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Figure 1: VERTIFORMER is a data-efficient multi-task Transformer for off-road mobility on verti-
cally challenging terrain. VERTIFORMER employs unified multi-modal latent representation, miss-
ing modality infilling, and non-autoregressive training to learn complex and nuanced vehicle-terrain
interactions in SE(3) with only one hour of training data.

Abstract: We propose VERTIFORMER, a novel data-efficient multi-task Trans-
former trained with only one hour of multi-modal data to address the challenges
of applying Transformers for robot mobility on extremely rugged, vertically chal-
lenging, off-road terrain. With a Transformer encoder and decoder to predict
the next robot pose, action, and terrain patch, VERTIFORMER employs a uni-
fied state space and missing modality infilling to respectively enhance dynamics
understanding and enable a variety of off-road mobility tasks simultaneously, e.g.,
forward and inverse kinodynamics modeling. By leveraging this unified represen-
tation alongside modality infilling, it also achieves real-time task switching during
inference for improved fault tolerance and better generalization to unseen environ-
ments. Furthermore, VERTIFORMER’s non-autoregressive design also mitigates
computational bottlenecks and error propagation associated with autoregressive
models. Our experiments offer insights into effectively utilizing Transformers for
off-road robot mobility with limited data and demonstrate VERTIFORMER can
facilitate multiple off-road mobility tasks onboard a physical mobile robot.'
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1 Introduction

Autonomous mobile robots deployed in off-road environments face significant challenges posed by
the underlying terrain. For example, irregular terrain topographies featuring vertical protrusions
from the ground, i.e., vertically challenging terrain, pose extensive mobility risks [1, 2, 3], manifest-
ing in several critical ways: compromised chassis stability, leading to potential rollover; increased
wheel slippage, resulting in reduced traction and impaired locomotion; and unpredictable vehicle
immobilization, causing the robot get stuck, when interacting with vertically challenging terrain.
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Precisely understanding the vehicle-terrain kinodynamic interactions is the key to mitigating such
mobility challenges posed by off-road, vertically challenging terrain. Although data-driven ap-
proaches have shown promises in enabling off-road mobility in relatively flat environments [4, 5,
6,7,8,9,10, 1, 11, 12, 13, 14, 15, 16], the intricate relationships between the robot chassis and
vertically challenging terrain, e.g., suspension travel, tire deformation, changing normal and friction
forces, and vehicle weight distribution and momentum, motivate the adoption of more sophisticated
learning architectures to fully capture and represent the nuanced off-road kinodynamics [3].

Transformers are the preferred architectures to understand complex relationships, which show
promise in Natural Language Processing (NLP) [17, 18, 19, 20] and Computer Vision (CV) [21,
22, 23, 24, 25, 26] with self-supervised pre-training emerging as a dominant methodology. This
trend is now extending to robotics, impacting areas such as manipulation [27, 28, 29, 30, 31] and
autonomous driving [32, 33, 34, 35, 36, 37, 38]. In addition to the advent of the well-studied Trans-
former architecture [39, 40], this progress is largely attributable to the availability of large-scale
datasets [27, 41, 42] as well as various Transformer training techniques including two primary pre-
training paradigms: (i) Masked Modeling (MM) and (ii) Next-Token Prediction (NTP) [43].

The application of these paradigms to robotics is particularly limited due to the inherent challenge as-
sociated with acquiring large-scale robotics datasets, especially for outdoor, off-road environments.
The multi-modal nature of robotics data also presents another significant challenge for Transformers
to learn inter-modal relationships and understand the temporal progression of both the environment
and the robot state at the same time. These two challenges of applying Transformers to robotics lead
to our question: “How can we train Transformers with limited multi-modal robotics data?”

Motivated by this research question, this work presents VERTIFORMER, a novel data-efficient
multi-task Transformer for robot mobility on extremely rugged, vertically challenging, off-road
terrain that requires precisely understanding the kinodynamics in SE(3) to avoid getting stuck or
rolling over. VERTIFORMER’s novel unified latent representation of robot exteroception, propri-
oception, and action offers a stronger inductive bias and therefore off-loads the learning of inter-
modality relationships from the Transformer. This consequently facilitates more effective learn-
ing with only one hour of data, contrasting current data-intensive methods in NLP, CV, and previ-
ous work in robotics [44, 45] that employ separate tokenization of modalities and depend solely
on self-attention to capture complex inter-modal correlations within massive datasets. Further-
more, VERTIFORMER’s missing modality infilling enables various off-road mobility tasks within
one model simultaneously without the need to retrain separate downstream tasks and mitigates
the impact of missing modalities at inference time. Additionally, the non-autoregressive nature
of VERTIFORMER avoids error propagation from earlier to later prediction steps and makes VERTI-
FORMER faster at inference because it does not require iterative queries for each step.

VERTIFORMER outperforms the navigation performance achieved by state-of-the-art kinodynamic

modeling approaches specifically designed for vertically challenging terrain [46, 47] as well as gen-

eral navigation models such as NoMaD [48], providing empirical evidence supporting the feasibility

of training a Transformer on limited robotic datasets using effective training strategies. Our contri-

butions can be summarized as follows:

* VERTIFORMER, a data-efficient, multi-task Transformer for off-road robot mobility on vertically
challenging terrain in SE(3);

* aunified representation approach to treat all modalities as one single distribution to off-load inter-
modality relationship learning from the otherwise data-intensive Transformer;

* a missing modality infilling method that facilitates information sharing among multiple heads
and therefore enables different off-road mobility tasks, i.e., forward/inverse kinodynamic learning
(FKD/IKD) and zero-shot navigation policy (NP);

* an extensive evaluation of different Transformer designs, including MM, NTP, Encoder-only, and
Decoder-only, for off-road kinodynamic representation learning; and

* physical on-robot experiments for different off-road mobility tasks on vertically challenging ter-
rain and comparison against state-of-the-art methods.



2 Related Work

Transformers, initially proposed for language translation tasks, have demonstrated remarkable ver-
satility across a spectrum of domains, including CV and robotics. This section provides an overview
of existing work on Transformers in robotics and data-driven off-road mobility. We provide more
details on the current best practices with Transformers in NLP and CV in Sec. 8 of the Appendix.

Transformers in Robotics. Recent years have witnessed a surge in the application of Transform-
ers to robotics, encompassing both perception and planning: Generalist robot policies based on
Transformers, e.g., Octo [49] and CrossFormer [44], with multi-modal sensory input [50] and ac-
tion tokenization [51] aimed at handling diverse tasks such as manipulation and navigation; Studies
in target-driven [52, 53, 54, 55] and image-goal navigation [56, 57] have shown that Transform-
ers significantly outperform traditional behavior cloning baselines [58, 59]; Reinforcement learning
has been significantly enhanced by integrating the Transformer architecture, providing improved
sequence modeling [60] and decision-making capabilities [61]; Transformers have also been used
in motion planning to guide long-horizon navigation tasks [62] and reduce the search space for
sampling-based motion planners [63]; In Unmanned Surface Vehicles (USV), MarineFormer [64]
utilized Transformers to learn the flow dynamics around a USV and then learned a navigation policy
resulting in better path length and completion rate.

A common characteristic of these models is their treatment of each sensor modality (e.g., vision,
touch, and audio) as a distinct token, relying on the Transformer to learn the inter-modal correla-
tions and their temporal dynamics. While this approach allows for flexible integration of diverse
sensory information, it necessitates substantial amounts of training data to compensate for the lack
of inductive bias inherent in Transformers [40]. This data dependency poses a significant challenge,
particularly in off-road robot mobility, where real-world, outdoor data acquisition can be expensive
and time-consuming. Consequently, there remains a critical need for research focused on refining
training methodologies and exploring architectural modifications specifically tailored to address the
data scarcity and multi-modality often encountered in robotics.

Learning Off-Road Mobility. While most learning approaches for off-road autonomy focus on
perception tasks [10, 65, 66], researchers have recently investigated off-road mobility to account
for vehicle stability [67, 2, 68, 15], wheel slippage [69, 70, 13], and terrain traversability [8, 12,
14, 71, 16]. A relevant work by Xiao et al. [36] used Transformers to enable a universal forward
kinodynamic model that can drive different ground vehicles. Most of these approaches have adopted
specific techniques designed to address one particular off-road mobility task.

Focusing on multi-task kinodynamic representation for off-road mobility on vertically challenging
terrain, our novel non-autoregressive VERTIFORMER employs unified modality latent representation
and missing modality infilling to predict the next robot pose, action, and terrain patch in order to
simultaneously enable a variety of off-road mobility tasks, i.e., FKD, IKD, NP, and terrain patch
reconstruction, without a specific training procedure for each.

3 VERTIFORMER

We introduce VERTIFORMER, a data-efficient multi-task Transformer for kinodynamic representa-
tion and navigation on complex, vertically challenging, off-road terrain. We propose an efficient
training methodology for training VERTIFORMER utilizing limited (one hour) robotics data, includ-
ing unified multi-modal latent representation, missing modality infilling, and non-autoregressive
training to improve data efficiency and enable multi-task learning.

3.1 VERTIFORMER Training

VERTIFORMER consists of both TransformerEncoder (VERTIENCODER) and TransformerDe-
coder (VERTIDECODER), as illustrated in Fig. 2 left and right, respectively. Consistent with es-
tablished practices [46, 47], VERTIFORMER receives a multi-modal sequence of actions ag.t, robot
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Figure 2: VERTIFORMER Architecture. VERTIFORMER employs a TransformerEncoder (left) to
receive a history of terrain patches, actions, and poses along with multiple context tokens. To predict
future states, the model computes cross-attention between these context tokens and the upcoming
actions or poses. VERTIDECODER uses causal masking to ensure that predictions are conditioned
only on past and present information, preventing information leakage from future time steps.

poses po.1, and the underlying terrain patches ip.r. The VERTIENCODER first applies an indepen-
dent linear mapping to each modality. Specifically, action commands ag. are projected into an
embedding space via a linear function f,, yielding &¢.r. Analogously, robot poses po.r and terrain
patches io.r are transformed using linear mappings f, and f; respectively, producing a sequence of
embeddings Po.r and io-. This initial linear mapping can be formally expressed as:

dt == fa(at) == Waat + ba7 a;y € ag.r, (1)
P = fp(p) = Wppe + bp, o € Porr, 2
i = fiiy) = Wyig + by, i € oo, 3)

where W, W,,, and W; represent the weight matrices, and b,, by, and b; denote the bias vectors for
each respective modality.

3.1.1 Unified Multi-Modal Latent Representation

To off-load cross-modal interaction learning from Transformer, it is crucial to establish a consistent
distributional characteristic across the modality-specific embeddings. Instead of aligning different
embeddings, VERTIFORMER treats all modalities as a single unified modality. To achieve this, a
subsequent linear transformation, denoted by f,, is applied to the embeddings:

2= fs(ao, Py i) = W@ - - ) + bs, t € [0: TY, )

with W, and by denoting the weight matrix and bias vector for f, respectively. This shared linear
mapping f, aims to project all embeddings into a unified latent space, minimizing potential discrep-
ancies in statistical properties. The resulting unified tokens, z,.r, are then passed as input to the
VERTIENCODER (Fig.2 top left). This procedure ensures a homogeneous input representation for
the subsequent encoding layers, crucial for effective multi-modal fusion of robotic data (Fig. 3a).
This new unified representation stems from the intuition that these input modalities represent the
same scene and should therefore share a common representation space. To reinforce this, we also
apply tied encoder-decoder weights [72], which further guide the modalities toward a shared distri-
bution. This new modality unification approach results in a more coherent multi-modal representa-
tion, leading to improved kinodynamics understanding, particularly in data-constrained scenarios.
Empirical results (Fig. 4) supporting the importance of such unified representation, in contrast to the
conventional individual modality representations, will be presented in Section 4.
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Figure 3: The integration of unified state representation and missing modality infilling enables VER-
TIFORMER to perform simultaneous temporal inference of FKD, IKD, and zero-shot NP.

3.1.2 Missing Modality Infilling for Multi-Task Learning

We propose stochastic modality infilling (Fig. 2, top right) to enable VERTIFORMER’s multi-task
prediction (i.e., pose, action, navigation, and terrain, Fig. 2, bottom right), aiming for enhanced data
efficiency via shared representations.

After a warm-up phase, training involves replacing future (7 steps ahead) poses (pPr+i:14+) Or ac-
tions (ar;i.7+,) With learnable vectors (50% probability each). This facilitates two tasks: Action-
Conditioned Pose Prediction (given actions, predict poses) and Pose-Conditioned Action Prediction
(given poses, predict actions), analogous to FKD and IKD respectively.

This strategy promotes a joint action-pose representation as the learnable tokens, processed by f
and thus aligned with the modality distributions. Consequently, the model supports dynamic task
adaptation at inference and infers missing modalities through time (Fig. 3b).

Furthermore, by extending this infilling strategy to replace both future actions, ary.r+,, and fu-
ture poses, pPr+1:1++, Simultaneously, VERTIFORMER becomes a navigation policy in a zero-shot
manner. In this configuration, the model predicts both actions and poses solely based on the his-
torical context, effectively mimicking the demonstrated behavior without requiring explicit infor-
mation about future actions and poses from a planner. Notice that compared to masked modeling
approaches [73, 47] these learnable vectors are not masked as a learning objective, i.e., masked token
reconstruction, instead they act as the modality representation and are present also during inference.

3.1.3 Non-Autoregressive Training

Building upon the work by Octo Model Team et al. [49] and Doshi et al. [44], VERTIFORMER em-
ploys multiple context tokens to represent a distribution of plausible future states. These context
tokens serve to inform VERTIDECODER in predicting both the future ego state and the evolution
of the environment. Having multiple context tokens allows VERTIFORMER to predict the future
non-autoregressively. The non-autoregressive nature of VERTIFORMER is motivated by the poten-
tial computational bottlenecks inherent in autoregressive models, which require querying the model
multiple times and are subject to drifting due to error propagation from earlier steps. By learn-
ing multi-context representations, the non-autoregressive approach aims to improve both training
efficiency and inference speed—a critical consideration for real-time robotic control applications.

We train VERTIFORMER by minimizing the Mean Squared Error between the model’s predictions
and the corresponding ground truth values. We evaluate the model by calculating the error rate
between the model’s predictions and the ground truth values on a held-out, unseen dataset.

3.2 VERTIFORMER Inference

During FKD inference, VERTIENCODER receives the same historical input as training. VERTIDE-
CODER receives sampled actions from an external sampling-based planner (e.g., MPPI [74]) while
masking the corresponding poses, compelling the model to predict future poses based solely on the
sampled actions (and the context tokens) so that the planner can choose the optimal trajectory to
minimize a cost function. For IKD, a global planner generates desired future poses, and by mask-



ing the actions we encourage the model to predict future actions to achieve these globally planned
poses. By masking both actions and poses, VERTIFORMER can still navigate by predicting actions in
a zero-shot NP manner. We provide VERTIFORMER'’s architecture parameters in Appendix 9, and
implementation details along with the one-hour dataset description are provided in Appendix 10.
Qualitative samples of FKD are provided in Fig. 10 of Appendix 11.

4 Training on One Hour of Data

VERTIFORMER’s one hour of training data comes from a human-teleoperated demonstration of driv-
ing an open-source four-wheeled ground vehicle [3], Verti-4-Wheeler (V4W), on a custom-built off-
road testbed composed of hundreds of rocks and boulders. The demonstrator mostly aims to drive
the robot to safely and stably traverse the vertically challenging terrain, but still occasionally en-
counters dangerous situations such as large roll angles and getting stuck between rocks. Fortunately,
those situations serve as explorations for VERTIFORMER to understand a wider range of kinody-
namic interactions. Direct application of standard Transformer training methodologies in NLP and
CV to such a small robotics dataset proves challenging due to the inherent lack of inductive bias in
Transformers [40], which necessitates substantial amounts of data for effective training. However,
our experiments suggest that VERTIFORMER'’s judicious modifications to established MM and NTP
training paradigms can facilitate effective Transformer training even with limited robotics data.

0.7

Unified latent space representation facilitates FKD, IKD,
and NP by decoupling inter-modality learning from tempo-
ral progression modeling, with only the latter handled by the
Transformer, which otherwise becomes data-intensive.
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Figure 4: Without unified latent repre-

As illustrated (Fig. 4), non-unified tokens result in poor kin-
odynamic understanding (minimal loss decrease) and sug-
gest that fragmented processing hinders capturing temporal
relationships. While larger datasets might compensate, they
are often unavailable in robotics.

sentation the model cannot capture tem-
poral dependencies and understand kin-
odynamic transitions, resulting in an al-
most flat learning curve.

Conversely, the unified representation significantly improves the model’s ability to discern temporal
order and understand system dynamics by consolidating information cohesively. This underscores
the importance of unified representations for learning complex dynamics effectively from limited

robotics data, unlike in data-rich NLP/CV domains.

Longer prediction horizons in navigation planning im-
prove foresight but increase uncertainty via error accumu-
lation, especially in autoregressive models like VERTIDE-
CODER where errors propagate. We compare the autoregres-
sive VERTIDECODER with the non-autoregressive VERTI-
FORMER on long-horizon accuracy. Results (Fig. 5) show
VERTIFORMER predicts longer (2s) with less drift than
VERTIDECODER predicting shorter (1s), highlighting the
advantage of non-autoregressive models for reducing com-
pounding errors in long-term predictions. We provide qual-
itative results as well in Fig. 11 of the Appendix.

MM vs NTP vs End2End are currently the prominent
approaches in CV, NLP, and robotics respectively. We

compare MM, NTP, and End2End for off-road mobility tasks.
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Table 1: Physical results with VERTIFORMER, VERTICODER, VERTIDECODER, NoMaD, and TAL .
Task Model SR+ TT | Roll | Pitch |

TAL [46] 8/10 11.80£0.87 0.198+0.38 0.086 + 0.07

FKD VERTIDECODER 6/10 15.12+1.78 0.1804+0.30 0.114 £0.09
VERTICODER [47] 10/10 858 +1.54 0.1894+0.23 0.116 £0.08
VERTIFORMER 10/10 9.42 + 0.61 0.169 £ 0.17 0.096 £ 0.08

VERTIDECODER 10/10 1592 +1.08 0.1814+0.23 0.125£0.08
IKD  VERTICODER [47] 7/10 1399 £3.27 0.136 +0.14  0.069 & 0.07
VERTIFORMER 8/10 17.16 £6.10 0.136 = 0.10 0.077 £ 0.07

NoMabD [438] 1/10 22.3 0.187 0.09
NoMaD-scratch 0/10 - - -
VERTICODER [47]  9/10 1349 £3.33 0.175+0.37  0.089 + 0.09
VERTIFORMER 8/10  12.64 +3.89 0.154+0.11 0.099 £+ 0.08

NP

(VERTICODER [47]), an autoregressive NTP decoder (VERTIDECODER, Fig. 2 right trained alone
without cross-attention), a non-Transformer End2End model [47], and VERTIFORMER, our non-
autoregressive Transformer (Fig. 2). VERTICODER and VERTIDECODER use the unified representa-
tion (Fig. 4). The End2End model employs ResNet-18 [75] for computational balance (Appendix 9).

Evaluations (Fig. 6, 1s horizon) show VERTIFORMER achieves superior performance on FKD,
IKD, and NP error rates. Its non-autoregressive prediction leads to better accuracy than
the autoregressive VERTIDECODER (which cannot directly perform NP, as it has access to
both action and pose at each step). VERTIFORMER’s joint multi-task training also sur-
passes VERTICODER’s separate training [47] (except Z prediction). The End2End model
exhibits the highest errors, highlighting Transformer’s benefits for kinodynamics learning.

Beyond accuracy, VERTIFORMER supports concurrent
multi-task execution during inference, vital for real-time 08
robotics, especially with missing modalities (e.g., sensor
degradation and planner failure). We provide more exper-
iments on the analysis of basic factors to train Transformers
in general in Appendix 8. 1o
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We implement VERTIFORMER’s FKD, IKD, and NP on the Figure 6: VERTIFORMER achieves the
V4W ground robot platform. The experiments are carried Eg;g;;i‘g?gyvaggslscg IEIE)I’{ I(Ilf/[?w;msgf
out on a never before seen 4 m x 2.5 m testbed made of [ pEcopErR (NTP), and End2End.
rocks/boulders, wooden planks, AstroTurf with crumpled

cardboard boxes underneath, and modular 0.8 m x 0.75 m expanding foam to represent different
types of vertically challenging terrain with different friction coefficients and varying deformabil-
ity (Fig. 7 of Appendix). The modular foam and rocks/boulders do not deform, while the rocks
may shift positions under the weight of the robot. On the other hand, the wooden planks and Astro-
Turf are completely deformable and change the terrain topography during wheel-terrain interactions.
The one-hour training dataset used (see details of the dataset in Appendix 10) only consists of robot
teleoperation on the rigid rock/boulder testbed and hence the experiment testbed is an unseen en-
vironment, posing generalization challenges for VERTIFORMER. Details of FKD, IKD, and NP
implementations are provided in Appendix 10.2.

Results and Discussions. The results of the three methods are then compared to MPPI using
TAL [46], a highly accurate forward kinodynamic model specifically designed for vertically chal-
lenging terrain, and NoMabD [48], a state-of-the-art general navigation model based on diffusion
policy. We train NoMaD from scratch (NoMaD-scratch in Table 1) to illustrate the difficulty of
learning from our limited (one hour) data, while comparison with pre-trained NoMaD highlights



the inadequacy of 2D assumptions for vertically challenging terrain, necessitating an understanding
of 3D robot-terrain interactions. Since NoMabD tackles a different problem than VERTIFORMER,
fine-tuning its pre-trained weights with data from an unrelated task would negatively impact its
performance. We report success rate (SR), traversal time (TT), and roll and pitch angles in Table 1.

Our observations reveal a nuanced performance difference between VERTICODER [47] and VERTI-
FORMER, particularly concerning NP and IKD. VERTICODER leverages MM pre-training to learn a
general kinodynamic representation. Then it trains separate downstream task heads with the learned
representation, providing VERTICODER with privileged information for each task. This specialized
training allows VERTICODER to effectively leverage the provided data for NP. In contrast, VERTI-
FORMER approaches NP in a zero-shot manner. It is not explicitly trained on NP, relying instead
on its modality infilling strategy. This infilling effectively handles missing modalities by replacing
them with a trained mask, enabling the model to infer behavior without direct NP training. While
this approach allows VERTIFORMER to perform NP without specialized training, it also explains
why VERTICODER, with its dedicated head, achieves a higher success rate. A similar trend is ob-
served with IKD. VERTIDECODER has access to both predicted and actual actions and poses at each
time step, providing richer guidance for the IKD process. This richer information stream in VER-
TIDECODER is the reason for achieving a higher success rate, especially considering the inherent
difficulty of IKD compared to FKD. VERTIFORMER, however, faces a challenge in IKD and takes
longer to finish the traversal. The infilling strategy, while effective for missing modality, is not as
accurate as the actual modality.

Regarding FKD, the architectural difference between VERTIFORMER and VERTICODER causes dif-
ferent navigation behaviors. VERTICODER’s specialized task head for FKD treats each future step
independently without any attention weights between steps. While this approach facilitates faster
MPPI initial convergence due to a lack of cross attention, it can also lead to drift, causing inconsis-
tencies between predicted steps and ultimately resulting in a larger standard deviation of traversal
time across trials. While VERTICODER’s MPPI converges quickly, it struggles with long-term con-
sistency. VERTIFORMER takes a different approach. By employing attention and cross-attention
mechanisms between historical and future steps, it dynamically incorporates past information into
future predictions. This allows VERTIFORMER to consider the historical context through cross-
attention and causal masking when predicting future states, leading to more coherent and consistent
predictions. Consequently, although MPPI might require more time to converge on a path with
VERTIFORMER, once it does, the resulting behavior is more robust and less variable across trials,
reflected in a smaller traversal time standard deviation.

6 Conclusions

In this work, we introduce VERTIFORMER, a novel data-efficient multi-task Transformer de-
signed for learning kinodynamic representations on vertically challenging, off-road terrain. VER-
TIFORMER demonstrates the capacity to simultaneously address forward kinodynamics learning,
inverse kinodynamics learning, and navigation policy learning tasks, only using one hour of training
data. Key contributions include a unified latent space representation enhancing temporal under-
standing, learned modality infilling facilitating multiple off-road mobility tasks simultaneously and
acting as a proxy for missing modalities during inference, and multi-context tokens enabling multi-
step prediction without autoregressive feedback. All three contributions improve robustness and
generalization of VERTIFORMER to out-of-distribution environments. We provide extensive exper-
iment results and empirical guidelines for training Transformers under extreme data scarcity. Our
evaluations across all three downstream tasks demonstrate that VERTIFORMER outperforms baseline
models, including TAL [46], VERTICODER [47], VERTIDECODER, NoMaD [48], and end-to-end
approaches, while exhibiting reduced overfitting and improved generalization and highlighting the
efficacy of the proposed architecture and training methodology for learning kinodynamic represen-
tations in data-constrained settings. Physical experiments also demonstrate that VERTIFORMER can
enable superior off-road robot mobility on vertically challenging terrain. We leave extending this
work to general navigation as future work.



7 Limitations

VERTIFORMER can capture long-range dependencies through additional context tokens, but it re-
quires re-training if we want to change the prediction horizon, while autoregressive models can
predict any number of steps into the future without re-training. However, it is possible to treat VER-
TIFORMER as an autoregressive model during inference and predict longer horizons without the
need for re-training. As illustrated in Fig. 10 of Appendix 11, our model demonstrates a deficiency
in accurately executing a turning maneuver. Such failures stem from long-horizon (1 second), non-
autoregressive predictions in one step accentuated by the inaccuracy of terrain reconstruction caused
by the high degree of complexity present in off-road topographical formations. This also reflects on
the accuracy of predicting vehicle Z. On 2D surfaces, this should not pose a problem. A further
limitation comes from the unified state representation where adding new modalities requires training
the model from scratch.

It is crucial to acknowledge that our observations are primarily associated with the challenges in-
herent in wheeled locomotion on complex, vertically challenging, off-road terrain that requires an
understanding of the robot-terrain interactions in 3D and may not be applicable to other robotic do-
mains such as visual navigation or manipulation without further investigation. In visual navigation,
the robot typically relies on visual cues and image processing to perceive its environment and plan its
path. In manipulation tasks, the focus is on interacting with objects rather than negotiating through
complex terrain. Further investigation is required for general visual navigation and manipulation.
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TIForRMER: A Data-Efficient Multi-Task Transformer on
Vertically Challenging Terrain

Supplementary Material

The structure of the Appendix is as follows: we start by discussing additional experiments in Sec-
tion 8, then we will give details of the VERTIFORMER’’s architecture in Sec. 9, followed by dataset
description, implementation details of the robot, FKD, and IKD in Sec. 10, and finally, we provide
more qualitative results to showcase VERTIFORMER’s performance in Sec. 11.

8 Additional Experiments

g " (S
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Figure 7: Unseen Test Environments with Rocks/Boulders, Wooden Planks, AstroTurf, and Expand-
ing Foam.

We conduct extensive experiments to demonstrate the efficacy of various features of VERTI-
FORMER to allow it to be trained with only one hour of data. We also present our findings in a
way that highlights VERTIFORMER’s differences compared to common practices in NLP and CV,
where Transformer training practices have been extensively studied [76, 77, 78, 79, 80, 81, 82].
Therefore, our experiment results also serve as a guideline on how to optimize Transformer train-
ing for robotics, particularly in off-road navigation and mobility tasks with complex vehicle-terrain
interactions under data-scarce conditions.

We conduct our experiments based on three perspectives: Section 8.1 provides an analysis of basic
factors to train Transformers in general; Finally, Sec. 8.2 evaluates the effectiveness of each off-
road mobility learning objective and compares TransformerEncoder, TransformerDecoder, and non-
Transformer end-to-end model performances. For fairness, all experiments are conducted with the
same hyper-parameters. Please refer to Appendix 8 for the discussions.

Transformers in NLP and CV. The Transformer architecture originated from the seminal work of
Vaswani et al. [39] in machine translation. Subsequent research has explored the effects of different
Transformer parts, including using only the TransformerEncoder (BERT [18]) or TransformerDe-
coder (GPT series [17, 19, 20]). Other works explored optimization techniques such as adopting a
warm-up phase for training Transformers [76], specific initialization and optimization methods to
train deep Transformers with limited data [77], as well as normalization techniques [78].

Early explorations of Transformers in CV include iGPT [83]. A significant breakthrough came
with the introduction of Vision Transformers (ViT) by Dosovitskiy et al. [40]. Subsequent research
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Figure 8: (a) Sinusoidal positional encoding achieves better model accuracy than learnable encoding
for predicting X, Y, and Z components of the robot pose. (b) Normalizing the Transformer output
before passing the embeddings to the task decoder improves model performance.

focused on refining training methodologies and enhancing performance, such as incorporating aux-
iliary tasks [80] for spatial understanding, two-stage training (self-supervised view prediction fol-
lowed by supervised label prediction) [81], different token representations [84], architectural mod-
ifications [85], working in embedding space by JEPA family [86, 87, 88], data augmentation and
regularization [82], and Masked Autoencoders [21] with random patch encoding for training stabi-
lization [79]. Similar to the autoregressive nature of NLP tasks, Rajasegaran et al. [89] provided
empirical guidelines to train Transformers on large-scale video data. Despite the plethora of NLP
and CV Transformers trained with internet-scale datasets, existing common training practices may
not apply to robot learning with small real-world data, especially for off-road robot mobility.

8.1 Experiment Results of Basic Transformer Factors

Positional encoding is crucial for addressing the permutation equivariance of Transformers, which,
by design, lacks inherent sensitivity to input sequence order. This characteristic necessitates the
explicit provision of positional information to enable the model to effectively process sequential
data. Learnable positional encodings, typically implemented as trainable vectors added to input em-
beddings, have found favor in CV applications [21]. Conversely, non-learnable encodings, such as
the sinusoidal functions introduced in the seminal work by Vaswani et al. [39], have demonstrated
efficacy in NLP tasks. This divergence in methodological preference may stem from inherent dif-
ferences in the statistical properties of data modalities. CV tasks often involve spatially structured
data where absolute positional information may be less critical than relative relationships between
local features. In such contexts, learnable encodings may offer greater flexibility in adapting to
task-specific positional dependencies. Conversely, NLP tasks frequently rely on precise word or-
der and long-range dependencies, where the fixed nature of non-learnable encodings may provide a
beneficial inductive bias [90].

To empirically investigate the relative merits of these approaches on robot mobility tasks, we conduct
a comparative analysis of learnable positional encodings against sinusoidal encodings as shown in
Fig. 8a. Our findings indicate that while both methods achieve comparable asymptotic performance
levels, sinusoidal positional encodings exhibit a slight performance advantage.

Normalization layers, such as LayerNorm [91] or RMSNorm [92], have been shown to play a
crucial role in stabilizing the training of Large Language Models (LLMs) [78]. By normalizing the
activations of hidden units, these layers help to address issues such as vanishing/exploding gradients
and improve the overall stability of the training process [76]. In this study, we investigate the impact
of applying RMSNorm layer immediately before the task head.

Our experiment results, depicted in Fig. 8b, demonstrate an advantage for a model incorporating
RMSNorm layer before the task head. This configuration consistently exhibits improved generaliza-
tion performance and enhanced training stability compared to a model without the final RMSNorm.
This finding suggests that normalizing the final embedding vector before passing it to the task head



can benefit model performance, potentially by facilitating more effective gradient flow and thus

improving the robustness of the model’s predictions.

8.2 Experiment Results of Robotic Objective Functions

Patch prediction head, as an auxiliary head to learn envi-
ronment kinodynamics, was first introduced by Nazeri et al.
[47]. However, we find that the high complexity of off-road
terrain topography and the potential presence of noise or
occlusion within the input data create a challenging recon-
struction task (see Fig. 1). Consequently, the patch predic-
tion head often generates inaccurate reconstructions, intro-
ducing noise into the learning process and negatively im-
pacting the performance of the primary tasks, i.e., FKD,
IKD, and BC. This suggests that the auxiliary task of patch
reconstruction, in this specific domain, may introduce a con-
flicting learning signal that hinders the model’s ability to ef-
fectively learn the desired representations for the main ob-
jectives (Fig. 9).

9 Model Architecture
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Figure 9: The inclusion of a patch re-
construction head results in a degra-
dation of overall model performance.
This counterintuitive result can be
attributed to the inherent difficulty
in accurately predicting the detailed
structure of off-road terrain topogra-

phy.

Table 2: VERTIFORMER Architecture Parameters.

VERTIENCODER
Layers 6
Normalization RMSNorm [92]
Hidden size D 512
Heads 8
MLP size 512
Dropout 0.3
Activation GELU [93]
Pre-Norm True
PositionalEncoding ~ Sinusoidal
VERTIDECODER
Layers 4
Normalization RMSNorm [92]
Hidden size D 512
Heads 8
MLP size 512
Dropout 0.3
Activation GELU [93]
Pre-Norm True

PositionalEncoding  Sinusoidal

Table 3: End2End Architecture Parameters.

End2End
Patch Encoder  Resnet-18
Normalization batch norm [94]
Hidden Layer 1 256
Hidden Layer2 512
Hidden Layer 3 64
Activation Tanh
Dropout 0.2




Optimization: we use the AdamW optimizer [95] with learning rate of 5e~* and weight decay of
0.08. We train VERTIFORMER for 200 epochs with a batch size of 512. We choose ResNet-18 for
End2End model to balance performance with the computational constraints of our robotic platform,
making it well-suited for deployment on robots with limited on-board processing capabilities, com-
pared to deeper networks like ResNet-50 or ResNet-101. However, more complex models might
offer higher accuracy on the train dataset, it is shown that it is not the case on unseen data [47]
since only going deeper does not help understand the intricate interactions between the robot and
the terrain.

10 Implementation Details

Dataset: We utilize the dataset introduced by TAL [46], which was collected on a 3.1 m X 1.3 m
modular rock testbed with a maximum height of 0.6 m. The dataset includes 30 minutes of data from
both a planar surface and the rock testbed, capturing a diverse range of 6-DoF vehicle states. These
states encompass scenarios such as vehicle rollovers and instances of the vehicle getting stuck, all
recorded during manual teleoperation over the reconfigurable rock testbed. The dataset comprises
visual-inertial odometry for vehicle state estimation, elevation maps derived from depth images, and
teleoperation control data, including throttle and steering commands, to provide a holistic view of
vehicle dynamics.

10.1 On-Robot Implementation

Hardware: We use an open-source V4W robotic platform, as detailed by Datar et al. [3], for phys-
ical evaluation. The V4W platform is equipped with a Microsoft Azure Kinect RGB-D camera to
build elevation maps [96] and an NVIDIA Jetson Xavier processor for onboard computation. The
proposed VERTIFORMER model is implemented using PyTorch and trained on a single NVIDIA
A5000 GPU with 24GB of memory, demonstrating efficient memory utilization with a peak mem-
ory footprint of only 2GB.

10.2 Downstream Implementation and Metrics

FKD VERTIFORMER’s FKD task is integrated with the MPPI planner [74] with 1000 samples and a
horizon of 18 steps. We sample across a range of control sequences centered around the last optimal
control sequence selected by the robot. The first three actions in a sampled control sequence are
passed to VERTIFORMER along with six past poses, actions, and terrain patches at 3 Hz consisting
of one second. The model is repeated six times and outputs 18 future poses of the robot, which are
combined to create one candidate trajectory. All 1000 candidate trajectories are then evaluated by
a cost function, which calculates the cost of each trajectory based on the Euclidean distance to the
goal and roll and pitch angles of the robot. Higher distance, roll, and pitch values are penalized with
higher cost. Based on the cost function, MPPI outputs the best control sequence moving the robot
forward at 3 Hz. The V4W executes the first action and replans.

IKD We integrate VERTIFORMER’s IKD task with a global planner based on Dijkstra’s algo-
rithm [97], which minimizes traversability cost on a traversability map [98]. The global planner
generates three desired future poses with the lowest cost and passes them to VERTIFORMER, which
also has access to six past poses, actions, and terrain patches. VERTIFORMER then produces three
future actions to drive the robot to the three desired future poses. Similarly to FKD, the V4W
executes the first action and then replans at 3 Hz.

NP We implement VERTIFORMER’s NP by passing in six past poses, actions, and terrain patches
to VERTIFORMER. The model outputs three future actions to take. Similarly to FKD and IKD, the
first action is executed by V4W and the replanning of NP runs at 3 Hz.

For FKD and IKD, a trial is deemed successful if the robot reaches the defined goal without rolling
over or getting stuck. For NP without explicit goal information, a trial is considered successful if
the robot successfully traverses the entire testbed.



11 Qualitative Results
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Figure 10: Qualitative Results of 3-Step and 6-Step Successful and Failed Trajectory Prediction over
One and Two Second(s).
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Figure 11: Qualitative Comparison of Drifting between Non-Autoregressive VERTIFORMER and
Autoregressive VERTIDECODER.
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Figure 12: Visualization of VERTIFORMER Predictions in green and Ground Truth in blue.
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