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Abstract— Off-road navigation on vertically challenging ter-
rain, involving steep slopes and rugged boulders, presents signif-
icant challenges for wheeled robots both at the planning level to
achieve smooth collision-free trajectories and at the control level
to avoid rolling over or getting stuck. Considering the complex
model of wheel-terrain interactions, we develop an end-to-end
Reinforcement Learning (RL) system for an autonomous vehicle
to learn wheeled mobility through simulated trial-and-error
experiences. Using a custom-designed simulator built on the
Chrono multi-physics engine, our approach leverages Proximal
Policy Optimization (PPO) and a terrain difficulty curriculum
to refine a policy based on a reward function to encourage
progress towards the goal and penalize excessive roll and pitch
angles, which circumvents the need of complex and expensive
kinodynamic modeling, planning, and control. Additionally,
we present experimental results in the simulator and deploy
our approach on a physical Verti-4-Wheeler (V4W) platform,
demonstrating that RL can equip conventional wheeled robots
with previously unrealized potential of navigating vertically
challenging terrain.

I. INTRODUCTION

Autonomous off-road navigation has various safety, se-
curity, and rescue applications, such as search and rescue
missions in hazardous or difficult-to-reach environments and
scientific exploration in remote deserts or extraterrestrial
planets [1]. One particular thrust in this area of research is the
development of widely available wheeled robots capable of
navigating vertically challenging terrain (e.g., steep slopes,
rocky outcroppings, and uneven surfaces, Fig. 1 top) [2].
Achieving reliable and robust mobility in these environments
is challenging due to the intricate nature of the terrain,
the complex vehicle-terrain interactions, the adverse impact
caused by gravity, and the potential deformation of the
vehicle chassis.

Despite advancements in classical planning and control for
off-road navigation, significant challenges remain. One major
issue is the difficulty in precisely modeling vehicle-terrain
interactions, which are highly variable and unpredictable
in off-road, especially vertically challenge, environments.
Implementing a high-precision kinodynamics or vehicle-
terrain interaction model within a sampling-based motion
planner can consume excessive computational resources on-
board a mobile robot. Additionally, errors in these models
can cascade into subsequent planning and control processes,
leading to suboptimal performance. Furthermore, integrating
multiple sensors and control algorithms increases system
complexity and makes it challenging to generalize and scale
across different terrain and applications.
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Fig. 1: VW-Chrono: Simulator for Wheeled Mobility on
Vertically Challenging Terrain with Increasing Difficulty
(Lower Left to Lower Right).

To address these challenges, an increasing number of
research efforts have introduced RL methods into off-road
navigation. RL algorithms, such as Proximal Policy Opti-
mization (PPO) [3], enables autonomous vehicles to learn
and adapt to complex terrain through trial and error in
simulation, without the need for costly real-world or expert
demonstration data. Learning from a high-precision physics
model in a simulator with RL in advance can also alleviate
onboard computation during deployment.

To advance off-road navigation solutions for wheeled
robots on vertically challenging terrain using RL, we first
develop a novel simulation environment developed within the
Chrono multi-physics simulation engine [4]. This simulator
allows RL for wheeled robots to navigate vertically chal-
lenging terrain, with subsequent deployment onto a physical
Verti-4-Wheeler (V4W) [2]. We compare our navigation
policy learned through PPO against an optimistic planner
baseline and a classical planner with elevation approach,
which shows the advantage of the RL-learned mobility. In
summary, our contributions are outlined as follows:

• We create a simulator for wheeled mobility on vertically
challenging terrain, VW-Chrono (Fig. 1 bottom), that
procedurally generates four levels of increasing mobility
difficulty to incorporate the principle of curriculum
learning [5].

• We utilize PPO [3] combined with the Sliced-
Wasserstein Autoencoder (SWAE) structure [6] to ef-
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Fig. 2: Increasing Mobility Difficulty of Vertically Challenging Terrain by Interpolating Start and End with Weight w.

ficiently learn wheeled mobility in VW-Chrono.
• We present a comparative study between our RL-learned

mobility and two baselines for autonomously driving
wheeled robots over vertically challenging terrain.

II. RELATED WORK

In this section, we provide a comprehensive review of
related work on off-road mobility, focusing on both classical
approaches and recent advances in data-driven methods.

Off-road mobility presents significant challenges for au-
tonomous robots due to the complexity and variability of
unstructured terrains. Classical approaches have tradition-
ally addressed these challenges by employing hand-crafted
methodologies for perception [7], planning [8], modeling [9],
and control [10]. These techniques often rely on heuristics
and extensive domain expertise to handle environmental vari-
ations. While effective in controlled scenarios, these classical
methods suffer from several notable limitations: they require
significant engineering effort, are susceptible to cascading
errors from upstream perception and planning modules, and
struggle to adapt effectively to novel or unforeseen environ-
ments [11].

To overcome the shortcomings of traditional methods,
data-driven approaches for off-road mobility have emerged
as promising alternatives [12]. These methods leverage ad-
vances in machine learning to directly learn complex be-
haviors from data, offering adaptability in environments that
are too intricate for manual engineering [12]. Among these
methods, end-to-end learning of control policies has been
explored extensively, where imitation learning [13] and rein-
forcement learning (RL) are used to learn robust navigation
strategies from either expert demonstrations or trial-and-error
interactions. Moreover, learning-based semantic perception
methods have been employed to provide high-level scene
understanding and terrain classification for improved mobil-
ity [14]–[19].

In addition to perception, recent efforts have also focused
on learning kinodynamic models [20]–[27] that better capture
the physical interactions between the robot and varying ter-
rain types. Parameter adaptation approaches [28]–[32] have
also been proposed to adjust system parameters on-the-fly
based on perception feedback, providing greater robustness
to environmental changes. Furthermore, learning-based cost
function optimization [33]–[42] has contributed to improved

decision-making by enabling more nuanced and context-
aware trajectory planning.

Despite their promise, data-driven approaches face notable
challenges. Specifically, RL [43]–[45] and imitation learn-
ing [46]–[48] methods tend to be data-intensive, often requir-
ing either millions of trial-and-error iterations or substantial
expert-provided labeled datasets [49]–[52] for effective pol-
icy learning. Furthermore, ensuring generalization of learned
models to diverse, unseen environments remains a critical
open question. One potential solution lies in curriculum
learning, where a sequence of progressively challenging
tasks is presented to the agent [5], [53]. This strategy has
shown potential for improving both sample efficiency and
robustness of learned policies, thereby facilitating better
generalization across different deployment settings.

III. METHOD

In this section, we present the design of VW-Chrono and
its OpenAI Gym environment. We introduce our RL problem
and training for wheeled mobility on vertically challenging
terrain, as well as our SWAE-based elevation map encoder.

A. VW-Chrono

To ensure the simulated vertically challenging terrain
resemble the real world, we first utilize our physical V4W to
collect elevation map data on a custom-built indoor testbed
designed for vertically challenging terrain. This testbed in-
cludes hundreds of rocks and boulders, averaging 30cm in
size (matching the scale of the V4W), which are randomly
laid out and stacked on a 3.1×1.3m test course. The highest
elevation of the test course can reach up to 0.5m, more
than twice the height of the vehicle (Fig. 1 top). We create
a grayscale Bitmap image (BMP) with the collected data
to represent terrain elevation [54]. In the Chrono multi-
physics simulation engine, a triangular mesh is generated by
assigning a vertex to each pixel of the BMP image. The mesh
is then horizontally to match the given extents and expanded
vertically to align with the specified range. This ensures that
the darkest pixel aligns with the minimum height and the
lightest pixel corresponds to the maximum height (Fig. 1
bottom).

To create vertically challenging environments with differ-
ent difficulty levels as shown in Fig. 2, we create a sequence
of elevation maps by linearly interpolating between a starting
map I0 (flat terrain) and an ending map IN (rugged terrain)

126

Authorized licensed use limited to: George Mason University. Downloaded on December 04,2024 at 15:56:37 UTC from IEEE Xplore.  Restrictions apply. 



using a weighted average. The intermediate image Ik at stage
k out of N stages can be calculated using the following
equation:

Ik = (1− k

N
)I0 +

k

N
IN , ∀k ∈ {0, 1, ..., N}. (1)

In Eqn. (1), the term
k

N
is used to define the interpolation

weight w in Fig. 2. This approach is based on the principle
of curriculum learning, which posits that models can learn
more effectively and efficiently when tasks are introduced in
a structured, incremental manner, starting with simpler tasks
and gradually moving to more complex ones.

B. RL Problem Formulation

We employ RL to train a policy that receives environmen-
tal inputs and generates actions to drive the robot through
vertically challenging terrain, avoiding getting stuck and
rolling over while moving toward a designated goal.

A regular Markov Decision Process (MDP) can be defined
by a tuple (S,A, T , γ,R), including state, action, state
transition, discount factor and reward. The goal is to learn
a policy π : S → A to maximize the expected cumulative
reward over the task horizon T , i.e.,

max
π

Eat∼π(·|st)

[
T∑

t=0

γtRt

]
, (2)

where at ∈ A and st ∈ S are the action and state of the
system at each step. To learn wheeled mobility for vertically
challenging terrain, the following design choices are made:

1) State Space: The inputs to our RL policy include
angular difference between the vehicle and goal heading (in
radian), current vehicle velocity (in m/s), and cropped eleva-
tion map centered at and aligned with the vehicle. We use a
Sliced-Wasserstein Autoencoder (SWAE) to reduce elevation
map dimensionality and utilize the latent vector to preserve
original elevation information. After SWAE pretraining, we
freeze the parameters of the encoder during RL training.

2) Action Space: The RL policy’s outputs include desired
linear speed and steering angle, instead of raw throttle and
steering commands, in order to improve learning efficiency.
A PID controller controls the throttle and steering commands
to achieve the desired linear speed and steering angle.

3) Policy Model Architecture: We choose PPO [3] as
the RL algorithm considering our continuous action space.
PPO iteratively collects data through interactions with the
environment and updates the policy to maximize the expected
cumulative reward (Eqn. (2)). Unlike traditional methods,
PPO employs a clipped surrogate objective to constrain
policy updates, preventing significant deviations that could
lead to instability. By balancing the exploration-exploitation
trade-off with a proximal threshold, PPO continually im-
proves the policy while ensuring stability.

C. Sliced-Wasserstein Autoencoder (SWAE)

We use SWAE as a feature extractor to reduce the
dimension of the elevation map around the robot while
preserving the original elevation information. SWAE is a

scalable generative model that captures the rich and often
nonlinear distribution of high-dimensional data (e.g., images,
videos, and audio). Learning such generative models involves
minimizing a dissimilarity measure between the data distri-
bution and the output distribution of the generative model,
which essentially constitutes an optimal transport problem.

D. Reward Design

Our RL agent is trained using a reward function composed
of three key terms. These terms are designed to incentivize
the agent’s movement toward the goal and prevent immobi-
lization. The components of the reward function are:

Rt := Rprogress +Rrollover +Rtimeout (3)

1) Progress Reward: This term promotes the agent’s
advancement toward the goal by providing positive rewards
for progress made. Additionally, if the agent has not moved
at least 1cm within 0.1 seconds, a penalty is applied:

Rprogress = w1 ·∆d− w2 · I(∆d < 0.01),

where ∆d is the distance moved towards the goal between
the previous timestamp and the current timestamp, I() is an
indicator function, and all different wi are weight terms.

2) Rollover Penalty: To prevent the agent from rolling
over, we penalize excessive roll and pitch angles:

Rrollover = −w3 ·
∑

i∈{roll,pitch}

max(0, |θi| − α), (4)

where θroll and θpitch are the roll and pitch angles, respec-
tively, w3 is a weight term and α is a constant threshold
angle.

3) Timeout Penalty: For each episode, if a time limit T is
reached before the robot reaching the goal, a fixed penalty c
is applied for the timeout, along with an additional penalty
based on the remaining distance to the goal:

Rtimeout = −(w4 · dremaining + c) · I(t ≥ T ),

where dremaining is the remaining distance to the goal.
Table II shows all hyper-parameters of our reward func-

tion.

IV. RESULTS

In this section, we present the experimental results of our
RL system. compared against two baselines designed for
vertically challenging terrain.

A. Baselines

We design two baselines for our VW-Chrono simulation
environment.

1) Optimistic Planner with flat-terrain assumption: The
primary input for this controller is the angular difference be-
tween the vehicle’s current heading and the desired heading
towards the goal. By minimizing this angle difference, the
planner guides the vehicle towards its target.
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TABLE I: Experiment Results of RL and Baselines

Approach Stage 1 Stage 2 Stage 3 Stage 4

RL
25/25, 5.75s,
1.19◦/1.26◦

25/25, 5.23s,
2.59◦/2.30◦

20/25, 5.35s,
3.55◦/2.23◦

15/25, 6.21s,
5.58◦/3.82◦

Optimistic Planner
25/25, 4.65s,
1.36◦/1.50◦

25/25, 4.82s,
2.63◦/2.00◦

17/25, 5.46s,
4.32◦/2.97◦

10/25, 5.68s,
7.11◦/4.11◦

Naive Planner
25/25, 5.39s,
1.31◦/1.37◦

25/25, 5.18s,
2.80◦/1.99◦

20/25, 6.20s,
4.90◦/2.76◦

12/25, 6.73s,
5.67◦/4.07◦

Best Reward Mean (RL) 2860.9 2415.4 1393.3 739.5

TABLE II: Reward Weights

w1 w2 w3 w4 α c T

50 10 20 10 30 100 15

2) Naive Planner with elevation heuristic: The Optimistic
Planner with flat-terrain assumption often struggles with
steep slopes and rugged boulders, leading to the vehicle
getting stuck. To enhance the planner’s performance on
challenging rock terrain, we employ a 64 × 64 cropped
elevation map centered on the vehicle. From the front part
of the vehicle, we evenly split the map into five regions and
choose the most traversable direction: At each time step, we
calculate the mean and variance of the elevation values of
these five regions and select the region with the most similar
mean and lowest variance as the driving direction, compared
to the region of the same size centered at the vehicle.

We utilize three metrics to compare results in Table I:

1) Number of successful trials (out of 25).
2) Mean traversal time (of successful trails in seconds).
3) Average roll/pitch angles (in degrees).

B. Simulation Results

In VW-Chrono, we randomly set vehicle start and goal
position on the testbed every time and test baselines against
our RL system. We present our experiment results in Table
I, where best results are shown in bold. The four stages
correspond to four increasing difficulty levels, 25 trials each.
The RL method consistently achieves a high number of
successful trials, particularly excelling in the earlier stages
with a perfect success rate in Stages 1 and 2 and maintaining
reasonable success rates in Stages 3, 4. However, in Stage
4, while the RL method achieves a success rate of 15 out
of 25, it maintains the best roll/pitch stability compared
to the Optimistic Planner and Naive Planner, indicating its
effectiveness in handling complex terrain with slower and
more cautious navigation.

The Optimistic Planner, while achieving the fastest traver-
sal times, shows a decline in performance as the terrain
difficulty increases, with a significant drop in the number
of successful trials and increasing roll/pitch angles in Stages
3 and 4. This indicates that the Optimistic Planner, although

efficient on less challenging terrain, struggles with stability
and success in more complex environments.

The Naive Planner strikes a balance between speed and
stability, with a high success rate and relatively low roll/pitch
angles across all stages. It demonstrates superior perfor-
mance over the Optimistic Planner in maintaining lower
roll/pitch angles, particularly in the most difficult Stages 4.
However, it still does not surpass the RL approach in terms
of overall stability in those complex stages.

C. Physical Demonstration

We also deploy the RL policy learned in simulation on a
physical V4W platform on a real-world rock testbed (Fig. 1
top). The robot is a four-wheeled platform based on an off-
the-self, two-axle, four-wheel-drive, off-road vehicle from
Traxxas. The onboard computation platform is a NVIDIA
Jetson Xavier NX module. First, we place the V4W on
flat terrain and specify a direction for it to follow. The RL
policy successfully guides the V4W in the intended direction.
Next, we introduce a large obstacle to assess the RL policy’s
performance. Finally, we test the V4W on the rock testbed
and observe that the RL policy effectively enables the V4W
to move toward its goal across the rocky terrain as shown in
Fig. 3.

V. CONCLUSION

This paper presents a comprehensive RL system to unlock
the previously unrealized potential of wheeled mobility on
vertically challenging terrain. The VW-Chrono simulator
can generate challenging terrain for future off-road navi-
gation research with adjustable mobility difficulty levels.
We utilize PPO as our RL algorithm based on a carefully
designed reward structure. The experimental results confirm
our hypothesis that conventional wheeled robots possess
the mechanical capability to navigate vertically challenging
terrain, which are normally considered as non-traversable
obstacles, especially with the help of data-driven approaches.
Furthermore, we demonstrate the feasibility of transferring
RL-learned mobility from simulation to a physical robot, en-
abling it to navigate real-world vertically challenging terrain.

This paper opens up a new research direction aimed at
achieving extreme off-road robot mobility using RL methods.
One promising future research direction is to employ a
teacher-student structure to automatically create different

128

Authorized licensed use limited to: George Mason University. Downloaded on December 04,2024 at 15:56:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Custom-Built Testbed with V4W and an Example Trajectory by the RL Algorithm.

levels of terrain in an automatic curriculum learning setting
to improve learning efficiency.
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