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ABSTRACT 

Network based intruders seldom attack directly from their own 
hosts, but rather stage their attacks through intermediate “stepping 
stones” to conceal their identity and origin. To identify attackers 
behind stepping stones, it is necessary to be able to trace through 
the stepping stones and construct the correct intrusion connection 
chain. 

A complete solution to the problem of tracing stepping stones 
consists of two complementary parts. First, the set of correlated 
connections that belongs to the same intrusion connection chain 
has to be identified; second, those correlated connections need to 
be serialized in order to construct the accurate and complete 
intrusion connection chain. Existing approaches to the tracing 
problem of intrusion connections through stepping stones have 
focused on identifying the set of correlated connections that 
belong to the same connection chain and have overlooked the 
serialization of those correlated connections. 

In this paper, we use set theoretic approach to analyze the 
theoretical limits of the correlation-only approach and 
demonstrate the gap between the perfect correlation-only 
approach and the perfect solution to the tracing problem of 
stepping stones. In particular, we identify the serialization 
problem and the loop fallacy in tracing connections through 
stepping stones. We formally demonstrate that even with perfect 
correlation solution, which gives us all and only those 
connections that belong to the same connection chain, it is still 
not adequate to serialize the correlated connections in order to 
construct the complete intrusion path deterministically. We 
further show that correlated connections, even with loops, could 
be serialized deterministically without synchronized clock. We 
present an efficient intrusion path construction method based on 
adjacent correlated connection pairs. 

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: General – 

security and protection (e.g., firewalls); K.6.5 [Management of 
Computer and Information Systems]: Security and Protection – 
Unauthorized access (e.g., hacking, phreaking). 

General Terms 
Security, Theory. 

Keywords 
Stepping Stones, Intrusion Tracing, Serialization, Correlation. 

1. INTRODUCTION 
One of most widely used techniques by intruders to hide their 
origin is to connect through a series of hosts as stepping stones 
before attacking the final target [7]. For example, an attacker at 
host A may telnet or ssh into host B, and from there launch an 
attack against host C. The victim at host C can use IP traceback 
techniques [3,5 etc.] to find out that the attack comes from host B, 
but IP traceback can not determine that the attack actually 
originate from host A behind host B. By laundering through a 
number of intermediate stepping stones, the attacker makes the 
source tracing of the attack much more difficult. To identify 
intruders behind stepping stones, it is critically important to be 
able to trace the intrusion connections through the stepping stones 
and construct the correct intrusion connections chain. 

A complete solution to the problem of tracing stepping stones 
includes: 1) the identification of the set of correlated connections 
that belongs to the same intrusion connection chain; 2) the 
serialization of the set of correlated connections in order to 
construct the accurate and complete intrusion connection chain. 
However, existing approaches to the problem of tracing intrusion 
connections through stepping stones have focused on identifying 
the set of correlated connections that belong to the same intrusion 
connection chain and have left the serialization of correlated 
connections an afterthought. While finding the right set of 
correlated connections forms the foundation of solving the tracing 
problem of intrusion connection chain, it does not, however, 
completely solve the tracing problem. 

In this paper, we use set theoretic approach to analyze the 
theoretical limits of the correlation-only approach and 
demonstrate the gap between the perfect correlation solution and 
the perfect tracing solution of stepping stones problem. In 
particular, we identify the serialization problem and the loop 
fallacy in tracing connections through stepping stone. We 
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formally demonstrate that even with perfect correlation solution, 
which gives us all and only those connections in the connection 
chain, it is still not adequate to serialize the complete intrusion 
connection chain deterministically. This is due to the lack of order 
information from the set of correlated connections. We show that 
without deterministic connection serialization, the effectiveness of 
existing correlation-only approaches for tracing intrusion 
connections through stepping stones could be seriously affected 
by one simple practice of the attacker: introducing loops by 
passing some stepping stone more than once. We further 
demonstrate that correlated connections, even with loops, could 
be serialized deterministically without synchronized clock. We 
present an efficient serialization method based on adjacent 
correlated connection pairs from each stepping stone. 

The remainder of this paper is organized as follows. Section 2 
reviews related works on tracing intrusion connections through 
stepping stones. Section 3 formally formulates the overall 
problem of tracing intrusion connections through stepping stones 
and identifies the serialization problem. Section 4 illustrates the 
loop fallacy in deterministic serialization of correlated 
connections. Section 5 analyzes the serialization problem and 
presents the deterministic serialization of correlated connections 
without synchronized clock. Section 6 concludes this paper. 

2. RELATED WORKS 
The earliest works (DIDS [4], CIS [2]) on tracing intrusion 
connections through stepping stones were based on tracking 
users’ login activities at different hosts. Because the attacker who 
has root control of the stepping stone could easily disguise, delete 
or forge user login activities at the stepping stone, tracing 
approaches based on tacking users’ login activities at stepping 
stone could be easily defeated. To overcome this shortcoming, 
Tracing and correlation approaches based on comparing packet 
contents [Thumbprinting [6], SWT [10]] have been developed.  

To be able to correlate and trace encrypted attack traffic, new 
generation of network based correlation approaches has been 
developed, based on the inter-packet timing characteristics 
(ON/OFF-based [13], Deviation-based [11] and IPD-based [9]). 
Ideally, the inter-packet timing characteristics of an interactive 
flow is unique enough and is invariant across routers and stepping 
stones so that effective correlation could be constructed. 

To address the new challenge of active timing perturbation by 
adversary, Donoho et al. [1] have recently studied the theoretical 
limits of the adverse effects of the active timing perturbation. 
Wang et al. [8] developed a framework for constructing robust 
timing based correlation scheme against random timing 
perturbation.  

Limitations of Correlation-Only Approach 
We have shown that almost all network-based tracing approaches 
are correlation-only. While the correlation of encrypted attack 
traffic is till a challenging task due to various active 
countermeasures used by adversary, there is a limit on the 
theoretically achievable effectiveness of even the perfect 
correlation solution. 

In the rest of this paper, we investigate the gap between the 
perfect stepping stone tracing solution and the perfect stepping 
stone correlation solution, and we show what it takes to fill the 

gap. 

3. THE PROBLEM of TRACING 
INTRUSION CONNECTIONS through 
STEPPING STONES 

In this section, we use set theoretic approach to formulate the 
overall problem of tracing intrusion connections through stepping 
stones. We first review the basic concepts of Set Theory we used. 

3.1 Ordinals of Basic Set Theory 
For binary relation R on set S, we use Field(R) to denote the set of 
elements of each ordered pair in R. That is Field(R)={x: <x,y> ∈ R 
∨ <y,x> ∈ R}.

Binary relation R is called 

Reflexive: if ∀x∈Field(R) [x R x] 

Irreflexive: if ∀x∈Field(R) [¬(x R x)] 

Symmetric: if ∀ x, y∈Field(R) [x R y ⇔ y R x] 

Anti-symmetric: if ∀ x, y∈Field(R) [x R y �  ¬(y R x)] 

Transitive: if ∀ x, y, z∈Field(R) [(x R y ∧ y R z) �  
x R z] 

Linear (connected): if ∀ x, y∈Field(R) [x R y ∨ y R x] 

Binary relation R on S is a partial-order if it is 1) anti-symmetric 
and 2) transitive. Partial order R on S is a total-order if it is linear 
(connected).  

Given partial order R on S and A⊆S, if there exists a ∈ A such that 
∀x ∈ A [a R x], we say a is the R-least (or R-minimal) in A. A 
total order R on S is a well-order on S if every non-empty subset 
of S has a R-minimal. 

3.2 Overall Tracing Problem Model 
Given a series of computer hosts H1, H2, … Hn+1 (n>1), when a 
person (or a program) sequentially connects from Hi into Hi+1 
(i=1,2, … n), we refer to the sequence of connections <c1, c2, … 
cn>, where ci=<Hi, Hi+1> (i=1, …n), as a connection chain on 
<H1, H2, … Hn+1>. Here all ci’s are always distinct, but not all 
Hi’s are always distinct. In case some host appears more than once 
in sequence < H1, H2, … Hn+1>, there exists loop in the 
connection chain <c1, c2, … cn>. 

The tracing problem of a connection chain (or stepping stone) is, 
given c1 of some unknown connection chain <c1, c2, … cn> (n>1), 
to identify <c1, c2, … cn>. 

Any particular connection chain <c1, c2, … cn> is an ordered set 
of connections. We refer those connections within same 
connection chain as correlated to each other and corresponding 
set {c1, c2, … cn} as set of correlated connections or correlation 
set. This can be formally modeled by a binary relation on the 
overall connection set. We define binary relation CORR on the 
overall connection set 

�
 such that 

Figure 1: Loopless Linear Connection Chain 
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Correlated Connections 

 ∀c, c’∈ 
�

 [c CORR c’ iff  (c ∈ {c1, c2, … cn} �    
c’ ∈ {c1, c2, … cn})] (1) 

It is obvious that CORR is specific to the correlation set and it is 
1) self-reflexive; 2) symmetric and 3) transitive. Therefore binary 
relation CORR is an equivalence relation on 

�
 and it partitions the 

overall set of connections into a particular set of correlated 
connections and rest of the connections. 

Because connection chain <c1, c2, … cn> is an ordered set, each ci 
has an order number Ord(ci) associated with it. The overall 
ordering information of <c1, c2, … cn> can be formally modeled 
by the binary relation ∠∠∠∠ on {c1, c2, … cn} such that 

 ∀c, c’∈{c1, c2, … cn} [c∠∠∠∠c’  iff  Ord(c)<Ord(c’)] (2) 

It is obvious that ∠∠∠∠ well orders set {c1, c2, … cn} and it uniquely 
determines <c1, c2, … cn> from {c1, c2, … cn}.  

For any particular connection chain <c1, c2, … cn>, there exists 
unique binary relations CORR and ∠∠∠∠, which in turn uniquely 
determines <c1, c2, … cn>. Therefore, the overall tracing problem 
of connection chain can be divided into the following sub-
problems: 

1) Correlation Problem: 

Given c1 of some unknown connection chain <c1, c2, … cn>, 
identify set {c1, c2, … cn}; Or equivalently, given any two 
connections c and c’, determine if c CORR c’. 

2) Serialization Problem: 

Given unordered set of correlated connections C={c1, c2, … 
cn}, serialize {c1, c2, … cn} into an ordered set <c1’, c2’, … 
cn’> (ci’ ∈ C, i=1, … n) such that ci’ ∠∠∠∠ ci+1’ (i=1, … n-1); Or 
equivalently, given any two connections c and c’, determine 
if c ∠∠∠∠ c’ or c’ ∠∠∠∠ c. 

Two observations can be made about the overall tracing problem: 

1) The result of the serialization problem is based upon the 
result of the correlation problem 

2) The perfect result of the overall tracing problem consists of 
the perfect result of the correlation problem and the perfect 
result of the serialization problem based upon the perfect 
correlation result. 

Observation 1) shows the inter-dependency between the 
correlation problem and the serialization problem, and it explains 
why existing works on the overall tracing problem have focused 
on the correlation problem. Observation 2) reveals that while the 
solution to the correlation problem is the very foundation of the 
solution to the overall tracing problem, it is not adequate to 

construct the complete solution to the overall tracing problem. 
What’s missing from the correlation-only approach is the 
serialization of the correlation result. 

In the remainder of this paper, we identify, analyze this gap and 
we present an efficient solution to the serialization problem. 

4. The LOOP FALLACY in 
DETERMINISTIC SERIALIZATION of 
CORRELATED CONNECTIONS 

Ideally the complete solution of the problem of tracing intrusion 
connections through stepping stones would give the exact order of 
the intrusion connections that pass the stepping stones in addition 
to identifying those correlated connections that belong to the same 
connections chain. In case there are stepping stones and 
connections outside the observing area (or scope) of the tracing 
system, the tracing system should deterministically point out the 
right direction from which the intrusion comes in. As the stepping 
stones used by intruders could easily be thousands miles apart and 
under different jurisdiction, it is critically important to be able 
accurately point out the right direction from which the intrusion 
comes from outside the current tracing system to make the tracing 
system useful in real-world. 

Unfortunately, even with perfect correlation solution, which gives 
all and only those correlated connections within the observing 
scope that belong to the same connection chain, it is still not 
adequate to deterministically construct the complete intrusion 
path or even find the right direction from which intrusion comes 
in.  

In case the intrusion connection passes each stepping stone only 
once each stepping stone has only one incoming and outgoing 
connection, and there is only one way to serialize those correlated 
connections to construct the intrusion path as shown in Figure 1.  

However, when some stepping stones are passed more than once, 
there exists loop or cycle in the intrusion connection chain, and 
there are more than one ways to serialize those correlated 
connections. Figure 2 shows an example of intrusion connection 
chain with multiple stepping stones, where node 1 is the intrusion 
target and e1, e2, e3, e4, e5, e6, e7 are the backward connections 
from the intrusion target toward the source of the intrusion. A 
perfect correlation solution would report that e1, e2, e3, e4, e5, e6, 
e7 are correlated and belong to the same intrusion connection 
chain. Given the knowledge that node 1 is the intrusion target, we 
know that the intrusion to node 1 comes from node 2 as there is 
only one correlated connection e1 between node 1 and node 2. 
However, node 2 has two outgoing connections e2 and e5 that are 
part of same connection chain, and there are multiple ways to 
serialize those correlated connections. Furthermore, when some 
stepping stones are outside of the observing area of the tracing 
system, loops in the intrusion connection chain could introduce 
dilemma in determine the right direction from which the intrusion 
comes in. Figure 3 shows two such examples. When node 3,4,5 
are outside the observing area of the tracing system, node 2 sees 
two correlated outgoing connections e2 and e5. Without additional 
information, there is no way for node 2 to determine which 
connection points to the host that is closer to the intrusion source. 
When node 3 is out of the observing scope, there are multiple 
ways to serializing the correlated connections, which point to 
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Figure 3: Tracing Dilemma with Limited Observing Area 

different directions to the intrusion source. For example, both 
serialization <e1, e2, … e3, e4, e5, e6, e7> and <e1, e5, e6, e7, … e3, 
e4, e2> are possible, which imply e7 and e2 respectively as the 
connections pointing to the intrusion source. 

These examples indicate that correlation only approach is a partial 
solution to the problem of tracing intrusion connections through 
stepping stones. What is missing from the correlation only 
solution is the serialization of those correlated connections. It is 
this phenomenon – that people in general do not take the potential 
loops or cycles of intrusion connection chain into account when 
intuitively solving the tracing problem with correlation only 
approaches – that is named “the loop fallacy” in tracing intrusion 
connections through stepping stones. 

5. DETERMINISTIC SERIALIZATION of 
CORRELATED CONNECTIONS 

We have shown in previous section, the set of correlated 
connections itself is not adequate to serialize those correlated 
connections deterministically. In order to deterministically 
serialize correlated connections, some additional information on 
the correlated connection is needed. 

One possible way to serialize correlated connection is use globally 
synchronized time-stamp to determine the relative order of 
correlated connections. However, collecting precisely 
synchronized timestamp on all connections across the internet is 
difficult due to the following reasons: 1) not all the hosts on the 
internet have precise clock synchronization; 2) dynamic network 
delay (which may cause out-of-order delivery) complicates 
distributed timestamping; 3) distributed clock synchronization is 
also subject to malicious attacks. 

Another way to serialize correlated connections is based on 
adjacency or causal relationship. Compared with timestamp based 
approach, adjacency based approach does not require any global 
clock synchronization at all and is robust against network delay 
jitters. 

In this section, we focus on solving the problem of deterministic 
serialization of correlated connections without global clock 
synchronization. We use set theoretic approach to formally 
establish that while the set of correlated connection itself is not 
adequate to serialize those correlated connections, the set of 
adjacent correlated connection pairs of each stepping stone is 
sufficient to serialize those correlated connection deterministically 
even if there is loops with the connection chain. 

Given a set of correlated connections C, it can be thought as a set 
of edges of a directed graph DG such that DG=<V, E>, V={x: ∃ 

<x, y> ∈ C ∨ ∃ <y, x> ∈ C} and E=C. We assume that there is no 
self-loop edge in DG, that is ∀<u, v>∈E [u≠v]. Therefore, the 
serialization of elements of C can be represented by the ordering 
of elements of either V or E. 

We use u→v to represent that there is directed path from u to v. 
and we define DG to be one-way connected if: ∀u, v∈V [∃ u→v ∨ 
∃v→u], and DG to be edge one-way connected if: ∀<u1, v1>, <u2, 
v2>∈E [v1→u2 ∨ v2→u1]. 

One necessary condition for the serialization of correlated 
connections to be correct is that the ordering of the correlated 
connections maintains the one-way connectivity of the edges and 
end-points of correlated connections. 

5.1 Point Connectivity and Serialization 
Based on Point Adjacency 

We first consider serialization of correlated connections based on 
point adjacency property of those correlated connections. 

We define Point-Adjacency (P-Adj) on V as the binary relation 
{<u, v>: <u, v> ∈ E}. It is easy to see that P-Adj is irreflexive and 
it models the adjacency relation among the elements of V. 

We define Point Connectivity (PC) as the binary relation on V, 
such that  

1) <u, v> ∈ E [u PC v]  

2) u, v, w ∈ V [ (u PC v ∧ v PC w) �  u PC w] 

Therefore binary relation PC is the transitive-closure of P-Adj. 
Because DG has no self-loop edge, PC is anti-symmetric, thus PC 
is a partial order on V. Here we use <PC to represent PC. If there 
exists some v ∈ V, such that ∀ u ∈ V [u

�
v �  v <PC u], we define 

such an element v as PC-minimal on V. 

From the definitions, it is easy to see that given a DG, there is 
only one P-Adj and <PC defined on V. 

Here binary relation <PC formally models the directed connectivity 
among the vertices in V and u <PC v iff there exists a path from u 
to v. 

THEOREM 1: the necessary and sufficient conditions for <PC to 
be well-order on V are: 

1) DG=<V, E> is one-way connected 

2) DG has no directed cycles 

PROOF: 



Sufficiency: 

Given that DG has no directed cycles, <PC is anti-symmetric: 
∀u, v∈V [u <PC v �  ¬ (v <PC u)]. Because DG is one-way 
connected, <PC is transitive. Therefore <PC is a partial order on 
V. 

Given DG is one-way connected, ∀u, v ∈ V (u≠v), there exist a 
directed path either u→v or v→u. We have either u <PC v or v 
<PC u. Therefore, <PC is a total-order on V. 

Assume <PC is not a well-order on V, then there exist a non-
empty set of vertices V’⊆ V such that V’ does not have PC-
minimal. That is ∀v∈V’, ∃u∈V’ such that u <PC v. We list 
elements of V’, starting from ∀v1∈V’, and adding vi+1∈V’ to 
the left of vi∈V’ if vi+1 <PC vi and vi+1∉{vi , vi-1  … v1} as 
following: 

vn … vi+1 vi  … v2 v1 

Because V’ is finite, the above list is also finite. Assume the 
left-most element of above list is vn, we have vi (1≤i<n) such 
that vi <PC vn, therefore <vi, vn, … vi> forms a directed cycle in G. 
This contradicts condition 2). Therefore <PC well-orders V. 

Necessity: 

1) Because <PC is well-order on V, it is total-order on V. ∀u, v 
∈ V (u≠v), we have either u <PC v or v <PC u. Then there exist 
a path either u→v or v→u. Therefore DG is one-way 
connected. 

2) Assume DG has directed cycle of n>1 vertices: vn … v2 v1, 
consider non-empty subset of V { vn … v2 v1}, there is no 
PC-minimal in that set. This contradicts with the prerequisite 
that <PC well-orders V. Therefore DG has no directed cycle. 

Because an intrusion connection chain may pass a particular 
stepping stone more than once, which introduces directed cycles 
in the connection chain, the serialization of end points of 
correlated connections based on point adjacency is not 
deterministic. 

5.2 Edge Connectivity and Serialization 
Based on Edge Adjacency 

We now consider serialization of correlated connections based on 
edge adjacency relation among those correlated connections. 

We define Edge-Adjacency (E-Adj) on E as the binary relation: 
{<<u, v>, <v, w>>: <u, v>, <v, w> ∈ E}. It is easy to see that E-
Adj is irreflexive and it models the adjacency relation among the 
elements of E. 

We define Edge Connectivity (EC) as the binary relation on E, 
such that  

1) <u, v>, <v, w> ∈ E [ <u, v> EC <v, w>]  

2) <u1, v1>, <u2, v2>, <u3, v3> ∈ E [(<u1, v1> EC <u2, v2>  ∧ 
<u2, v2>  EC <u3, v3>) �  <u1, v1> EC <u3, v3> ] 

Therefore binary relation EC is the transitive-closure of E-Adj. 
Because each correlated connection is distinct, EC is anti-
symmetric, thus EC is a partial order on E. Here we use <EC to 
represent EC. IF there exists some <u1, v1> ∈ E, such that ∀ <u2, 

v2> ∈ E [<u1, v1> 
�

 <u2, v2> �  <u1, v1> <EC <u2, v2> ], we define 
<u1, v1> as EC-minimal on E 

From the definitions, it is easy to see that given a DG, there is 
only one E-Adj and <EC defined on E. 

Binary relation <EC also models the directed connectivity among 
vertices of V and <u1, v1> <EC <u2, v2> iff there exists a path from 
v1 to u2. 

THEOREM 2: the necessary and sufficient conditions for <EC to 
be well-order on E are: 

1) DG=<V, E> is one-way connected 

2) DG has no directed cycles 

3) DG has no out-branch: ∀v∈V (v has at most single 
successor) 

PROOF: 

Sufficiency: 

Given ∀<u1, v1>, <u2, v2>∈E and <u1, v1>≠<u2, v2>, we have 
u1≠u2 because of 3). 

Assume v1=v2. Consider u1, u2∈V, because of 1), there exists 
path: u1→ u2. Because of 3) we have v1→ u2, that is v2→ u2. 
Then we have a cycle <v2, u2, v2>, and it contradicts condition 
2). Therefore v1≠v2. 

Assume v1→ u2, because of condition 2), there is no path from 
u2 to v1 (otherwise we have a loop). That is ∀<u1, v1>, <u2, 
v2>∈E [<u1, v1> <EC <u2, v2> �  ¬ (<u2, v2> <EC <u1, v1>)]. 
Therefore, <EC is a partial order on E. 

Assume there is neither path from v1 to u2 nor path from v2 to 
u1. Because of 1), we have u2→ v1 and u1→ v2. Because of 3), 
we have v2→ v1 and v1→ v2. That forms a cycle, which 
contradicts condition 2). Therefore there is either v1→ u2 or 
v2→ u1. That is equivalent to either <u1, v1> <EC <u2, v2> or 
<u2, v2> <EC <u1, v1>. Therefore <EC is a total-order on E. 

Assume <EC is not well-order on E, then there exist a non-
empty set E’⊆E such that there is no EC-minimal on E’. That is 
∀<u1, v1>∈E’, ∃<u2, v2>∈E’ such that <u2, v2> <EC <u1, v1>. 
We list elements E’, starting from ∀<u1, v1>∈E’, and adding 
<ui+1, vi+1>∈E’ to the left of <ui, vi>∈E’ if <ui+1, vi+1> <EC <ui, 
vi> and <ui+1, vi+1> ∉{<ui, vi> , <ui-1, vi-1> … <u1, v1>} as 
following: 

<un, vn> … <ui+1, vi+1> <ui, vi>  … <u2, v2> <u1, v1> 

Because E’ is finite, the above list is also finite. Assume the 
left-most element of above list is <un, vn>, we have <ui, vi> 
(1≤i<n) such that <ui, vi> <EC <un, vn>, therefore <<ui, vi>, <un, 
vn>, … <ui, vi>> forms a directed cycle in DG. This contradicts 
condition 2). Therefore <EC well-orders E. 

Necessity: 

1) ∀u, v ∈ V (u≠v), there exist e1, e2∈ E (e1≠e2) such that u is 
endpoint of e1 and v is endpoint of e2. Without losing 
generality, we assume e1=<u, x> and e2=<v, y>. Because 
EC well-orders E, it total-orders E. Therefore e1 <EC e2 or 
e2 <EC e1. There exists path either from u to v or from v to 



u in G. 

2) Assume G has directed cycle of n >1 edges: <v1, v2>, <v2, 
v3> , … <vn, v1>, consider non-empty subset of E {<v1, 
v2>, <v2, v3> , … <vn, v1>}, there is no PDEC-minimal in 
that set. This contradicts with the prerequisite that <EC 
well-orders E. Therefore DG has no directed cycles. 

3) Assume DG has out-branch: ∃<u, x>, <u, y>∈E (x≠y). 
Because <EC well-orders E, we have either <u, x> <EC <u, 
y> or <u, y> <EC <u, x>. Without losing generality, we 
assume <u, x> <EC <u, y>, then there exist path x→ u. {x, 
… u, x} forms a cycle, which contradicts the necessary 
condition 2) just proved. Therefore DG has no out-branch: 
∀v∈V (v has single successor). 

Please be noted that given DG=<V,E>, in order for <EC to well-
orders E, DG must have no out-branch, which is not required for 
to <PC well-order V. Figure 4 shows such an example, where <PC 
well-orders {1,2,3,4} and <EC is not even a total-order on E as 
<2,3> and <2,4> have no relative order. 

Because no directed cycles is a necessary condition for <EC to be 
well-order on E, the serialization of correlated connections based 
on edge adjacency is not deterministic either. Figure 5 shows an 
example of serialization of connections based on edge adjacency. 

5.3 Serialization Based on Adjacent 
Connection Pairs 

We have demonstrated that the ordering of correlated connections 
based on adjacency is not always deterministic and unique. When 
the intrusion connection chain has loops or cycles, there are 
multiple ways to serialize those correlated connections while 
keeping the connectivity. This dilemma is due to the fact that 
there could be more than two connections adjacent to each other 
through one vertex and the set of correlated connections gives no 
clue about how to pair match those adjacent connections (shown 
in Figure 6). 

To serialize the correlated connections deterministically, we need 
information about how the adjacent connection are pair matched. 
This is modeled by the concept of adjacent connection pair. 

Given a connection chain <H1, H2, … Hn>, we define <<Hi, Hi+1>, 
<Hi+1, Hi+2>> (i=1,2, … n-2) as the adjacent connection pair on 
Hi+1. Please note that there could be Hi=Hj (1≤i,j≤n, i≠j). Adjacent 
connection pair carries the order information about the two 
adjacent connections on a particular vertex. We use PE-Adj to 
represent the set of adjacent connection pairs. 

Given a set of adjacent connection pairs PE-Adj, we can construct 
the set of connection  

EPE-Adj={e: ∃<e, ei>∈PE-Adj ∨ ∃<ej, e>∈PE-Adj} 

and the set of vertices  

 VPE-Adj={v: ∃<<u, v>,<v, w>>∈PE-Adj ∨ 
 ∃<<v, u>,<u, w>>∈PE-Adj ∨  
 ∃<<u, w>,<w, v>>∈PE-Adj} 

and the directed graph DG=<VPE-Adj ,  EPE-Adj>. Therefore PE-Adj 
is binary relation on EPE-Adj and PE-Adj ⊆ E-Adj on EPE-Adj. 

We define binary relation Paired Edge Connectivity (PEC) on 
EPE-Adj, such that  

1) <<u, v>, <v, w>> ∈ PE-Adj [<u, v> PEC <v, w>]  

2) <u1, v1>, <u2, v2>, <u3, v3> ∈ EPE-Adj [ (<u1, v1>  PEC <u2, 
v2>  ∧ <u2, v2>  PEC <u3, v3>) �   <u1, v1> PEC <u3, v3> ] 

Because each correlated connection is distinct, PEC is anti-
symmetric, thus it is a partial order on E. Here we use <PEC to 
represent PEC. If there exists <u1, v1> ∈ E, such that ∀ <u2, v2> ∈ 
E [<u1, v1> 

�
 <u2, v2> �  <u1, v1> <PEC <u2, v2> ], we define <u1, 

v1> as PEC-minimal on E 

Element of PE-Adj, <ei, ej>, can also be thought as a directed 
edge whose endpoints (tail and head) are ei and ej, from which 
another directed graph can be deterministically constructed. 

We define the paired line graph of DG, written as PL(DG), as the 
directed graph whose vertices are the edges of DG, with <ei, 
ej>∈E(PL(DG) when <ei, ej>∈PE-Adj. 

It is obvious that V(PL(DG)) ≡ E(DG) ≡ EPE-Adj, therefore PE-Adj 
on DG corresponds to P-Adj on PL(DG) and <PEC on DG 
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corresponds to <PC on PL(DG). 

We further define reachable set of a particular edge e∈EPE-Adj as 
RSPE-Adj(e)={ei: e <PEC ei}. PE-Adj is edge one-way connected iff 
∀ei, ej∈ EPE-Adj (ei <PEC ei ∨ ei <PEC ei). PE-Adj is loop less iff ∀e∈ 
EPE-Adj [e ∉ RSPE-Adj(e)]. 

We say PE-Adj is loop less if any connection within the set of 
adjacent connection pair will not reach itself through the adjacent 
connection pair. 

THEOREM 3: If EP-Adj is edge one-way connected and loop 
less, <PEC well-orders EPE-Adj. 

PROOF: 

Because PE-Adj is edge one-way connected, <PEC total-orders 
EPE-Adj.  

Assume DG=< VPE-Adj, EPE-Adj>, consider the paired line graph 
of DG: PL(DG)=<V, E>, where V=EPE-Adj and E=PE-Adj. <PEC 
total-orders EPE-Adj corresponds to <PC on V total-orders V. 
Therefore PL(DG) is one-way connected. 

Because PE-Adj is loop less, ∀v∈V, it won’t reach v again in 
PL(DG). That is PL(DG) has no directed cycle. 

Apply theorem 1, <PC well-orders V on PL(DG), which 
corresponds to <PEC well-orders EPE-Adj. 

If PE-Adj contains all the adjacent connection pair from every 
stepping stone along the connection chain, PE-Adj is edge one-
way connected. PE-Adj is also loop less because each connection 
within the connection chain is unique while it correlates with 
others. 

Therefore, the complete and accurate intrusion connection chain 
can be constructed deterministically from the set of adjacent 
correlated connection pairs, even if there are loops within the 
connection chain. Figure 7 illustrate an example of the 
deterministic serialization of correlated connections from the set 
of adjacent correlated connection pairs. 

5.4 Finding Adjacent Correlated Connection 
Pairs 

We say that the set of correlated connection pairs is with regard to 
(wrt) connection c if c is correlated with all connections that form 
the correlated connection pairs. 

The set of correlated connection pairs (with regard to connection 
c) can be constructed by union of each subset collected at each 
stepping stone. 

The subset of correlated connections pairs at each stepping stone 
can be constructed at real-time by the following algorithm: 

1) For each new incoming (or outgoing) connection Ii (or Oi) 
that is not self-loop, record Ii (or Oi) into queue Q: x1, x2, 
…xi-1, where xj (1 �  j �  i-1)could be either incoming or 
outgoing connection. 

2) Using correlation approach to find those, if any, connections 
that are correlated with c, from all the connections recorded 
in Q. 

3) Extract those correlated connections, in sequence, from Q 
into correlation queue Qc. 

4) Assume Qc has c1, c2, …cm, if c1 is incoming connection, the 
subset of correlated connection pairs is {< c1, c2 >, < c3, c4 >, 
… < c2×� m/2 � -1, c2× � m/2 �  >}; if c1 is outgoing connection, the 
subset of correlated connection pairs is {< c2, c3 >, < c4, c5 >, 
… < c2×� (m-1)/2 � , c2× � (m-1)/2 � +1>}. 

The correctness of the algorithm is guaranteed by the following 
property of Qc = c1, c2, …cm : if ci is incoming connection, then 
ci+1 is outgoing connection; if ci is outgoing connection, then ci+1 
is incoming connection. 

Therefore, in order to construct the set of correlated connection 
pairs, we just need to record the start of all the incoming and 
outgoing correlated connection at each stepping stone in 
sequence, from which we can construct the subset of correlated 
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connection pairs of that stepping stone. Then we can construct the 
whole set of correlated connection pairs by summation of all the 
subsets regarding to the same correlation. 

For example, assume the sequence of the backward traffic from 
the attack target to the attack source showed in Figure 3 is <e1, e2, 
e3, e4, e5, e6, e7>. By the applying the first three steps of the 
algorithm described above, node 2 will have its Qc = e1, e2, e4, e5, 
and node 4 will have its Qc = e3, e4, e6, e7. After step 4, node 2 
will have set of correlated connection pairs: {<e1, e2>, <e4, e5>}, 
and node 4 will have set correlated connection pairs: {<e3, e4>, 
<e6, e7>}. While node 2 does not know how many stepping stones 
might exist between e2 and e4, it knows e5 is the connection that is 
closest to the attack source from its point of view. Similarly, node 
4 knows e7 is the connection that is closest to the attack source 
from its point of view. In case node 1,2,3,4,5 are all within the 
tracing system, a complete and accurate intrusion path over node 
1,2,3,4,5 can be constructed deterministically. 

6. CONCLUSIONS 
Tracing network based intruders behind stepping stones is a 
challenging problem, especially when the intrusion connection 
chain passes some stepping stone multiple times in attempt to 
further disguise its intrusion path and source. 

In this paper, we used set theoretic approach to investigate the gap 
between the perfect stepping stone correlation solution and perfect 
stepping stone tracing solution. We first identified the largely 
overlooked serialization problem and the loop fallacy in tracing 
intrusion connections though stepping stones. Existing 
approaches to the tracing problem of stepping stones have focused 
on correlation only and have left the serialization of correlated 
connections as an afterthought. We demonstrated that even the 
perfect correlation solution, which gives all and only those 
correlated connections, is not sufficient to construct the complete 
intrusion path deterministically, when there is loop in the 
intrusion connection chain. We further showed that the complete 
intrusion path can be constructed deterministically from the set of 
correlated connection pairs, no matter whether there is any loop in 
the connection chain or not. We presented an efficient algorithm 
to construct the set of correlated connection pairs and effective 
method to serialize correlated connections without global clock 
synchronization.  

The solution of serialization is based upon the correlation result, 
and the correlation of connections through stepping stones is still 
a challenging and ongoing research task. Our serialization 
solution helps to increase the effectiveness of existing correlation 
result. We view our results as complementary to existing 
correlation approaches in solving the overall problem of tracing 
intrusion connections through stepping stones. 
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