-
lenging terrain. Extending to SE(3), VA also efficiently
incorporates underlying elevation and semantic information,
which are crucial for terrain-aware online adaptation.

III. METHOD

We first formulate the problem of forward kinodynamic
modeling for wheeled mobility on vertically challenging
terrain. We then describe how to efficiently obtain elevation
and semantic embeddings beneath the vehicle. Finally, we
introduce our VA method which integrates these embeddings
to enable rapid kinodynamic model updates via least-squares
optimization.

A. Problem Formulation

Most ground navigation problems in robotics are defined
in the planar state space X ⊂ SE(2), where only 2D position
and heading are considered. However, off-road mobility
on vertically challenging terrain requires six Degrees of



Freedom (DoFs) and needs to extend the state space to
X ⊂ SE(3). We define the robot state at time t as

xt =
[
xt, yt, zt, ϕt, φt, ψt

]
∈ SE(3),

where xt, yt, zt represent the vehicle position in 3D, and
ϕt, φt, ψt denote roll, pitch, and yaw. Control inputs ut ∈ U
correspond to vehicle steering and speed.

The vehicle’s kinodynamic behavior can be modeled in
continuous time as an ODE:

ẋt = fθ(xt,ut, et),

where et ∈ E denotes the environment embedding that
combines terrain elevation and semantic information beneath
the vehicle. For compatibility with the Model Predictive Path
Integral (MPPI) [33] sampling-based control framework, we
adopt a discretized form:

xt+1 − xt =

∫ t+∆t

t

fθ(x(τ),u(τ), e(τ)) dτ,

with fixed time step ∆t. The function fθ is parameterized
by a set of neural ODEs [12]. The goal is to approxi-
mate forward kinodynamic model fθ that captures nonlinear
vehicle–terrain interactions while supporting efficient online
adaptation in unseen terrain.

B. Elevation & Semantic Embeddings

Unlike on-road driving, the underlying elevation and se-
mantics play a vital role in determining off-road kinodynam-
ics on vertically challenging terrain. For example, a large
boulder may cause rollover, while deformable sand may get
the vehicle stuck. Therefore, our environment embedding et
unifies geometric and semantic information

et = [eelev, esem] ∈ Rde+ds ,

where eelev ∈ Rde represents local elevation features be-
neath the vehicle, and esem ∈ Rds encodes semantic ter-
rain properties such as friction and deformability. In our
implementation, elevation is represented as 2.5D elevation
maps, while semantic information is provided through bird’s-
eye view RGB images, both aligned with the vehicle’s
heading. To facilitate efficient modeling and adaptation, we
use SWAE [14] to project raw elevation and semantic maps
into a compact latent space.

C. Function Encoder for Neural ODEs

To create accurate kinodynamic models across diverse
terrain, we represent the forward kinodynamics as a linear
combination of k neural ODE basis functions:

xt+1 − xt =

k∑
i=1

αi

∫ t+∆t

t

gi
(
x(τ),u(τ), e(τ)

)
dτ

=

k∑
i=1

αiGi

(
xt,ut, et; θi

)
,

where Gi(·; θi) are a set of learnable basis functions parame-
terized by neural ODEs and θi, and α = [α1, α2, . . . , αk]

T ∈
Rk are the coefficients that define the contribution of each

basis function. gi is the basis function state change rate to
be integrated into Gi. Each Gi outputs the predicted state
change. In practice, we approximate the integral Gi using the
fourth-order Runge-Kutta (RK4) [34] numerical integrator.

When the vehicle encounters an unseen terrain, we collect
a small buffer of recent trajectories:

Dnew = {(xl,ul, el,xl+1)}Ml=1,

where M is the limited number of online samples. Given the
pre-trained basis functions {Gi}ki=1, the online adaptation
task becomes a least squares problem to find optimal coef-
ficients α∗. The optimal coefficients α∗ can be computed
efficiently in closed form as the solution:

α∗ =

⟨G1, G1⟩ · · · ⟨G1, Gk⟩
...

. . .
...

⟨Gk, G1⟩ · · · ⟨Gk, Gk⟩


−1 ⟨y,G1⟩

...
⟨y,Gk⟩

 , (1)

where Gi denotes the i-th basis function evaluated on the
new data, y is the target state change, and ⟨·, ·⟩ represents
the vector inner products. This least-squares solution enables
rapid online adaptation with a maximum time complexity of
O(k3), far more efficient than gradient-based retraining.

D. VertiAdaptor (VA)

The VA framework consists of two components: (i) offline
training, where neural ODE basis functions are learned
across diverse environments, and (ii) online adaptation,
where coefficients are updated repeatedly to adapt to new
unseen terrain.

1) Offline Training: We employ a multi-step rollout ap-
proach to learn basis functions. First, with fixed basis func-
tions, coefficients are computed by an example set. Second,
the computed coefficients are used on a query set to output
state changes, which are compared against ground truth to
compute loss and update basis functions.

Algorithm 1 details this procedure. In each training itera-
tion, we sample F environments and N complete trajectories
per environment from the training dataset D (line 6). Each
environment’s data are split into (the first Nex) example
trajectories for coefficient computation and (the remaining
Nq) query trajectories to learn basis functions (lines 8-9).
For each environment, coefficients α∗(f) are computed using
ground truth example trajectories via Eqn. (1) (line 10).
S multi-step rollouts of length Tpred then occur for each
query trajectory n in the nested loops (lines 11-23), where
each neural ODE basis function Gi output is computed
via RK4 integration (line 17) and linearly combined using
environment-specific coefficients (line 19). The training loss
accumulates prediction errors across all rollout steps t,
rollouts s, and query trajectories n (line 20) and becomes

L =

Nq∑
n=1

S∑
s=1

Tpred∑
t=1

∥∥xpred
t,s,n − xgt

t,s,n

∥∥2
2
,

where xpred
t,s,n and xgt

t,s,n denote the predicted and ground truth
state at time t on rollout s in trajectory n respectively. This



Algorithm 1 Multi-Step Training for VA

1: Input: Training dataset D, number of basis functions k,
learning rate α, prediction horizon Tpred, rollout step size
∆t

2: Output: Neural ODE basis functions G1, G2, . . . , Gk

3: Initialize each basis function state change rate gi as a
neural network with parameters θi, for i = 1, . . . , k

4: while not converged do
5: L = 0
6: Sample F environments and N trajectories per envi-

ronment from D
7: for each environment f ∈ {1, . . . , F} do
8: T (f)

ex ← first Nex trajectories
9: T (f)

query ← remaining Nq trajectories
10: Compute coefficients α∗(f) = [α

∗(f)
1 , . . . , α

∗(f)
k ]

using T (f)
ex via Eqn. (1)

11: for each query trajectory n ∈ T (f)
query do

12: for each sampled rollout s ∈ {1, . . . , S} do
13: Initialize xpred

0 ← initial state of rollout s
14: Let [u0,u1, . . . ,uTpred−1] be the control se-

quence for rollout s
15: for t = 1, . . . , Tpred do
16: for i = 1, . . . , k do
17: Gi(·)← RK4(gi,x

pred
t−1,ut−1,∆t)

18: end for
19: xpred

t ← xpred
t−1 +

∑k
i=1 α

∗(f)
i Gi(·)

20: L← L+ ∥xpred
t − xgt

t ∥2
21: end for
22: end for
23: end for
24: end for
25: θ = {θ1, . . . , θk} ← θ − α∇θL
26: end while

multi-step loss encourages accurate long-term predictions.
After convergence, the basis functions are frozen and ready
for online adaptation.

2) Online Adaptation: During deployment, VA contin-
uously adapts the coefficients α every 5 seconds using
recent trajectories. This continuous adaptation mechanism
enables VA to maintain accurate kinodynamics as terrain
conditions evolve during navigation. The adapted coefficients
are immediately used for forward prediction in the MPPI
system, enabling real-time response to evolving terrain while
preserving the generalization benefits of the pre-trained basis
functions.

IV. IMPLEMENTATIONS

In this section, we describe the implementation details
of dataset collection, preprocessing, the kinodynamic model
architecture within the VA framework, and other baselines
designed for adaptation to vertically challenging terrain.

A. Datasets and Preprocessing

Based on the Verti-Bench [35] simulator, we construct
100 off-road environments, each spanning 129m×129m with

TABLE I: Hyperparameters for VA

Parameter Value

Model Architecture
Number of basis functions (k) 24
Hidden dimension ⌊64

√
k⌋ = 313

Activation function ReLU
Output dimension 6

Training Configuration
Learning rate 10−3

Optimizer Adam
Learning rate scheduler Cosine annealing
Total training steps 1000

Data Sampling
Environments per batch (F ) 5
Trajectories per environment (N ) 10
Example trajectories (Nex) 4
Query trajectories (Nq) 6
Sequences per trajectory (S) 2
Prediction horizon (Tpred) 8

Integration
RK4 time step (∆t) 0.1
Example batch size 256
Regularization (λ) 10−3

0.1m pixel resolution. The environments are evenly dis-
tributed across low, medium, and high elevation levels. Each
environment contains seven rigid (grass, wood, gravel, dirt,
clay, rock, and concrete) and three deformable terrain seman-
tic classes (snow, mud, and sand). Rigid terrain is modeled
with a normal distribution of friction coefficients and a fixed
restitution coefficient of 0.01, while deformable terrain is
assigned physics parameters (cohesive effect, soil stiffness,
and hardening effect) at three levels of deformability: soft,
medium, and hard.

Elevation and RGB semantic patches are extracted from a
128×128 pixel region beneath and aligned with the vehicle
at 10 Hz. Elevation values are centered at the vehicle’s
current altitude. For feature extraction, we employ the SWAE
generative model to embed elevation and semantic patches
into a 64-dimensional latent space, preserving both geomet-
ric and semantic information for downstream kinodynamic
modeling.

Since the mobile robot’s kinodynamics are invariant un-
der translation and rotation, we adopt a gravity-aligned
body frame to enhance data efficiency and improve model
accuracy. For each training sample, current state is de-
noted as: [0, 0, 0, ϕt, φt, 0, eelev, esem] ∈ R22, where the
position components (x, y, z) and yaw ψ are zeroed (and
therefore omited), while roll ϕt and pitch φt retain their
world-frame values. The terrain embeddings eelev ∈ R8

and esem ∈ R8 are derived from the SWAE encoder
and further compressed by a 3-layer MLP. The corre-
sponding next state represents the change in vehicle pose:
[∆x,∆y,∆z, ϕt+1, φt+1,∆ψ, eelev, esem] ∈ R22, where
(∆x,∆y,∆z,∆ψ) represent the body-frame relative motion,
and (ϕt+1, φt+1) are the absolute roll and pitch angles at the
next timestep. We omit eelev ad esem in the prediction since
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Fig. 3: Model Prediction Error of VA and three Baselines: Average One-Step 6-DoF Positional and Angular Error (Left);
Prediction Error vs. Prediction Step (Middle and Right).

they can be acquired from perception.
The vehicle executes sinusoidal random exploration across

all environments to collect training data. Steering follows
usteer(t) = sin(ωst) with ωs ∼ U(0.1, 0.5) Hz, combined
with speed uspeed(t) = vc + A sin(ωvt), where ωv ∼
U(0.1, 2.5) Hz. The speed amplitude A and center velocity vc
are determined such that the minimum speed lies in U(0, 2)
m/s and maximum speed is 3 m/s. This exploration strategy
ensures diverse vehicle-terrain interactions, providing rich
datasets for training the VA framework.

B. Model Architecture

Each neural ODE basis function gi is a 4-layer MLP with
{24, 313, 313, 313, 313, 6} neurons and ReLU activations.
The network takes a concatenated state–action vector as
input and outputs a 6-DoF state derivative. The hidden
dimension is scaled with the number of basis functions as
h = ⌊64

√
k⌋ to balance model capacity and computational

cost. For coefficient computation, we employ a memory-
efficient batched least-squares solver that processes example
sets in mini-batches of size 256. This design enables han-
dling large datasets while maintaining numerical stability. A
regularization term of λ = 10−3 is applied to improve the
numerical stability of the Gram matrix inverse in Eqn. (1).

The model is trained using multi-step rollout with gradient
accumulation to balance memory efficiency and training
stability. As shown in Table I, the cosine annealing schedule
gradually decays the learning rate from 10−3 to 10−5 over
1000 training steps, promoting stable convergence and fine-
grained parameter updates.

C. Baselines

VA is compared against three baseline methods: MLP,
first-order MAML, and Neural ODE (NODE).

MLP employs a standard feedforward neural network
with the same 4-layer architecture as VA’s basis functions.
For online adaptation, we fine-tune only the last layer to
reduce computational overhead while retaining adaptation
capability. Given example data from a new terrain, the model
performs 40,000 gradient steps until convergence using the
Adam optimizer with a learning rate 5×10−3, minimizing the
Mean Squared Error (MSE) between predicted and ground-
truth state changes until convergence.

First-order MAML is designed to learn initialization pa-
rameters that enable rapid adaptation. During offline training,
the model learns across diverse terrain distributions using the
standard MAML objective, allowing it to quickly adapt to
new conditions. For adaptation, the meta-learned parameters
are fine-tuned for 20,000 gradient steps to converge with
an inner learning rate 5 × 10−3. However, gradient-based
updates remain computationally expensive and too slow to
support real-time model inference in navigation systems such
as MPPI.

To overcome this challenge, Neural ODE shares the same
network architecture but integrates its outputs using the RK4
numerical method. By modeling kinodynamics in continuous
time, Neural ODE provides smoother state transitions and
more stable predictions. During offline training, the model
learns to predict state derivatives that are integrated over
a fixed time step of ∆t = 0.1s. For online adaptation, all
network parameters are fine-tuned with only 500 gradient
steps to converge. The reduced adaptation steps, compared
to MLP and MAML, reflect the improved sample efficiency
from continuous-time kinodynamic modeling, However, the
method still relies on iterative optimization, limiting real-
time performance, while VA only uses a least-squares solver.

V. EXPERIMENTS

We compare kinodynamics accuracy and simulated nav-
igation performance in Verti-Bench [35], contrasting VA
against the three baselines. Additionally, we compare kino-
dynamic predictions of VA and MAML using real-world data
collected from a physical 1/10th-scale open-source Verti-4-
Wheeler robot [5] in an off-road testbed.

A. Prediction Accuracy

We evaluate the accuracy of VA against all baselines
in unseen off-road environments with high elevation level.
As shown in Fig. 3 left, VA achieves the lowest one-step
prediction errors for most 6-DoF state components, with
an overall mean error of 0.1367 compared to Neural ODE
(0.1561), MAML (0.1476), and MLP (0.1626). In particular,
VA outperforms all baselines in rotational states, reducing
roll and pitch error by 3.2% and 22.3% compared to Neural
ODE. For translational states, VA achieves competitive ac-
curacy, with the lowest error in the x direction (0.0969) and
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Fig. 4: 6-DoF Vehicle Trajectories of VA, MAML, and Ground Truth with Increasing Horizon: VA matches Ground Truth
even with a long horizon, while MAML diverges more.

z direction (0.0243) relative to the baselines. These results
indicate that VA is effective at modeling complex rotational
dynamics while remaining robust for translational motions.

Moreover, VA demonstrates lower prediction variance,
reflecting more consistent and reliable performance across
diverse terrain conditions. As shown in Fig. 3 middle and
right, when predictions are rolled out over time, all baselines
experience rapid error growth and increasing uncertainty,
especially for positional states. In contrast, VA maintains
stable and accurate long-term predictions, with slower error
accumulation and smaller uncertainty bounds.

Building on these findings, we further evaluate VA’s
performance across different terrain difficulty levels. The
results in Table II compare the proposed VA framework with
three baselines, Neural ODE, MAML, and MLP, across low,
medium, and high elevation levels.

TABLE II: Baseline evaluations across three terrain difficulty
levels.

Method
MSE ↓ Adaptation Time ↓

Low Medium High Low Medium High

VA (Proposed) 0.177 0.760 2.161 0.309 0.306 0.311
Neural ODE 0.200 0.999 3.128 1.715 1.737 1.734

MAML 0.186 0.814 2.093 11.175 11.366 10.616

MLP 0.214 0.904 2.214 40.889 40.556 40.777

The VA demonstrates superior performance in both ac-
curacy and efficiency. In terms of prediction accuracy, VA
achieves the lowest MSE on low (0.177) and medium (0.760)
elevation levels, outperforming Neural ODE by 11.5% and
23.9%, MAML by 4.8% and 6.6%, and MLP by 17.3% and
15.9%, respectively. On high elevation level, VA achieves
competitive performance (2.161) with only a 3.2% higher
MSE compared to the best-performing MAML (2.093), while
still outperforming Neural ODE by 30.9% and MLP by
2.4%. These results highlight VA’s consistent ability to model
complex vehicle-terrain interactions across varying terrain
difficulty levels.

In terms of adaptation time, VA adapts the fastest, re-
quiring approximately 0.31s, which is over 5X faster than
Neural ODE (∼1.73s) and more than 30X faster than MAML
(∼11s) and MLP (∼40s). This highlights VA’s ability to

achieve both high accuracy and rapid adaptation, effectively
balancing precision and efficiency.

Fig. 4 compares the predicted trajectories from VA and
MAML against the ground truth across different prediction
horizons in the most challenging high elevation terrain. At
horizon 16, both methods closely follow the ground truth. By
horizon 32, while both VA and MAML generally maintain
the correct direction, MAML begins to drift to the left and
VA slightly to the right. By horizon 64, MAML accumulates
substantial error, with its trajectory extending onto rocky
terrain on the left. In contrast, VA continues to closely track
the ground truth.

B. Ablation Studies

We conduct ablation studies to evaluate the contribution
of each key component in VA: (i) elevation embeddings and
(ii) semantic embeddings. Each variant removes one of these
components from the full VA framework:

• VA: The complete VA framework;
• VA w/o semantic: Removes the semantic embeddings.

The model uses only the 6-DoF pose and elevation
information, capturing geometric terrain features but
lacking knowledge about terrain semantics such as
friction or deformability;

• VA w/o elevation: Removes the elevation embeddings.
In this variant, the model relies solely on semantic
embeddings and the 6-DoF pose to capture terrain
interaction, without direct geometric information about
terrain elevation changes; and

• VA w/o both: Uses only the 6-DoF pose without ele-
vation or semantic embeddings. This baseline captures
purely kinodynamic behavior without terrain context,
relying solely on vehicle motion states.

TABLE III: Ablation Study: VA MSE across three terrain
difficulty levels.

Variant
MSE ↓

Low Medium High

VA (Proposed) 0.177 0.760 2.161
VA w/o semantic 0.201 0.761 2.292

VA w/o elevation 0.220 0.840 2.559

VA w/o both 0.177 0.761 3.038



The results in Table III underscore the importance of
both elevation and semantic embeddings within the VA
framework across terrain difficulty levels. On low elevation
terrain, the complete VA framework achieves the lowest
MSE (0.177), outperforming variants w/o semantic (0.201)
and elevation (0.220) embeddings. Interestingly, the VA w/o
both also achieves an MSE of 0.177, indicating that for low
elevation level, basic kinodynamic modeling using only the
6-DoF pose is sufficient to achieve comparable accuracy.
As terrain complexity increases, the impact of elevation em-
beddings becomes more pronounced. On medium elevation
terrain, removing elevation information increases MSE by
10.5%, while removing semantic embeddings causes only
a negligible 0.1% increase, showing that elevation data is
key for capturing geometric variations. On high elevation
terrain, all ablations show clear performance degradation:
removing semantic embeddings increases error by 6.1%,
while removing elevation embeddings causes a much larger
18.4% increase. The VA w/o both suffers the most, with a
40.5% increase in error compared to the full VA framework.
These findings demonstrate that elevation embeddings are
critical for geometric terrain understanding, semantic embed-
dings provide complementary insights for surface properties,
and their combination is essential for robust vehicle-terrain
interaction modeling in challenging off-road environments.

C. Simulated Navigation Performance

VA and the best baseline MAML are integrated into the
MPPI planner, whose navigation performance is evaluated
across terrain difficulty levels using three metrics: (i) number
of successful trials (out of 5), (ii) mean traversal time (of suc-
cessful trials in seconds), and (iii) average roll/pitch angles
with variance (in degrees). We also compare VA adapted
once per new environment (VA∗) and adapted every 5s
(VA†), as well as MAML adapted once (MAML∗), since the
significant computation disallows MAML do adapt online.

TABLE IV: Simulated Navigation Performance: Success
Rate, Traversal Time, Roll, and Pitch. ∗: adapted once, †:
adapted every 5s.

Low Elevation VA∗ VA† MAML∗

Success Rate ↑ 5/5 5/5 4/5
Traversal Time ↓ 31.16s 34.73s 28.90s

Roll ↓ 2.36°±0.06° 2.23°±0.05° 2.61°±0.11°
Pitch ↓ 2.17°±0.04° 1.98°±0.04° 1.97°±0.04°

Medium Elevation VA∗ VA† MAML∗

Success Rate ↑ 3/5 2/5 0/5
Traversal Time ↓ 33.94s 39.98s -

Roll ↓ 5.73°±0.25° 5.06°±0.62° -
Pitch ↓ 4.74°±0.07° 4.17°±0° -

High Elevation VA∗ VA† MAML∗

Success Rate ↑ 4/5 1/5 0/5
Traversal Time ↓ 32.75s 32.29s -

Roll ↓ 9.18°±1.34° 5.83°±- -
Pitch ↓ 5.91°±0.17° 6.24°±- -

Table IV shows that our single adaptation method, VA∗,
achieves the best overall performance, consistently surpass-
ing MAML∗ in success rate. Surprisingly, VA† performs
worse for medium and high elevation levels than VA∗. This
is because VA∗ computes a single set of coefficients that
represent an averaged kinodynamic model after seeing data
sampled from the entire new environment. However, VA†

continuously updates its coefficients based on recent trajec-
tory history, which can lead to mismatch when terrain types
change significantly. As a result, the updated coefficients
may work well for the previous terrain but become poorly
suited when the vehicle encounters entirely new semantic
terrain types. These findings indicate that, while our one-
time adaptation strategy provides greater robustness and
reliability, future work should focus on refining recursive
updates to better handle rapid and frequent terrain changes.

D. Physical Experiment for Sim-to-Real Adaptation

Trained with simulation data from Verti-Bench [35], we
adapt VA and MAML using physical data collected on
real-world, vertically challenging, off-road terrain to test
their sim-to-real adaptation. The real-world dataset includes
driving a Verti-4-Wheeler robot through diverse rocky terrain
in the off-road testbed, as shown in Fig. 1, for 70.3 seconds.
We use 28.1 seconds of data for adaptation and evaluate
and compare the kinodynamic modeling accuracy of VA and
MAML with the rest 42.2 seconds of data.

TABLE V: Physical Experiment Results

Method
MSE ↓

x y z roll pitch yaw

VA (Proposed) 0.014 0.010 0.002 0.066 0.041 0.024

MAML 0.016 0.201 0.003 0.068 0.059 0.025

The physical experiment results in Table V demonstrate
that VA achieves more accurate predictions than MAML
across all DoFs, especially in lateral motion. In particular, VA
significantly reduces the y-direction error by 95% from 0.201
to 0.010, indicating a much stronger ability to model lateral
vehicle kinodynamics on vertically challenging terrain. Both
methods perform similarly in vertical motion (z) and yaw,
but VA achieves lower errors in translational states (x, y) and
orientation states (roll, pitch). These results confirm that VA
can enable terrain-aware, sim-to-real adaptation, improves
real-world prediction accuracy, and provides a more reliable
foundation for navigation in complex off-road environments.

VI. CONCLUSIONS AND LIMITATIONS

We present VA, a novel online adaptation framework for
terrain-aware kinodynamic modeling in off-road environ-
ments. By integrating elevation and semantic embeddings,
VA enables rapid adaptation to unseen terrain through effi-
cient least-squares optimization. Our evaluation demonstrates
that VA improves prediction accuracy by up to 23.9% while



achieving 5X faster adaptation than baselines, effectively
capturing complex vehicle-terrain interactions.

A key limitation of this work is that our adaptation method
updates coefficients once, which may restrict its ability to
handle rapidly changing terrain conditions. In future work,
we plan to explore more robust recursive approaches, such
as recursive least squares, to enable continuous and stable
updates. In addition, elevation and semantic embeddings
are currently combined through simple concatenation, which
may not fully capture rich cross-modal relationships. To ad-
dress this, we aim to investigate advanced fusion techniques,
such as attention mechanisms or cross-modal transformers,
to better integrate geometric and semantic information and
further enhance adaptation performance.
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