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Abstract— Humans excel at efficiently navigating through
crowds without collision by focusing on specific visual regions
relevant to navigation. However, most robotic visual naviga-
tion methods rely on deep learning models pre-trained on
vision tasks, which prioritize salient objects—not necessarily
relevant to navigation and potentially misleading. Alternative
approaches train specialized navigation models from scratch,
requiring significant computation. On the other hand, self-
supervised learning has revolutionized computer vision and
natural language processing, but its application to robotic
navigation remains underexplored due to the difficulty of
defining effective self-supervision signals. Motivated by these
observations, in this work, we propose a Self-Supervised Vision-
Action Model for Visual Navigation Pre-Training (VANP).
Instead of detecting salient objects that are beneficial for tasks
such as classification or detection, VANP learns to focus only on
specific visual regions that are relevant to the navigation task. To
achieve this, VANP uses a history of visual observations, future
actions, and a goal image for self-supervision, and embeds them
using two small Transformer Encoders. Then, VANP maximizes
the information between the embeddings by using a mutual
information maximization objective function. We demonstrate
that most VANP-extracted features match with human navi-
gation intuition. VANP achieves comparable performance as
models learned end-to-end with half the training time and
models trained on a large-scale, fully supervised dataset, i.e.,
ImageNet, with only 0.08% data.

I. INTRODUCTION

In recent years, imitation learning, particularly behavior
cloning [1], has become a leading approach for visual navi-
gation models [2]–[8]. However, the performance of these
models heavily relies on the visual features extracted by
the model’s visual encoder. Although the limited memory
and processing power onboard robots restrict the size of
models deployable in real time, with such limitations we still
need accurate and efficient onboard visual encoders, making
convolutional neural networks (CNNs) more desirable than
larger Vision Transformer models (ViTs) [9].

Training a visual navigation-specific encoder from scratch
requires a large amount of data, leading to high computa-
tional demands and extended training times [10], [11]. To
reduce this computational burden, most approaches use pre-
trained vision models [4], [5]. While these models provide
a decent scene representation, they specialize in extracting
salient features for vision tasks such as object classification
and detection [12]. These features may not always align with
what is crucial for navigation [13]. For example, following
sidewalks, avoiding grass, or navigating around stairs and
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Fig. 1: Comparison of Activation Maps Learned by End-
to-End, ImageNet, and VANP. VANP can extract multi-
ple regions of interest for navigation without downstream
navigation supervision compared to single salient regions by
End-to-End and ImageNet pre-trained models.

guardrails are essential for robots, but these features might
not be captured by encoders trained for generic vision
tasks. Consequently, pre-trained models, like those trained
on ImageNet, can sometimes lead to navigation failures by
focusing on irrelevant distractions [10], [11].

Self-Supervised Learning (SSL) [14]–[17] has shown suc-
cess in various computer vision tasks by extracting general
features adaptable to downstream tasks with/without fine-
tuning. For instance, Deep Neural Networks (DNNs) can be
trained to predict the rotation of an image [18] or to recon-
struct an image from its corrupted/obstructed version [19].
By completing these pretext tasks, DNNs learn to extract
meaningful features from the data, which can be used to
solve downstream tasks such as image classification and
object detection [20]. However, a discrepancy exists between
features extracted from generic models and those specifically
needed for navigation. This leads us to ask the question: can
we train visual encoders that extract only navigation-relevant
features using self-supervision?

Considering both the success of SSL on a variety of
computer vision tasks and the oftentimes mismatched fea-
tures provided by generic SSL models for navigation tasks,
we present Vision-Action Navigation Pretraining (VANP),



a non-contrastive self-supervised approach that completely
relies on a navigation-specific pretext task to train the visual
encoder without the need for negative samples.

The core idea behind VANP is inspired by how humans
navigate in crowded spaces. We do not need to pay attention
to all the people and objects in the scene, but only the
ones that affect our navigation trajectory. To this end, VANP
embeds visual history, future actions, and visual goal as
self-supervision signals and leverages Transformers with
additional context tokens (inspired by Bert [21] and Vi-
sionTransformers [9]) to generate embeddings. Then, VANP
utilizes VICReg [23] as the pretext objective function to
maximize the mutual information between the embeddings.
The trained visual encoder can therefore discard redun-
dant features unnecessary for navigation and focus only on
navigation-relevant regions. For example, Fig. 1 shows the
activation map of the last layer of ResNet-50 [24] trained
with different methods. VANP learns navigation-relevant
visual features with the help of our navigation-specific self-
supervision signals.

Our experimental results suggest that VANP-extracted
features trained on a dataset [25] that only contains 0.08%
samples compared to ImageNet are as informative for a
downstream navigation task as using ImageNet features. The
contributions of this work can be summarized as follows:

• An SSL framework to train a visual encoder for robotic
navigation tasks;

• Insights into what is happening inside CNNs during
navigation using different approaches; and

• A benchmark on short and long-term navigation inter-
action to show the performance of different approaches.

II. RELATED WORK

Recent advances in natural language processing and com-
puter vision, particularly those driven by self-supervised
learning (SSL), motivate our work. In this section, we
first compare common SSL approaches and then categorize
applications of SSL into two groups for robotics and review
their related works.

Self-Supervised Learning: SSL has shown promising
results in recent years by almost reaching the performance
of supervised baselines [15], [23]. Within SSL, two primary
approaches have emerged: contrastive methods and infor-
mation maximization methods. Both methodologies benefit
from the use of the Siamese network architecture [26].
Contrastive methods [14], [27] typically require large data
batches and leverage loss functions designed to explicitly
push dissimilar data points away from the representations
of similar data. Consequently, the performance of these
methods is highly dependent on the quality and quantity of
negative samples [28]. Recent advancements have led to the
development of contrastive approaches that do not necessitate
negative samples for learning effective embeddings. These
methods employ various strategies to achieve comparable
performance, such as BYOL [29], which utilizes a momen-
tum encoder where one head receives a low-pass filtered
version of the other. Alternatively, SimSiam [30] achieves

similar results by halting gradient flow within one of the
heads.

Information maximization methods such as
BarlowTwins [15] maximize the information between
two heads by enforcing the empirical cross-correlation
between the embeddings of both heads to be equivalent to
the identity matrix. Additionally, VICReg [23] incorporates
regularization terms to prevent information collapse,
particularly in scenarios involving multimodal data.
Therefore, VANP leverages VICReg to learn visual features
by maximizing the information between different modalities.

Pre-training for Better Representation: Codevilla et
al. [4] demonstrated the value of pre-trained models for train-
ing better policies in autonomous vehicles. Subsequently,
many works adopted pre-trained computer vision models,
often trained on ImageNet [4]–[7], [22], [31], [32]. However,
general-purpose ”foundation models” pre-trained on pretext
tasks can achieve richer representations, enabling them to
generalize to various downstream tasks with minimal data in
a zero- or few-shot manner [20], [33], [34].

The literature has extensively studied foundation models
for robot manipulation [35]–[40]. For example, R3M [41]
pre-trained a general visual encoder for manipulation tasks
on the Ego4D human video dataset [42], while CLIPort [43]
leveraged the CLIP model [44] to enable language in-
structions for manipulation. Dadashi et al. proposed AQua-
Dem [35], a framework to learn quantized actions from
demonstrations in continuous action spaces, while VANP
is doing the opposite by learning visual features from con-
tinuous action spaces. Luo et al. [36] improved AQuaDem
by using VQ-VAE [45] for offline reinforcement learning.
Huang et al. [37] proposed Skill Transformer to learn long-
horizon robotic tasks with the help of Transformers [46].

Inspired by Taskonomy [47], Shen et al. proposed condi-
tioning visual demonstrations like segmentation and depth
maps on actions during fusion rather than employing a
naive fusion approach [48]. Yang et al. [49] projected the
visual cues for navigation on the image space and then
trained a policy on the augmented image. STERLING [50]
and CAHSOR [51] have explored the concept of human
preference learning and competence-awareness in the context
of off-road navigation using SSL. These methods aligned
sensor and visual embeddings by maximizing the mutual
information between embeddings by leveraging VICReg [23]
and BarlowTwins [15] respectively.

The work by Eftekhar et al. [52] presented the closest
approach to VANP, employing a learnable codebook module
to selectively filter visual observations based on the specific
task. However, relying on task-relevant information, e.g.,
picking up the key, requires additional information that is
not available without human annotation or using a simulator
while VANP does not need access to such information to
learn visual features. Wang et. al. used noise to pre-train a
visual encoder by predicting the scale of a patch within the
noise image that applies to crop the goal observable from the
current frame in real experiments [53]. In contrast, VANP
deliberately disregards such task-specific information, focus-
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Fig. 2: VANP Architecture. VANP learns to embed temporal features into spatial features by using a sequence of images and
leveraging two TransformerEncoders with context tokens. VANP’s loss maximizes the mutual information between history,
future actions, and the goal (left). Then, by appending an MLP to the Transformer context token, VANP predicts future
trajectories during the downstream navigation task (right).

ing instead on extracting general navigation-relevant features.
Another work closely related to VANP is NavFormer [54],
which utilized BYOL [29] on two input images retrieved
from a simulator. These images differ in the presence of
dynamic objects within the scene. However, this approach
confines NavFormer to the simulated environment, limiting
its applicability to simulation environments where we have
full control of the environment, e.g., making objects invisible
to learn the importance of the presence and absence of the
object as an obstacle. Conversely, VANP achieves real-world
data generalization without relying on the pre-definition of
specific rules only possible in simulation or through human
annotation.

Pre-training for Better Policies: Foundation models
hold promise for learning not only rich representations
but also policies that can generalize across robotic tasks.
For instance, SayCan [55] integrates pre-trained language
skills with robot actions, demonstrating the potential of pre-
training for robotic tasks. This allows robots to physically
execute tasks, while the language model provides high-level
task insights. Evaluations of real-world robotic tasks confirm
the effectiveness of this grounded approach in handling
abstract, long-duration instructions for a mobile manipulator.
Li et al. [56] pre-trained language models to initialize policy
networks predicting actions. Reid et al. [57] fine-tuned pre-
trained sequence models on offline reinforcement learning
tasks as the policy backbone. VPT [58] used pseudo-labeled
Minecraft YouTube videos to learn a behavior cloning policy
that can craft diamonds. VPT learns the inverse dynam-
ics while VANP uses dynamics to learn visual features.
GNM [59] learned a general policy to drive any robot
by combining multiple datasets of different robot types.
ViNT [60] further improved GNM by replacing the policy
network with a Transformer [46].

III. METHODOLOGY

Learning visual features for robot navigation using only
RGB camera input presents several challenges. Unlike tra-
ditional approaches that rely on LiDAR or depth cameras,
RGB cameras lack explicit geometric information, making

navigation more complex [61]–[66]. Here, we formally de-
fine the visual navigation task and the learning setting for
Vision-Action Navigation Pre-training (VANP).

A. Problem Definition

We define visual navigation as the task of navigating an
environment with only RGB camera input, as explored in
previous works [3], [4], [7]. The visual navigation problem
can be formalized as follows. Input: The robot is given a
sequence of past and current images from its front-facing
camera, ot = [It−τP , It−τP+1, . . . , It] ∈ O, where t is the
current time step, τP is the number of past frames, and
O is the space of all possible image sequences. The robot
is also given its current goal e.g., GPS coordinates, pose,
image, or next local coordinate in 2D space, g ∈ G, which
determines the direction it should move in the next time step.
Output: The robot must select an action at ∈ A consisting
of continuous linear and angular velocities. A = [−1, 1]2 is
the action space, where [−1, 1] maps to the minimal and
maximal linear and angular velocity of the robot. Visual
Navigation: The goal is to learn a policy, πθ : O×G → A,
where θ represents the policy’s parameters, to determine
which action to take at each time step to reach its goal
efficiently while avoiding collisions with others.

End-To-End models: For end-to-end or holistic models,
we define the policy πθ as follows: a = πθ(o, g) =
σζ(pϕ(o) ⊕ qψ(g)), where σ is the controller policy
parametrized by ζ, p is the image encoder parameterized by
ϕ, q is the goal encoder parameterized by ψ, and ⊕ is the
aggregation of two vectors. To learn these parameters, two
common approaches are (1) to learn all of them together
in an end-to-end manner which makes the training difficult
and time-consuming or (2) to pre-train the image encoder
separately and only fine-tune the goal encoder along with
the controller to reduce training time.

Challenges in visual feature learning: While extensive
research has explored learning visual features for computer
vision tasks using SSL [14], [15], [23], [27], [29], [30],
adapting these models to specific tasks presents unique
challenges [50], [51]. Images in the real world contain
implicit cues for navigation but are sometimes full of re-



dundant information. In the context of visual navigation,
one such challenge lies in learning visual features from
image sequences without unnecessarily capturing such a
redundancy, which may result in ambiguity. Additionally,
it is not trivial to extract contrastive learning signals from
visual navigation actions for contrastive SSL, e.g., an action
appropriate for one scenario may or may not be appropriate
for another, or different actions may be appropriate for
the same scenario. For instance, in a scenario where a
pedestrian stands in front of the robot, two equally valid
actions exist: overtaking from either the left or right side. In
such cases, simply negating the angular velocity cannot yield
a meaningful negative sample and can introduce ambiguity.
Furthermore, employing actions from different sequences as
negative samples might not provide pertinent information
for visual navigation, as actions are inherently influenced
by the observed environment. In the next section, we show
how VANP addresses these challenges and trains the image
encoder p without a downstream objective function.

B. Vision-Action Model

VANP leverages VICReg [23] to maximize the informa-
tion between past observations, a future goal, and future
actions while maintaining the information collapse between
input heads to train the image encoder p. Unlike vision
SSL models that work on the joint embedding of augmented
images [27], [67], VANP correlates the action space A and
goal space G with the pixel latent space O as shown in
Fig. 2. We define VANP pre-training as follows: We sample
a batch of (Iit−τP :t, a

i
t:t+τF , g

i
t) from dataset D, where i

is the sample number, Iit−τP :t is a sequence of past visual
observations starting from t − τP and ending at t, ait:t+τF
is a sequence of future actions starting from t and ending
at t + τF , and git is the current goal at time t instantiated
as an image in the future Iit+τF . τF is the number of
frames in the future and τP is the number of frames in
the past. We then feed Iit−τP :t to pϕ, typically a CNN, and
all the embeddings to a transformer encoder [46], as well
as ait:t+τF to fξ as part of another transformer encoder, to
learn image Zi and action Za embeddings, respectively. Each
transformer contains an additional context token to capture
the continuous information among frames. We feed git to
pϕ to generate goal embedding Zg . Finally, we use VANP’s
objective function to learn ϕ and ξ:

LVANP(Z
i, Zg, Za) = λLVICReg(Z

i, Zg)

+ (1− λ)LVICReg(Z
i, Za),

(1)

where λ is the importance of each term, and LVICReg is the
VICReg objective function [23] defined as:

LVICReg(Z
1, Z2) = µ1s(Z1, Z2)

+ µ2[v(Z1) + v(Z2)]

+ µ3[c(Z1) + c(Z2)].

(2)

s is the distance between embedding spaces, v and c are the
variance and covariance of each embedding respectively. µ1,

µ2, and µ3 are hyper-parameters controlling the effective-
ness of each term. Leveraging VICReg’s objective function
offers the advantage of circumventing the need for negative
samples, which, as mentioned above, is challenging to define
within the action space for navigation tasks. We also compare
VICReg’s performance against BarlowTwins used by Nazeri
et al. [68] and observe that BarlowTwins tends to prioritize
redundant scene features over those with greater relevance
to navigation resulting in degraded performance.

C. Implementation Details

We implement VANP with PyTorch [69] and the training
is performed on a single A5000 GPU with 24GB memory1.

Model architecture: Considering the limited computation
resources onboard most mobile robots, we choose ResNet-
50 [24] without the classification head as a low-latency
image encoder for pϕ and we call it VANP-50. We use
two TransformerEncoders with additional context vectors [9],
[21], [70] with four layers and four heads as the final
image and action encoders to produce the embeddings of
Zi, Za ∈ R512. Both encoders are followed by MLPs with
three layers as the projection heads to generate the final
Z ′i, Z ′a ∈ R1024. We apply the same pϕ to the goal image
to generate Zg ∈ R512. A critical challenge arises from the
inherent differences in modalities between the two networks
generating the embeddings, leading to significant variations
in their output ranges. To address this discrepancy and ensure
effective integration, we initialize all deep networks using
the Kaiming Normal initialization [24] with a mean of zero
and a variance of one. In the context of the downstream
model, an MLP is appended to the Transformer’s context
vector to predict trajectories at three and five seconds into the
future, enabling the evaluation of how the extracted features
influence both short-term and long-term interactions.

Optimization: We use the ADAMW optimizer [71] and
train the model for 200 epochs with a batch size of 2048 and
a learning rate of 5e−4. We observe that large batch sizes
add more variation to the update stage and improve learning.
To ensure a fair comparison, all models are trained for 50
epochs using the same optimizer and hyperparameters during
downstream training. The sole exception is the end-to-end
model, which requires 100 epochs to guarantee convergence.

Dataset: We leverage a selection of two unique datasets:
SCAND [25] and MuSoHu [72], both of which encapsulate
robot and human navigation data from the egocentric per-
spective. Both real-world datasets are collected in a variety of
natural crowded public spaces. MuSoHu comprises approx-
imately 20 hours of data captured from human egocentric
motion. The recordings capture human walking patterns
in public spaces, providing insights for learning human-
like, socially compliant navigation behaviors. SCAND is an
autonomous robot navigation dataset that captures 8.7 hours
of human-teleoperated robot navigation demonstrations in
naturally crowded public spaces on a university campus. A
fundamental limitation of SSL models is their susceptibility

1
§ https://github.com/mhnazeri/VANP
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TABLE I: Downstream Performance. Comparison of the performance of the visual encoders with different pre-training
methods on unseen data. Models denoted by an Ü require double the training time compared to models with Ý .

Type Method Weight Single-frame Multiple-frame 3s 5s 3s 5s

Resnet-50 Random ✓ ✗ - - 0.116 0.307
ResnetTransformer Random ✗ ✓ - - 0.113 0.320

Resnet-50 ImageNet ✓ ✗ 0.129 0.356 0.129 0.342
ResnetTransformer ImageNet ✗ ✓ 0.169 0.435 0.107 0.292

Resnet-50 VANP ✓ ✗ 0.144 0.374 0.103 0.272
ResnetTransformer VANP ✗ ✓ 0.133 0.342 0.114 0.319

Frozen � Fine-tuned ]

End-to-End Ü

Backbone
Supervised Ý

Backbone
Self-SupervisedÝ

Input

End-To-End

ImageNet

VANP

Fig. 3: Qualitative Comparison. Comparison of the last
layer activation maps among different methods on unseen
scenarios.

to data quality [20]. As we will discuss in the limitations
section (Sec. IV-D), VANP is similarly affected, particularly
in scenarios where there is no change in a sequence of
images as shown in Fig. 4. To minimize data ambiguity
and noise, a subset of the two datasets are carefully curated,
ensuring representation of both indoor and outdoor scenes.
The resulting dataset, comprising approximately 11,000 sam-
ples, was used for both pre-training and training phases.
Additionally, a separate set of 8,000 unseen samples are
used for downstream navigation task evaluation. For pretext
task training, we set τP and τF to 6 and 20 respectively
and use a sequence of images It−τP+1:t ∈ RτP×98×126

along with a goal image gt ∈ R98×126 and a sequence of
actions at:t+τF−1 ∈ RτF×2 parsed at 4 Hz, comprising of
1.5 seconds in the past and 5 seconds in the future. For the
downstream task, we use a sequence of past observations
It−τP+1:t ∈ RτP×98×126 along with the polar coordinates of
the next local goal g ∈ R2 parsed at 4 Hz, containing 1.5
seconds history as the network input to produce the actions
At:t+τF−1 ∈ RτF×2 for three and five seconds in the future.

IV. EXPERIMENTAL RESULTS

We provide experimental results using VANP compared
against a ResNet-50 pre-trained on ImageNet and end-to-end
from scratch as baselines.

A. Results Discussion

We assess the efficacy of VANP pretext training by
quantitatively comparing its performance with that of a
ResNet-50 model [24] pre-trained on the ImageNet ILSVRC-
2012 dataset [12]. This serves as the baseline alongside

another ResNet-50 model trained end-to-end with randomly
initialized weights. To guarantee a fair comparison, the archi-
tectures of all other components within the downstream task
remain unchanged. Table I presents the mean squared error
between the predicted and ground truth trajectories for short-
(three seconds) and long-term (five seconds) interactions
under two conditions. In the first condition, only the goal
encoder and controller are trained during the downstream
navigation task, while the image encoder weights are frozen.
In the second condition, we compare the performance by
unfreezing the image encoder weights to enable fine-tuning.

The results in Table I demonstrate that VANP achieves
comparable performance to the end-to-end trained model
while requiring only half the training time. Furthermore,
VANP pre-trained model achieves comparable performance
to ImageNet model with only 0.08% of the data size required
by ImageNet, highlighting how informative the extracted
representations are for navigation.

When provided with a sequence of past observations,
VANP exhibits a superior ability (0.342) to utilize this
additional data compared to ImageNet model when frozen
(0.435). Although the ImageNet weights appear unable to
leverage the temporal features provided by the transformer
component when freezing its weights (Table I, row four
compared against row three), fine-tuning the ImageNet model
leads to performance improvement from 0.435 to 0.292,
suggesting that it can better capture underlying temporal
features provided by the Transformer through fine-tuning.

However, we do not see such an improvement in the
case of VANP. The negligible improvement in accuracy from
0.342 to 0.319 for VANP during fine-tuning can be attributed
to two reasons. First, the focus on multiple navigation-
related visual regions of VANP’s pre-trained weights (Fig. 3
last row) impedes adaptation/forgetting during fine-tuning
compared to the ImageNet weights. Second, the temporal
features from the Transformer are already in VANP weights
and therefore does not require much fine-tuning. Overall,
it is likely that forgetting/updating weights can be easier
when the visual encoder is trained using only one single
scalar instructive feedback (i.e., training loss) rather than pre-
trained on richer instructive signals, i.e., VANP’s pre-training
objective signal.

Interestingly, during frozen evaluation with only one im-
age as input, the frozen pre-trained ImageNet model (Table I,



VANP

Fig. 4: Failure Cases. Samples without any important intra-
frame changes cause the model to collapse.

TABLE II: Ablations. Ablation study on the role of each
module on the downstream navigation task performance.

Information 3s 5s

Actions 0.167 0.499
Goal 0.160 0.392
Actions+GoalIn 0.155 0.386
Actions+GoalOut 0.144 0.383
Augmentations 0.133 0.342

row three) achieves the best performance. This finding war-
rants further investigation. One assumption is that in test
cases, the salient object has a stronger influence on the
trajectory and aligns better with the single, scalar form of
instructive feedback provided. However, during fine-tuning,
it is clear that the single image does not outperform models
utilizing Transformer temporal features (0.342) while the
VANP model benefits from these features even with only
one image as input (0.272).

Visual inspection of the learned activation maps on the last
layer of ResNet-50 (Fig. 3) reveals distinct characteristics
across the models. The last row on Fig. 3 shows that the
VANP pre-trained model exhibits activation maps with a
higher degree of relevance to navigation tasks, focusing on
features such as paths and obstacles while the ImageNet
pre-trained model (Fig. 3 third row) primarily focuses on
salient objects within the environment, which might not be
directly related to navigation. Another difference between
VANP and the end-to-end model (Fig. 3 second row) is that
the end-to-end model tends to concentrate on a single critical
region significantly impacting the trajectory, likely due to
its limited instructive signal during training, i.e., minimizing
the distance between predicted and ground truth trajectories.
Conversely, VANP demonstrates the ability to extract infor-
mation from multiple regions, potentially benefiting from the
richer information provided by the goal image and future
actions during the pre-training stage. However, as mentioned
above, this richness impedes adaptation during fine-tuning.

We observe instances where the attention of all models
shifts to seemingly irrelevant aspects. In the case of VANP,
we posit that this may be due to the robot’s sharp turns
temporarily obscuring the goal image from the current frame.

B. Ablations

To investigate the most effective approach for correlating
visual and action spaces, we conduct a series of ablation
studies, in which we report the mean squared distance of the

predicted trajectory from the ground truth in three and five
seconds in the future in Table II.

Role of Different Training Signals: We assessed the
individual contributions of various self-supervised training
signals by changing the value of λ between 0 and 1 in
Eq. 1. Our findings reveal that while action signals provide
valuable navigational cues, their sparsity often hinders their
effectiveness in downstream navigation tasks, especially dur-
ing long-term interactions. Conversely, information derived
from the goal, while occasionally exhibiting redundancy,
improved performance from 0.499 to 0.392 during long-
term interactions over using only actions due to informa-
tive cues alongside the redundant elements. However, this
redundancy poses challenges for the policy network, which
can be remedied by more training epochs and a deeper
policy network. By combining these two embeddings as the
self-supervision signal, the final model can effectively learn
informative features while mitigating the impact of redundant
information within the embedding.

Leveraging Goal Information: We further investigated
the optimal utilization of future goal information. Our find-
ings suggest that employing the goal solely as a supervision
signal (shown as Actions+GoalOut in Table II) proves more
effective in facilitating the model’s learning of visual features
compared to incorporating the goal directly within the Trans-
former architecture (shown as Actions+GoalIn in Table II).
The Transformer’s ability to capture temporal changes from
the current to the goal frame is only helpful when the goal
is visible from the current frame.

Augmentations: Data augmentation is a standard tech-
nique employed to enhance model generalization by intro-
ducing variability into the dataset. We follow the augmenta-
tion scheme outlined by Bardes et al. [23] and the result is
shown as Augmentations in Table II. We observe that random
cropping is particularly critical for VANP, especially in
scenarios exemplified by Fig. 4, as it introduces inter-frame
variation. This augmentation strategy relaxes the assumption
of carefully curated data and enables an expansion of the
dataset from 11,000 to 26,042 samples to include even
ambiguous and noisy samples with a little performance hit.

C. Robot Deployment

To demonstrate the practical applicability of the learned
visual features for navigation, a proof-of-concept demon-
stration of VANP-18 with a moving goal objective [8] is
deployed on a Clearpath Jackal robot. The obstacle avoid-
ance capabilities of VANP are evaluated under controlled
conditions. In these experiments, a static obstacle is initially
positioned in the robot’s path. Subsequent trials involve a
dynamic obstacle, simulated by a human pedestrian. Results
indicate that VANP exhibits an ability to detect and avoid
both static and dynamic obstructions in the majority of test
cases. It is important to note that while VANP demonstrates
capabilities in object avoidance, it encounters difficulties in
navigating around minor obstacles, a limitation likely at-
tributable to restricted visibility conditions. The supplemen-



tary video provides a record of these experiments2. Despite
VANP’s intended versatility across diverse environmental
conditions, inherent limitations considering safety only allow
it to work in uncluttered environments, as elaborated in the
subsequent section.

D. Limitations

We identify multiple key limitations of the VANP pre-
training approach. First, our analysis of the learned kernels
suggests that VANP performs more effectively when the goal
image is directly visible from the current image, likely due
to its reliance on image correlation for learning. While this
is helpful for Visual-Goal navigation task, it highlights a
potential limitation in generalizability to scenarios where the
goal location may not be directly visible from the starting
point. Second, in large-scale datasets likely with a significant
amount of noise, scaling VANP poses a potential challenge,
considering its need for high-quality self-supervision during
pre-training can result in many changes in learned activation
maps between epochs. As can be seen in Fig. 4, the VANP
objective is unable to learn from scenarios where there is
no intra-frame change as the time passes. This limitation
can be alleviated with augmentations, particularly random
cropping, but it does not eliminate it. Additionally, our
current findings are based on a static dataset and may not
directly translate to challenging real-world navigation tasks
that involve dynamic environments and unforeseen obstacles.
Further research is needed to evaluate VANP’s performance
in these more complex scenarios.

V. CONCLUSIONS AND FUTURE WORK

In this work, we propose a self-supervised learning ap-
proach to train visual encoder models specifically designed
for visual navigation. This approach is motivated by the
observation that humans only pay attention to specific
navigation-relevant regions of their frontal view to efficiently
make navigation decisions. By reversing this observation, we
use the navigation decisions to extract only visual features
that are relevant to the navigation task, unlike computer
vision models that mainly extract salient details, which are
potentially irrelevant to navigation tasks and can therefore
lead to confusion for neural-based controllers. To achieve
this, we leverage two Transformer Encoders to embed past
visual observation, future actions, and a goal image, then we
maximize the information between these embeddings using
VANP’s objective function to learn visual backbone weights.

Furthermore, the VANP objective function facilitates the
integration of additional embeddings derived from diverse
modalities, including depth data and semantic information
or inputs from other sensors such as LiDARs [73]. Studying
the effectiveness of this enrichment of the embedding space
with supplementary information for downstream navigation
tasks can be a potential future work. Another future direction
is to merge datasets from different environments, such as
indoor [74], [75], outdoor [76], [77], off-road [78]–[80], and

2https://youtu.be/SEuD9hkwXxQ

social environments [81], [82], to extend the generalizability
of the proposed VANP approach. More real-world experi-
ments can support all these future directions and scale up
the model to larger datasets.
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