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Abstract— Off-road navigation is an important capability for
mobile robots deployed in environments that are inaccessible or
dangerous to humans, such as disaster response or planetary
exploration. Progress is limited due to the lack of a controllable
and standardized real-world testbed for systematic data collec-
tion and validation. To fill this gap, we introduce Verti-Arena, a
reconfigurable indoor facility designed specifically for off-road
autonomy. By providing a repeatable benchmark environment,
Verti-Arena supports reproducible experiments across a variety
of vertically challenging terrains and provides precise ground
truth measurements through onboard sensors and a motion
capture system. Verti-Arena also supports consistent data col-
lection and comparative evaluation of algorithms in off-road
autonomy research. We also develop a web-based interface
that enables research groups worldwide to remotely conduct
standardized off-road autonomy experiments on Verti-Arena.

I. INTRODUCTION

Autonomous off-road navigation enables rescue robots to
enter ruins, jungles, and other disaster environments that
are difficult or impossible for humans to access, and to
perform search and rescue tasks. Researchers have shown
that certain types of robots can traverse rubble, narrow
crevices, dense vegetation, and coastal terrain to a limited
extent [1]-[6]. One key focus in this area of research is
developing wheeled robots that can traverse uneven surfaces
and steep slopes while completing tasks across continuously
varying terrains [7]-[10].

Due to the complexity of off-road terrain, factors such as
slope and tilt, surface roughness, and changes in friction can
all affect the ability to achieve reliable mobility in off-road
environments. In such cases, relying solely on the vehicle’s
kinematic model is insufficient. It is necessary to consider
complex kinodynamics that incorporates both environmental
information and interactions between the vehicle and the
terrain [11], [12]. However, since the kinodynamics is largely
affected by the environment, it becomes essential to perceive
the environment, update the kinodynamic model accordingly,
and plan based on this updated model [13], [14].

This approach requires data collected under realistic, phys-
ically diverse terrain conditions, where robot-environment
interactions can be captured and used to model kinodynamics
and evaluate off-road autonomy. However, the dynamics of
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Fig. 1.
different geometries and semantics, and is equipped with a motion capture
system, to facilitate off-road autonomy research.

Verti-Arena comprises a variety of off-road terrain, includes

diverse terrains are highly complex. Simulators often sim-
plify the environment and approximate physical interactions,
replacing real friction, wheel sinkage, and gravel rolling with
idealized models. This limits their ability to support high-
fidelity data collection, training, and testing. Collecting data
in outdoor environments, on the other hand, faces challenges
such as high operational cost, extended experiment time, and
the lack of high-precision ground-truth data.

To address these limitations, Verti-Arena is a control-
lable and standardized indoor testbed featuring multi-terrain
and vertically challenging conditions for off-road autonomy.
Within a controlled laboratory setting, we combine ten types
of terrain, including rocks, sand, grass, and other natural
surfaces, within an 8§x8 m area featuring a maximum ele-
vation difference of 0.7 meters (see Fig. 1). Precise ground-
truth trajectories are provided using onboard sensors and a
motion capture system. Verti-Arena enables the collection of
large-scale datasets containing synchronized vehicle sensor
data (e.g., RGB-D images and IMU measurements), control
inputs, and accurate exteroception of robot poses, establish-
ing a reliable and safe benchmark for future research in
perception, control, and learning for off-road autonomy.

II. RELATED WORK
This section reviews physical test environments and exist-
ing datasets related to off-road autonomy.
A. Physical Test Environments

Several small indoor testbeds are designed to evaluate spe-
cific robotic capabilities. One series of testbeds, constructed



from stacked rocks to create vertically challenging terrain,
enables repeatable assessment of 1/10-scale four-wheeled
or six-wheeled vehicles as they traverse steep inclines [7],
[11], [15], [16]. Another indoor setup consists of a wooden
floor with a gap filled with shredded paper, which is used
to evaluate legged robots on collapsible footholds [17].
Robotarium [18], a platform composed of 20 robots, is used
to validate distributed control strategies in swarm robotics.
SCATTER [19] features boulders buried in sand and is
designed to explore how spatial heterogeneity affects loco-
motion. The precisely controlled conditions of these indoor
testbeds for specific robot skills ensure high repeatability.

Closed-course outdoor off-road tracks provide a more
realistic but still controlled environment. However, because
the terrain is relatively monotonous and the geometric fea-
tures are simple, these tracks lack the complexity typically
associated with true off-road environments. As a result, they
are primarily used for high-speed driving tests [20], [21].

Some studies turned to full-scale proving grounds [22]—
[27], which include kilometer-long forest loops, ravines, and
muddy terrain, to validate highly realistic vehicle dynamics.
However, the high maintenance and operation cost prevents
wide adoption of such expensive testbeds for many robotics
researchers. Furthermore, the unpredictability introduced by
outdoor weather and season conditions reduces the level of
controllability and reproducibility in these environments.

Although existing testbeds have proven useful, they have
struggled to balance environmental diversity with experimen-
tal controllability and repeatability. Verti-Arena introduces an
indoor testbed that includes a broad range of seamlessly in-
S%grﬁtg% gleetgtically challenging terrain types while preserving
the precise controllability found in laboratory settings.

Many off-road autonomy datasets are collected in exist-
ing physical test environments. Several focus on perception
challenges posed by conditions that are particularly difficult
for reliable sensing. For instance, the M2P2 dataset [28]
emphasizes passive perception under extremely low light.
DiTer++ [29] uses multiple robotic platforms to collect mul-
timodal terrain data. The GND dataset [30] adds passability
classification to quantify traversal risk, enabling different
robot types to assess navigability based on their capabilities.
RELLIS 3D [31], the Great Outdoors Dataset [32], and
M3ED [33] augment raw perception data with semantic
segmentation labels to support terrain understanding and
identifying obstacles.

Beyond perception, other datasets focus on vehicle dy-
namics. TartanDrive [24] and its successor TartanDrive
2.0 [22] provide extensive logs of wheel torque, throttle,
and brake commands alongside multimodal observations for
self-supervised dynamics modeling. Scaled vehicle platforms
such as HOUND [23] and AutoRally [20] collect high
speed off-road driving data in real-world environments to
support studies of vehicle dynamics and control performance.
However, all of these datasets are collected in uncontrolled
outdoor settings, which limits the ability to deliberately ad-
just environmental variables. This also increases the difficulty
of obtaining accurate sensor measurements and ground truth
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Elevation Map. The top-left region shows the complete elevation
map, while the surrounding sub-images display selected detailed areas.

data. For example, GPS-based localization often suffers from
reduced accuracy due to signal occlusion by tree canopies
and terrain structures. Another limitation is that they are
not diverse enough to cover many terrain types that induce
aggressive 6-DoF (Degree of Freedom) vehicle motions.

To address the limitations of existing datasets, we also col-
lect a diverse and precise dataset in Verti-Arena. Our dataset
includes motion-capture-based localization along with on-
board camera, IMU, and additional sensor streams to support
perception, planning, control, and learning tasks in off-
road autonomy research. Furthermore, the dataset contains
a diverse range of driving behaviors, including aggressive
maneuvers, which provide a broader data distribution for
learning robust kinodynamic models.

ITIT. VERTI-ARENA

Verti-Arena is an indoor testbed measuring 8 x8 m that
includes a wide range of semantic terrain configurations
across varied elevation profiles. Each terrain type can be re-
configured on demand to produce different layouts that repli-
cate natural off-road environments. The arena is enclosed
by an eight-camera motion capture system that provides
high-precision ground-truth pose and motion data. Within
this testbed, we collect a comprehensive dataset by com-
bining motion capture—based localization with synchronized
onboard camera images, inertial measurements, and control
signals for data-driven approaches in off-road autonomy.

A. Geometry

Verti-Arena features varied geometric structures that pose
significant challenges for vehicle control and navigation.
Specifically, gradually changing slopes cause continuously
shifting load distributions. In contrast, abrupt features such
as cliffs that induce rollovers or narrow crevices that suspend
wheels and trap the chassis significantly increase traversal
difficulty and influence route selection. To simulate these
challenges, Verti-Arena incorporates elevation changes such
as hills, cliffs, and ravines. Furthermore, it ensures that a
direct connection between any two points within Verti-Arena



is not always physically traversable by a vehicle. As a result,
this environment enables evaluation of planners’ ability to
generate feasible paths under these spatial constraints.

To provide a clearer representation of the geometry, we
use the Elevation Mapping CuPy software package [34],
[35] to generate an elevation map. As shown in Fig. 2, the
terrain exhibits diverse elevation variations, with differences
reaching up to 0.7 meters. It includes large-scale structures
such as hills and cliffs, as well as fine-grained features like
narrow trenches and bridge-like gaps, all of which introduce
both global and local challenges for off-road navigation.

B. Semantics

In real-world off-road scenarios, vehicles must handle
not only complex spatial geometries but also rich semantic
information. Verti-Arena includes diverse terrain types that
reproduce the physical and perceptual characteristics of nat-
ural, irregular, off-road environments. Each terrain category
varies in deformability, surface texture, and ease of traversal,
introducing challenges such as sinking, slipping, or rollover.

The testbed features three deformable surfaces: sand, stone
dust, and foam board. These occupy 10.30% of the total
area. It also includes seven rigid elements: large boulders,
small pebbles, grass, flagstones, wood, concrete, and trees.
The semantics of each region in the testbed are illustrated
in Fig. 3, and the distribution of semantic categories is
presented in Fig. 4. Within a single category, there are
significant internal variations. For example, grass patches
range from closely cut turf to dense, overgrown grass, weed,
and hay, while trees include both low shrubs and tall trunks.

Rather than isolating each semantic type into neatly
structured sections, Verti-Arena blends them to reflect the
continuous variation observed in natural settings. Clusters of
grass emerge between stones, wooden planks are positioned
across rocky surfaces, and fine pebbles fill the gaps between
larger flagstones. This blended semantic distribution ensures
that no two regions are identical and creates a realistic,
visually and dynamically complex environment for off-road
autonomy research.

C. Obstacles

Obstacles refer to spaces or objects that a vehicle cannot
navigate through due to, e.g., rough terrain, insufficient
power, or limited room to maneuver. In Verti-Arena, natural
obstacles include large boulders, steep hills, and certain types
of vegetation. Specifically, boulders and hills can be too
tall or too steep for a vehicle to pass, resulting in wheel
slip, loss of traction, or even tip-over. Vegetation, such as
dense shrubs, can entangle the wheels or damage onboard
sensors. In addition to natural features, man-made barriers
are also present. These include reinforced concrete walls that
completely block the path and must be detected and avoided.
Ultimately, whether something constitutes an obstacle de-
pends on the capabilities and limitations of the vehicle and is
not always clear, i.e., certain vehicles equipped with certain
mobility systems may be able to negotiate through, while
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Fig. 4. Semantic Distribution of Verti-Arena.

others may not. These vehicle-terrain interactions can be
predicted based on both semantic and geometric properties.

D. Variability

The testbed is designed to support a wide range of terrain
configurations. Fig. 2 and Fig. 3 only illustrate one represen-
tative example of the arrangement of terrain geometry and
semantics. However, this configuration is not fixed. During
experiments, terrain elements can be shuffled: stones can be
repositioned, sections of grass turf may be removed, and
wooden bars can be placed between mountains as bridges to
form alternative traversal paths. This flexibility enables the
recreation of a wide range of environments for data collection
and evaluation using a diverse set of physical materials.

E. Datasets

We use a four-wheeled ground vehicle (V4W; 0.523 x
0.249 x 0.20 m) [7], equipped with a Microsoft Azure
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Fig. 6. Example RGB (Left) and Depth (Right) Images in the Dataset.

Kinect RGB-D camera mounted on a single DoF gimbal
actuated by a servo that keeps the field of view fixed on
the terrain ahead, independent of chassis orientation. The
platform also includes an IMU, wheel encoders, and an
NVIDIA Jetson Xavier NX for onboard processing, and
is time-synchronized with an eight-camera motion-capture
system for data collection. We teleoperate the vehicle using
a controller to navigate Verti-Arena to induce a variety of
vehicle-terrain interactions with aggressive 6-DoF vehicle
poses, including rollover and immobilization.

All sensors and data streams are fully integrated into the
ROS 2 ecosystem. Each trajectory is stored individually as a
ROS 2 bag file, resulting in a dataset comprising thousands of
runs. Each raw bag file includes the following components:

o Color and depth images: RGB images (1280 x 720 x 3)
and depth images (512 x 512) captured by onboard cam-
eras. Intrinsic calibration parameters for both modalities
are included. An example frame is shown in Fig. 6.

o Inertial measurements: Gyroscope and accelerometer
readings from the onboard IMU, sampled at 100 Hz.

o High-level control inputs: Teleoperation and au-
tonomous control commands, including differential lock
status (2D binary vector for front and rear differentials),
gear mode (1D binary vector indicating low or high
gear), drive velocity, and steering angle.

o Low-level actuator feedback: Joint states obtained from
the motor control unit, including motor velocities, steer-
ing angles, and positions and velocities of all wheels.

e Coordinate transforms: Time-varying and static TF2
transform trees for all frames, including 6-DoF pose

Positional and Angular Errors from MLPs (Left) and Positional Errors from Kinematic Models (Right).

estimates of tracked rigid bodies recorded via a motion
capture system, which serve as high-precision ground
truth for localization and motion analysis.

IV. EVALUATION AND DISCUSSIONS

To quantitatively validate the terrain diversity in Verti-
Arena, we assess how vehicle kinodynamics varies across
distinct zones of the testbed. We select five representative
terrain types from Verti-Arena: boulder, flagstone, stone dust,
grass, and pebble. For each zone, a separate dataset of
vehicle trajectories is collected, providing the complete state
transitions of the vehicle over time.

To analyze and compare the underlying dynamics across
different zones, we formalize the system’s behavior as a
forward model:

Tt41 = f(xtyut)v

where x; € X denotes the vehicle’s state at time ¢, u;, € U C
R? represents the throttle and steering control input. All data
are collected in a fixed low-gear driving mode with locked
differentials. Furthermore, all vehicle states are transformed
into the vehicle’s body frame. Notice that we intentionally
omit the environmental features in the forward model input
to highlight the differences caused by them.

We evaluate three classes of predictive models: a bicycle
model, an Ackermann model, and a multilayer perceptron
(MLP). The bicycle and Ackermann models are tuned using
the vehicle’s actual physical parameters. For the MLP, a
separate model instance is trained and tested independently
for each terrain zone using the corresponding data.

Fig. 5 illustrates that the variation in prediction errors
across terrain zones reflects the diversity of the underlying
terrain characteristics. MLP models generally perform better
when evaluated on the same terrain zone used for training,
which suggests that they are specialized to zone-specific
dynamics. In contrast, classical kinematic models produce
higher positional errors across all terrains, primarily due to
their inability to capture full 6-DoF vehicle motion.

Beyond model specialization, the results also demonstrate
clear differences in terrain difficulty. Based on model perfor-



mance, the terrain zones are ranked in decreasing order of
difficulty as: boulder, pebble, stone dust, grass, and flagstone.

Due to the space limit of extended abstracts, more detailed
results and discussions will be provided in the final full paper.
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