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ABSTRACT

Network based intruders seldom attack directly from their own
hosts, but rather stage their attacks through intermediate “stepping
stones” to conceal their identity and origin. To identify attackers
behind stepping stones, it is necessary to be able to trace through
the stepping stones and construct the correct intrusion connection
chain.

A complete solution to the problem of tracing stepping stones
consists of two complementary parts. First, the set of correlated
connections that belongs to the same intrusion connection chain
has to be identified; second, those correlated connections need to
be serialized in order to construct the accurate and complete
intrusion connection chain. Existing approaches to the tracing
problem of intrusion connections through stepping stones have
focused on identifying the set of correlated connections that
belong to the same connection chain and have overlooked the
serialization of those correlated connections.

In this paper, we use set theoretic approach to analyze the
theoretical limits of the correlation-only approach and
demonstrate the gap between the perfect correlation-only
approach and the perfect solution to the tracing problem of
stepping stones. In particular, we identify the serialization
problem and the loop fallacy in tracing connections through
stepping stones. We formally demonstrate that even with perfect
correlation solution, which gives us all and only those
connections that belong to the same connection chain, it is still
not adequate to serialize the correlated connections in order to
construct the complete intrusion path deterministically. We
further show that correlated connections, even with loops, could
be serialized deterministically without synchronized clock. We
present an efficient intrusion path construction method based on
adjacent correlated connection pairs.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General
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1. INTRODUCTION

One of most widely used techniques by intruders to hide their
origin is to connect through a series of hosts as stepping stones
before attacking the final target [7]. For example, an attacker at
host A may telnet or ssh into host B, and from there launch an
attack against host C. The victim at host C can use IP traceback
techniques [3,5 etc.] to find out that the attack comes from host B,
but IP traceback can not determine that the attack actually
originate from host A behind host B. By laundering through a
number of intermediate stepping stones, the attacker makes the
source tracing of the attack much more difficult. To identify
intruders behind stepping stones, it is critically important to be
able to trace the intrusion connections through the stepping stones
and construct the correct intrusion connections chain.

A complete solution to the problem of tracing stepping stones
includes: 1) the identification of the set of correlated connections
that belongs to the same intrusion connection chain; 2) the
serialization of the set of correlated connections in order to
construct the accurate and complete intrusion connection chain.
However, existing approaches to the problem of tracing intrusion
connections through stepping stones have focused on identifying
the set of correlated connections that belong to the same intrusion
connection chain and have left the serialization of correlated
connections an afterthought. While finding the right set of
correlated connections forms the foundation of solving the tracing
problem of intrusion connection chain, it does not, however,
completely solve the tracing problem.

In this paper, we use set theoretic approach to analyze the
theoretical limits of the correlation-only approach and
demonstrate the gap between the perfect correlation solution and
the perfect tracing solution of stepping stones problem. In
particular, we identify the serialization problem and the loop
fallacy in tracing connections through stepping stone. We



formally demonstrate that even with perfect correlation solution,
which gives us all and only those connections in the connection
chain, it is still not adequate to serialize the complete intrusion
connection chain deterministically. This is due to the lack of order
information from the set of correlated connections. We show that
without deterministic connection serialization, the effectiveness of
existing correlation-only approaches for tracing intrusion
connections through stepping stones could be seriously affected
by one simple practice of the attacker: introducing loops by
passing some stepping stone more than once. We further
demonstrate that correlated connections, even with loops, could
be serialized deterministically without synchronized clock. We
present an efficient serialization method based on adjacent
correlated connection pairs from each stepping stone.

The remainder of this paper is organized as follows. Section 2
reviews related works on tracing intrusion connections through
stepping stones. Section 3 formally formulates the overall
problem of tracing intrusion connections through stepping stones
and identifies the serialization problem. Section 4 illustrates the
loop fallacy in deterministic serialization of correlated
connections. Section 5 analyzes the serialization problem and
presents the deterministic serialization of correlated connections
without synchronized clock. Section 6 concludes this paper.

2. RELATED WORKS

The earliest works (DIDS [4], CIS [2]) on tracing intrusion
connections through stepping stones were based on tracking
users’ login activities at different hosts. Because the attacker who
has root control of the stepping stone could easily disguise, delete
or forge user login activities at the stepping stone, tracing
approaches based on tacking users’ login activities at stepping
stone could be easily defeated. To overcome this shortcoming,
Tracing and correlation approaches based on comparing packet
contents [ Thumbprinting [6], SWT [10]] have been developed.

To be able to correlate and trace encrypted attack traffic, new
generation of network based correlation approaches has been
developed, based on the inter-packet timing characteristics
(ON/OFF-based [13], Deviation-based [11] and IPD-based [9]).
Ideally, the inter-packet timing characteristics of an interactive
flow is unique enough and is invariant across routers and stepping
stones so that effective correlation could be constructed.

To address the new challenge of active timing perturbation by
adversary, Donoho et al. [1] have recently studied the theoretical
limits of the adverse effects of the active timing perturbation.
Wang et al. [8] developed a framework for constructing robust
timing based correlation scheme against random timing
perturbation.

Limitations of Correlation-Only Approach

We have shown that almost all network-based tracing approaches
are correlation-only. While the correlation of encrypted attack
traffic is till a challenging task due to various active
countermeasures used by adversary, there is a limit on the
theoretically achievable effectiveness of even the perfect
correlation solution.

In the rest of this paper, we investigate the gap between the
perfect stepping stone tracing solution and the perfect stepping
stone correlation solution, and we show what it takes to fill the
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Figure 1: Loopless Linear Connection Chain

gap.

3. THE PROBLEM of TRACING
INTRUSION CONNECTIONS through
STEPPING STONES

In this section, we use set theoretic approach to formulate the
overall problem of tracing intrusion connections through stepping
stones. We first review the basic concepts of Set Theory we used.

3.1 Ordinals of Basic Set Theory

For binary relation R on set S, we use Field(R) to denote the set of
elements of each ordered pair in R. That is Field(R)={x: <x,y> 0 R
O<yx>UR}.

Binary relation R is called

Reflexive: if OxOField(R) [x R x]
Irreflexive: if OxOField(R) [-(x R x)]
Symmetric: if 0 x, yOField(R) [x Ry < y R X]

Anti-symmetric: if O x, yOField(R) [x Ry = ~ (Y RX)]

Transitive: if 0x,y, zZOFieldR) [(x Ry Uy R z) =

X R z]

Linear (connected): if O x, yUField(R) [x Ry Uy R x]

Binary relation R on S is a partial-order if it is 1) anti-symmetric
and 2) transitive. Partial order R on S is a fotal-order if it is linear
(connected).

Given partial order R on S and A[1S, if there exists a [ 4 such that
Ux O 4 [a R x], we say a is the R-least (or R-minimal) in A. A
total order R on S is a well-order on S if every non-empty subset
of S has a R-minimal.

3.2 Overall Tracing Problem Model

Given a series of computer hosts H;, Hy, ... H,+; (n>1), when a
person (or a program) sequentially connects from H; into H;y,
(i=1,2, ... n), we refer to the sequence of connections <cy, C,, ...
¢,>, where ¢c=<H,;, H; ;> (i=1, ...n), as a connection chain on
<H;, H,, ... H,+>. Here all ¢;’s are always distinct, but not all
H;’s are always distinct. In case some host appears more than once
in sequence < H;, H,, ... H,;>, there exists loop in the
connection chain <cy, ¢,, ... ¢,>.

The tracing problem of a connection chain (or stepping stone) is,
given c; of some unknown connection chain <c;, c,, ... ¢,> (n>1),
to identify <cy, ¢y, ... ¢,>.

Any particular connection chain <cy, ¢, ... ¢,> is an ordered set
of connections. We refer those connections within same
connection chain as correlated to each other and corresponding
set {cy, ¢y, ... C,} as set of correlated connections or correlation
set. This can be formally modeled by a binary relation on the
overall connection set. We define binary relation CORR on the
overall connection set C such that
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Figure 2: Loop Fallacy in Serializing
Correlated Connections

Oc, 0 C[c CORR ¢’ iff (c O {cy, ¢y ... Cu} A
¢’ O{cy, e onn i)l (1)

It is obvious that CORR is specific to the correlation set and it is
1) self-reflexive; 2) symmetric and 3) transitive. Therefore binary
relation CORR is an equivalence relation on € and it partitions the
overall set of connections into a particular set of correlated
connections and rest of the connections.

Because connection chain <cy, ¢, ... ¢,> is an ordered set, each c;
has an order number Ord(c;) associated with it. The overall
ordering information of <c;, ¢,, ... ¢,> can be formally modeled
by the binary relation O on {cy, c,, ... c,} such that

Oc, c’O{cy, ¢y, ... ¢} [eOc’ iff Ord(c)<Ord(c’)] 2)

It is obvious that [0 well orders set {c;, c,, ... ¢,} and it uniquely
determines <cy, ¢y, ... ¢,> from {c;, Cy, ... C,}.

For any particular connection chain <cy, c,, ... ¢,>, there exists
unique binary relations CORR and [, which in turn uniquely
determines <cy, C», ... ¢,>. Therefore, the overall tracing problem
of connection chain can be divided into the following sub-
problems:

1) Correlation Problem:

Given ¢; of some unknown connection chain <c,, ¢,, ... ¢,>,
identify set {ci, C5, ... ¢,}; Or equivalently, given any two
connections ¢ and ¢’, determine if ¢ CORR ¢’.

2)  Serialization Problem:

Given unordered set of correlated connections C={c;, ¢, ...
c,}, serialize {ci, ¢y, ... ¢,} into an ordered set <c;’, c,’, ...
c,> (¢ 0C,i=1,...n)suchthatc,’ Ocyy’ (=1, ... n-1); Or
equivalently, given any two connections ¢ and ¢’, determine
ifcOc orc’Oc.

Two observations can be made about the overall tracing problem:

1) The result of the serialization problem is based upon the
result of the correlation problem

2) The perfect result of the overall tracing problem consists of
the perfect result of the correlation problem and the perfect
result of the serialization problem based upon the perfect
correlation result.

Observation 1) shows the inter-dependency between the
correlation problem and the serialization problem, and it explains
why existing works on the overall tracing problem have focused
on the correlation problem. Observation 2) reveals that while the
solution to the correlation problem is the very foundation of the
solution to the overall tracing problem, it is not adequate to

construct the complete solution to the overall tracing problem.
What’s missing from the correlation-only approach is the
serialization of the correlation result.

In the remainder of this paper, we identify, analyze this gap and
we present an efficient solution to the serialization problem.

4. The LOOP FALLACY in
DETERMINISTIC SERIALIZATION of
CORRELATED CONNECTIONS

Ideally the complete solution of the problem of tracing intrusion
connections through stepping stones would give the exact order of
the intrusion connections that pass the stepping stones in addition
to identifying those correlated connections that belong to the same
connections chain. In case there are stepping stones and
connections outside the observing area (or scope) of the tracing
system, the tracing system should deterministically point out the
right direction from which the intrusion comes in. As the stepping
stones used by intruders could easily be thousands miles apart and
under different jurisdiction, it is critically important to be able
accurately point out the right direction from which the intrusion
comes from outside the current tracing system to make the tracing
system useful in real-world.

Unfortunately, even with perfect correlation solution, which gives
all and only those correlated connections within the observing
scope that belong to the same connection chain, it is still not
adequate to deterministically construct the complete intrusion
path or even find the right direction from which intrusion comes
in.

In case the intrusion connection passes each stepping stone only
once each stepping stone has only one incoming and outgoing
connection, and there is only one way to serialize those correlated
connections to construct the intrusion path as shown in Figure 1.

However, when some stepping stones are passed more than once,
there exists loop or cycle in the intrusion connection chain, and
there are more than one ways to serialize those correlated
connections. Figure 2 shows an example of intrusion connection
chain with multiple stepping stones, where node 1 is the intrusion
target and e;, e, €3, €4, €5, €, €, are the backward connections
from the intrusion target toward the source of the intrusion. A
perfect correlation solution would report that ey, e, €3, €4, €5, €,
e; are correlated and belong to the same intrusion connection
chain. Given the knowledge that node 1 is the intrusion target, we
know that the intrusion to node 1 comes from node 2 as there is
only one correlated connection e; between node 1 and node 2.
However, node 2 has two outgoing connections e, and es that are
part of same connection chain, and there are multiple ways to
serialize those correlated connections. Furthermore, when some
stepping stones are outside of the observing area of the tracing
system, loops in the intrusion connection chain could introduce
dilemma in determine the right direction from which the intrusion
comes in. Figure 3 shows two such examples. When node 3,4,5
are outside the observing area of the tracing system, node 2 sees
two correlated outgoing connections e, and es. Without additional
information, there is no way for node 2 to determine which
connection points to the host that is closer to the intrusion source.
When node 3 is out of the observing scope, there are multiple
ways to serializing the correlated connections, which point to
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Figure 3: Tracing Dilemma with Limited Observing Area

different directions to the intrusion source. For example, both
serialization <ey, €, ... €3, €4, €5, €, €7> and <e|, €s, €, €7, ... €3,
€4, €> are possible, which imply e; and e, respectively as the
connections pointing to the intrusion source.

These examples indicate that correlation only approach is a partial
solution to the problem of tracing intrusion connections through
stepping stones. What is missing from the correlation only
solution is the serialization of those correlated connections. It is
this phenomenon — that people in general do not take the potential
loops or cycles of intrusion connection chain into account when
intuitively solving the tracing problem with correlation only
approaches — that is named “the loop fallacy” in tracing intrusion
connections through stepping stones.

5. DETERMINISTIC SERIALIZATION of
CORRELATED CONNECTIONS

We have shown in previous section, the set of correlated
connections itself is not adequate to serialize those correlated
connections deterministically. In order to deterministically
serialize correlated connections, some additional information on
the correlated connection is needed.

One possible way to serialize correlated connection is use globally
synchronized time-stamp to determine the relative order of
correlated  connections.  However, collecting  precisely
synchronized timestamp on all connections across the internet is
difficult due to the following reasons: 1) not all the hosts on the
internet have precise clock synchronization; 2) dynamic network
delay (which may cause out-of-order delivery) complicates
distributed timestamping; 3) distributed clock synchronization is
also subject to malicious attacks.

Another way to serialize correlated connections is based on
adjacency or causal relationship. Compared with timestamp based
approach, adjacency based approach does not require any global
clock synchronization at all and is robust against network delay
jitters.

In this section, we focus on solving the problem of deterministic
serialization of correlated connections without global clock
synchronization. We use set theoretic approach to formally
establish that while the set of correlated connection itself is not
adequate to serialize those correlated connections, the set of
adjacent correlated connection pairs of each stepping stone is
sufficient to serialize those correlated connection deterministically
even if there is loops with the connection chain.

Given a set of correlated connections C, it can be thought as a set
of edges of a directed graph DG such that DG=<V, E>, V={x: O

<x, y> 0 C UO0O<y, x> 0 C} and E=C. We assume that there is no
self-loop edge in DG, that is O<u, v>[E [u#v]. Therefore, the
serialization of elements of C can be represented by the ordering
of elements of either V or E.

We use u - v to represent that there is directed path from u to v.
and we define DG to be one-way connected if: Ou, vOV [Ou v O
v - u], and DG to be edge one-way connected if: U<u;, v;>, <u,,
v,>UE [v; > u; Ovy, - uy].

One necessary condition for the serialization of correlated
connections to be correct is that the ordering of the correlated
connections maintains the one-way connectivity of the edges and
end-points of correlated connections.

5.1 Point Connectivity and Serialization
Based on Point Adjacency

We first consider serialization of correlated connections based on
point adjacency property of those correlated connections.

We define Point-Adjacency (P-Adj) on V as the binary relation
{<u, v>: <u, v> O E}. It is easy to see that P-Adj is irreflexive and
it models the adjacency relation among the elements of V.

We define Point Connectivity (PC) as the binary relation on V,
such that

1) <u,v>UE [uPCyv]
2) u,v,wOV[(@PCvUvPCw)= uPCw]

Therefore binary relation PC is the transitive-closure of P-Adj.
Because DG has no self-loop edge, PC is anti-symmetric, thus PC
is a partial order on V. Here we use <pc to represent PC. If there
exists some v [1 V, such that O u OV [u#v = v <p¢c u], we define
such an element v as PC-minimal on V.

From the definitions, it is easy to see that given a DG, there is
only one P-Adj and <pc defined on V.

Here binary relation <pc formally models the directed connectivity
among the vertices in V and u <p¢ v iff there exists a path from u
tov.

THEOREM 1: the necessary and sufficient conditions for <pc to
be well-order on V are:

1) DG=<V, E> is one-way connected
2) DG has no directed cycles
PROOF:



Sufficiency:

Given that DG has no directed cycles, <pc is anti-symmetric:
Ou, vOOV [u <pc v = = (v <p¢c u)]. Because DG is one-way
connected, <pc is transitive. Therefore <pc is a partial order on
V.

Given DG is one-way connected, Uu, v I V (u#v), there exist a
directed path either u —»v or v—u. We have either u <pc v or v
<pc u. Therefore, <p¢ is a total-order on V.

Assume <pc is not a well-order on V, then there exist a non-
empty set of vertices V'’ V such that V’ does not have PC-
minimal. That is OvOV’, kOV’ such that u <pc v. We list
elements of V’, starting from Uv;0V’, and adding v, ;00V’ to
the left of vOV’ if vy, <pc v; and v ,O0{v; v, v} as
following:

V.. Vis1 Vi .. V2 V1

Because V’ is finite, the above list is also finite. Assume the
left-most element of above list is v,, we have v; (1<i<n) such
that v; <pc v,, therefore <v; v, _ v forms a directed cycle in G.
This contradicts condition 2). Therefore <pc well-orders V.

Necessity:

1) Because <pc is well-order on V, it is total-order on V. Uu, v
OV (u#v), we have either u <pc v or v <pc u. Then there exist
a path either u—»v or v—u. Therefore DG is one-way
connected.

2) Assume DG has directed cycle of n>1 vertices: v, ... v, v;,
consider non-empty subset of V { v, ... v, v;}, there is no
PC-minimal in that set. This contradicts with the prerequisite
that <pc well-orders V. Therefore DG has no directed cycle.

Because an intrusion connection chain may pass a particular
stepping stone more than once, which introduces directed cycles
in the connection chain, the serialization of end points of
correlated connections based on point adjacency is not
deterministic.

5.2 Edge Connectivity and Serialization
Based on Edge Adjacency

We now consider serialization of correlated connections based on
edge adjacency relation among those correlated connections.

We define Edge-Adjacency (E-Adj) on E as the binary relation:
{<<u, v>, <v, w>>: <u, v>, <v, w> [1 E}. It is easy to see that E-
Adj is irreflexive and it models the adjacency relation among the
elements of E.

We define Edge Connectivity (EC) as the binary relation on E,
such that

1) <u,v> <v,w>UOE][ <u, v>EC <v, w>]

2)  <uy, v;>, <uy, v2>, <uz, v> O E [(<uy, v/> EC <u,, vy> [
<u,, vy> EC <us, v3>) = <uy, v/> EC <uz, v> |

Therefore binary relation EC is the transitive-closure of E-Adj.
Because each correlated connection is distinct, EC is anti-
symmetric, thus EC is a partial order on E. Here we use <gc to
represent EC. IF there exists some <uy, vi> [ E, such that [J <u,,

vo> O E [<uy, vi> # <up, v> = <uy, vi> <gc <up, v> |, we define
<uy, vi> as EC-minimal on E

From the definitions, it is easy to see that given a DG, there is
only one E-Adj and <gc defined on E.

Binary relation <gc also models the directed connectivity among
vertices of V and <uj, vi> <gc <u,, v,> iff there exists a path from
vy to u,.

THEOREM 2: the necessary and sufficient conditions for <gc to
be well-order on E are:

1) DG=<V, E> is one-way connected
2) DG has no directed cycles

3) DG has no out-branch: w0V (v has at most single
successor)

PROOF:
Sufficiency:

Given O<u;, v>, <u,, v,;>0E and <u,, v;>%#<u,, v;>, we have
u;#u; because of 3).

Assume v;=v,. Consider u;, u,(1V, because of 1), there exists
path: u; » u,. Because of 3) we have v; - u,, that is vy;— u,.
Then we have a cycle <v,, u,, v,>, and it contradicts condition
2). Therefore v #v,.

Assume v; - u,, because of condition 2), there is no path from
u, to v; (otherwise we have a loop). That is O<u;, v;>, <u,,
v>UE [<uy, vi> <ge <uy, vp> = = (Suy, v> <ge <uy, vp>)).
Therefore, <gc is a partial order on E.

Assume there is neither path from v; to u, nor path from v, to
u;. Because of 1), we have u, - v; and u; > v,. Because of 3),
we have v,— v; and v;— v, That forms a cycle, which
contradicts condition 2). Therefore there is either v; > u, or
vy— u;. That is equivalent to either <u;, v;> <gc <u,, v;> or
<u,, v> <gc <u;, v;>. Therefore <gc is a total-order on E.

Assume <gc is not well-order on E, then there exist a non-
empty set E’[JE such that there is no EC-minimal on E’. That is
O<u;, v;>UOE’, [Ku,, v,>0E’ such that <u,, v,> <gc <u;, v;>.
We list elements E’, starting from UO<u;, v;>[JE’, and adding
<u;y g, vir UE’ to the left of <u,, v>UOE’ if <uy g, vie > <ge <u,
v> and <ugg, ve> O{<u, v> | <uip, vip> . <ug, v} oas
following:

SUyy Vo> .. <Uispy Vise1™ <Ujy V> . <U3z V2> <Uj, VI~

Because E’ is finite, the above list is also finite. Assume the
left-most element of above list is <u,, v,>, we have <u;, v>
(1<i<n) such that <u;, v> <gc <u,, v,>, therefore <<u;, v>> <u,,
v,> . <u; v>> forms a directed cycle in DG. This contradicts
condition 2). Therefore <gc well-orders E.

Necessity:

1)  Ou, v OV (u#v), there exist e;, ;0] E (e;#e,) such that u is
endpoint of e; and v is endpoint of e,. Without losing
generality, we assume ¢;=<u, x> and e,=<v, y>. Because
EC well-orders E, it total-orders E. Therefore e; <gc €, or
e, <gc €. There exists path either from u to v or from v to
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uin G.

2) Assume G has directed cycle of n >1 edges: <vi, v,>, <v,,
V3>, ... <v,, Vi>, consider non-empty subset of E {<v,
Vo>, <Vy, V3>, ... <y, v>}, there is no PDEC-minimal in
that set. This contradicts with the prerequisite that <gc
well-orders E. Therefore DG has no directed cycles.

3) Assume DG has out-branch: [ku, x>, <u, y>UE (x%y).
Because <gc well-orders E, we have either <u, x> <gc <u,
y> or <u, y> <gc <u, x>. Without losing generality, we
assume <u, x> <gc <u, y>, then there exist path x - u. {x,

. u, x} forms a cycle, which contradicts the necessary
condition 2) just proved. Therefore DG has no out-branch:
vV (v has single successor).

Please be noted that given DG=<V,E>, in order for <g to well-
orders E, DG must have no out-branch, which is not required for
to <pc well-order V. Figure 4 shows such an example, where <pc
well-orders {1,2,3,4} and <gc is not even a total-order on E as
<2,3> and <2,4> have no relative order.

Because no directed cycles is a necessary condition for <gc to be
well-order on E, the serialization of correlated connections based
on edge adjacency is not deterministic either. Figure 5 shows an
example of serialization of connections based on edge adjacency.

5.3 Serialization Based on Adjacent

Connection Pairs

We have demonstrated that the ordering of correlated connections
based on adjacency is not always deterministic and unique. When
the intrusion connection chain has loops or cycles, there are
multiple ways to serialize those correlated connections while
keeping the connectivity. This dilemma is due to the fact that
there could be more than two connections adjacent to each other
through one vertex and the set of correlated connections gives no
clue about how to pair match those adjacent connections (shown
in Figure 6).

To serialize the correlated connections deterministically, we need
information about how the adjacent connection are pair matched.
This is modeled by the concept of adjacent connection pair.

Given a connection chain <H;, H,, ... H,>, we define <<H;, H;; >,
<Hjs1, Hyp>> (i=1,2, ... n-2) as the adjacent connection pair on
Hi,,. Please note that there could be Hi=H; (1<i,j<n, i#j). Adjacent
connection pair carries the order information about the two
adjacent connections on a particular vertex. We use PE-Adj to
represent the set of adjacent connection pairs.

Edge ordering based on <gc

DG
<1 2>

<2 4>

v4

<4 2>
\[ <2 3>

s

50
<4 5>

<gc on DG is not well-order on {e1, ez, €3, €4, €5, €g}:

both edge serializations:
<<1,2>,<2,3>,<3,4>,<4,2> <2 4> <4, 5>> and
<<1,2>,<2,4>,<4,2>,<2,3>,<3,4>,<4,5>> satisfy <gc

Figure 5: Edge Serialization Based on
Edge Connectivity <gc
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Figure 6: m Incoming Connections
Adjacent to n Outgoing Connections

Given a set of adjacent connection pairs PE-Adj, we can construct
the set of connection

Epg-ag=1e: [Ke, e>PE-Adj O [Ke;, e>0PE-Adj}
and the set of vertices

Vepag=1v: K<u, v>,<v, w>>0OPE-Adj [
k<v, u>,<u, w>>[PE-Adj U
[k<u, w>,<w, v>>[PE-Adj}

and the directed graph DG=<Vpg_nqj, Epg.a¢®>. Therefore PE-Adj
is binary relation on Epg.sqand PE-Adj O E-Adj on Epg_ag;.

We define binary relation Paired Edge Connectivity (PEC) on
Epg-agj such that

1) <<u,v>, <v, w>>[PE-Adj [<u, v> PEC <v, w>]

2)  <uy, vi>, <uy, V>, <uz, v3> O Eppagy [ (<uy, vi> PEC <u,
Vo> |:|<u2, V> PEC <us, V3>) = <uy, vi> PEC <us, V3>]

Because each correlated connection is distinct, PEC is anti-
symmetric, thus it is a partial order on E. Here we use <pgc to
represent PEC. If there exists <u;, vi> [ E, such that [J <u,, v,>
E [<uy, vi> # <un, 3> = <uy, vi> <pgc <uy, V> |, we define <u,
vi> as PEC-minimal on E

Element of PE-Adj, <e;, e>, can also be thought as a directed
edge whose endpoints (tail and head) are e; and e, from which
another directed graph can be deterministically constructed.

We define the paired line graph of DG, written as PL(DG), as the
directed graph whose vertices are the edges of DG, with <e,
e>UE(PL(DG) when <e;, >[IPE-Adj.

It is obvious that V(PL(DG)) = E(DG) = Epg.agj, therefore PE-Adj
on DG corresponds to P-Adj on PL(DG) and <pgc on DG
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Figure 7: Edge Serialization Based on
Adjacent Connection Pair PE-Adj

corresponds to <pc on PL(DG).

We further define reachable set of a particular edge e[JEpg.oq as
RSpg_aqi(€)={e;: € <pgc e;}. PE-Adj is edge one-way connected iff
Oe;, e, Epg_aqj (e; <pec €; O e; <pgc €;). PE-Adj is loop less iff Oel]
Epg-ag [eO RSPE-Adj(e)]~

We say PE-Adj is loop less if any connection within the set of
adjacent connection pair will not reach itself through the adjacent
connection pair.

THEOREM 3: If EP-Adj is edge one-way connected and loop
less, <pgc well-orders Epg.ag;.

PROOF:

Because PE-Adj is edge one-way connected, <pgc total-orders
Epg.ad;-

Assume DG=< Vpg_pqj, Epg_aq>, consider the paired line graph
of DG: PL(DG)=<V, E>, where V=Epg.»q and E=PE-Adj. <pgc
total-orders Epg.agj corresponds to <pc on V total-orders V.
Therefore PL(DG) is one-way connected.

Because PE-Adj is loop less, vV, it won’t reach v again in
PL(DG). That is PL(DG) has no directed cycle.

Apply theorem 1, <pc well-orders V on PL(DG), which
corresponds to <pgc well-orders Epg_agj.

If PE-Adj contains all the adjacent connection pair from every
stepping stone along the connection chain, PE-Adj is edge one-
way connected. PE-Adj is also loop less because each connection
within the connection chain is unique while it correlates with
others.

Therefore, the complete and accurate intrusion connection chain
can be constructed deterministically from the set of adjacent
correlated connection pairs, even if there are loops within the
connection chain. Figure 7 illustrate an example of the
deterministic serialization of correlated connections from the set
of adjacent correlated connection pairs.

5.4 Finding Adjacent Correlated Connection

Pairs
We say that the set of correlated connection pairs is with regard to
(wrt) connection c if ¢ is correlated with all connections that form
the correlated connection pairs.

The set of correlated connection pairs (with regard to connection
¢) can be constructed by union of each subset collected at each
stepping stone.

The subset of correlated connections pairs at each stepping stone
can be constructed at real-time by the following algorithm:

1) For each new incoming (or outgoing) connection /; (or O;)
that is not self-loop, record /; (or O;) into queue Q: xi, X,
...x.1, where x; (1< j < i-1)could be either incoming or
outgoing connection.

2) Using correlation approach to find those, if any, connections
that are correlated with ¢, from all the connections recorded

in Q.
3) Extract those correlated connections, in sequence, from Q
into correlation queue Q..

4) Assume Q. has ¢y, ¢, ...cy, if ¢; is incoming connection, the
subset of correlated connection pairs is {< ¢y, ¢, >, < ¢3, ¢4 >,
. < Codmnks Coxlmpal >}; 1f ¢p is outgoing connection, the
subset of correlated connection pairs is {< ¢,, ¢3>, < ¢y, 5>,

coe < Colme1yl C2xL(meny2 1> -

The correctness of the algorithm is guaranteed by the following
property of Q. = ¢, ¢, ...c,, : if ¢; is incoming connection, then
¢ 18 outgoing connection; if ¢; is outgoing connection, then ¢y
is incoming connection.

Therefore, in order to construct the set of correlated connection
pairs, we just need to record the start of all the incoming and
outgoing correlated connection at each stepping stone in
sequence, from which we can construct the subset of correlated



connection pairs of that stepping stone. Then we can construct the
whole set of correlated connection pairs by summation of all the
subsets regarding to the same correlation.

For example, assume the sequence of the backward traffic from
the attack target to the attack source showed in Figure 3 is <ey, e,
€3, €4, €5, €, ¢7>. By the applying the first three steps of the
algorithm described above, node 2 will have its Q. = ey, €5, €4, €5,
and node 4 will have its Q. = e, €4, €4, ¢;. After step 4, node 2
will have set of correlated connection pairs: {<ej, e,>, <ey, 5>},
and node 4 will have set correlated connection pairs: {<es, e,>,
<eg, €7~ }. While node 2 does not know how many stepping stones
might exist between e, and e, it knows es is the connection that is
closest to the attack source from its point of view. Similarly, node
4 knows e; is the connection that is closest to the attack source
from its point of view. In case node 1,2,3,4,5 are all within the
tracing system, a complete and accurate intrusion path over node
1,2,3,4,5 can be constructed deterministically.

6. CONCLUSIONS

Tracing network based intruders behind stepping stones is a
challenging problem, especially when the intrusion connection
chain passes some stepping stone multiple times in attempt to
further disguise its intrusion path and source.

In this paper, we used set theoretic approach to investigate the gap
between the perfect stepping stone correlation solution and perfect
stepping stone tracing solution. We first identified the largely
overlooked serialization problem and the loop fallacy in tracing
intrusion connections though stepping stones. Existing
approaches to the tracing problem of stepping stones have focused
on correlation only and have left the serialization of correlated
connections as an afterthought. We demonstrated that even the
perfect correlation solution, which gives all and only those
correlated connections, is not sufficient to construct the complete
intrusion path deterministically, when there is loop in the
intrusion connection chain. We further showed that the complete
intrusion path can be constructed deterministically from the set of
correlated connection pairs, no matter whether there is any loop in
the connection chain or not. We presented an efficient algorithm
to construct the set of correlated connection pairs and effective
method to serialize correlated connections without global clock
synchronization.

The solution of serialization is based upon the correlation result,
and the correlation of connections through stepping stones is still
a challenging and ongoing research task. Our serialization
solution helps to increase the effectiveness of existing correlation
result. We view our results as complementary to existing
correlation approaches in solving the overall problem of tracing
intrusion connections through stepping stones.
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