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Abstract Network based intrusions have become a seriouatttuéhe users
of the Internet. Intruders who wish to attack cotepsl attached to the Internet
frequently conceal their identity by staging thaitacks through intermediate
“stepping stones”. This makes tracing the sourcehef attack substantially
more difficult, particularly if the attack traffis encrypted. In this paper, we
address the problem of tracing encrypted connextibrough stepping stones.
The incoming and outgoing connections through g@péteg stone must be
correlated to accomplish this. We propose a nowgktation scheme based on
inter-packet timing characteristics of both encegbtand unencrypted
connections. We show that (after some filterindgrirpacket delays (IPDs) of
both encrypted and unencrypted, interactive commestare preserved across
many router hops and stepping stones. The effemse of this method for
correlation purposes also requires that timing atteristics be distinctive
enough to identify connections. We have found thatmal interactive
connections such as telnet, SSH and rlogin arestlalvays distinctive enough
to provide correct correlation across stepping esonThe number of packets
needed to correctly correlate two connectionsse ah important metric, and is
shown to be quite modest for this method.

1 Introduction

Network-based intrusions have become a seriousatthie users of the Internet.
Today, perpetrators can attack networked informatgystems from virtually
anywhere in the world.

One major problem in apprehending and stoppingordtbased intrusion is that
the intruders can easily hide their identity anehpof origin through readily available
means. One of the techniques most commonly usédttoygers is to hide their origin
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F30602-99-1-0540. The views and conclusions coathirerein are those of the authors.
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by connecting across multiple stepping stoffes* *® before attacking the final
targets. For example, an attacker logged into Aasiay telnet into host B, and from
there launch an attack on host C. An analysihefttaffic at C will only reveal it is
being attacked from B, but will not identify thetaal source of the attack. A careful
inspection of the contents of the traffic comingpimnd going out of B may reveal
that A is the source of the attack. However, & thaffic arriving at B is encrypted
(using SSH"*® or IPSEC™) before being transmitted to C, it will not be pbssito
use the traffic contents for correlation purpodéstwork-based intruders thus have an
easy way to launch attacks without revealing theéntity. Without a means of
effectively and quickly tracing the source of ataek back to its source, it will not be
possible to stop further attacks or punish those are responsible.

In this paper, we address the problem of corrgdatire incoming and outgoing
connections of a stepping stone. The goal iseatifly which connections are part of
an attack path, so that the attack can be tracek toaits source. We assume that
attack traffic may be encrypted at any steppingesto an attempt to interfere with
correlation. We propose a novel scheme based on inker-packet timing
characteristics of both encrypted and unencryptethections. While, as with most
intrusion tracing and detection systems, out cati@h scheme could be evaded by
highly sophisticated intruders, it is our goal taka it difficult to do so and thus deter
network-based intrusions.

The remainder of the paper is organized as follolwssection 2, we give a
summary of related works. In section 3, we fornmuldte correlation problem of our
focus and give our correlation problem solution eloth section 4, we discuss IPD
(Inter-Packet Delay) based correlation in detailséction 5, we evaluate correlation
effectiveness of our proposed correlation metriceugh experiments. In section 5,
we conclude with summary of our findings.

2 Related Work

Table 2.1: Classification of Correlation and Trachkpproaches

PASSIVE ACTIVE
Host-Based DIDS?
cist
Network-Based Thumb printing” IDIP P
ON/OFF-Based® swre
Deviation-Based ") IPD-Based
(proposed method"

Most of the existing work on correlating connectacross stepping stones assumes
the traffic is unencrypted. In general, attackittg@approaches can be categorized as
either being host-based or network-based. In &lvexed approach, the stepping
stone itself participates in the tracing, whiletire network-based approaches, the
stepping stones are not used for tracing purpoBased on how the traffic is traced,
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tracing approaches can further be classified dsereiactive or passive. Passive
approaches monitor and compare all traffic, allgvémy traffic to be traced at any
time. On the other hand, active approaches dyndisicantrol when, where, what

and how the traffic is to be correlated, througistomized packet processing. They
only trace the traffic of interest when needed.|&@ahl provides a classification of
existing tracing approaches, as well as our praptseing mechanism.

The Distributed Intrusion Detection System (DIDY$) developed at UC Davis is a
host-based tracing mechanism that attempts to kesk of all the users in the
network and report all activities to network-widgrusion detection systems. The
Caller Identification System (CIS¥ is another host-based tracing mechanism. It
eliminates centralized control by utilizing a trudistributed model. Each host along
the connection chain keeps a record about its wietive connection chain so far.

A fundamental problem with the host-based tracipgraach is its trust model.
Host-based tracing places its trust upon the madtbosts themselves. In specific, it
depends on the correlation of connections at elvesy in the connection chain. If one
host is compromised and is providing misleadingelation information, the whole
tracing system is fooled. Because host-based ga@quires the participation and
trust of every host involved in the network-basetiusion, it is very difficult to be
applied in the context of the public Internet.

Network-based tracing is the other category ofimg@pproaches. It does not
require the participation of monitored hosts, naredl it place its trust on the
monitored hosts. Rather, it is based on the assamiftat one or more properties of a
connection chain is maintained throughout the chaimparticular, the thumbpritit’!
is a pioneering correlation technique that utilizzsmall quantity of information to
summarize connections. Ideally it can uniquely idggtish a connection from
unrelated connections and correlate successfulbgethconnections in the same
connection chain.

Sleepy Watermark Tracing (SWTj®! applies principles of steganography and
active networking in tracing and correlating ungpted connections through
stepping stones. By injecting watermarks in thé&itraechoed back to the attacker,
SWT is able to trace and correlate even a singstkake by the intruder. By actively
generating tracing traffic, it can trace and c@televen when an intrusion connection
is idle.

IDIP (the Intrusion Identification and Isolationd®wcol) ¥ is a part of Boeing's
Dynamic Cooperating Boundary Controllers Prograat tises an active approach to
trace the incoming path and source of the intrusionthis method, boundary
controllers collaboratively locate and block theruder by exchanging intrusion
detection information, namely, attack descriptions.

The ON/OFF-based schent®! by Zhang and Paxson is the first correlation
intended to correlate traffic across stepping saeen if the traffic is encrypted by
the stepping stone. The method is based on camelet the ends of OFF periods (or
equivalently the beginnings of ON periods) of iatgive traffic, rather than the
connection contents. While it is robust againstl@gay padding, ON/OFF-based
correlation requires that the packets of connestitlave precise, synchronized
timestamps in order to be able to correlate therfhis makes correlations of
measurements taken at different points in the nétdifficult or impractical.
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The deviation-based approaéfil by Yoda and Etoh is another network-based
correlation scheme. It defines the minimum averdely gap between the packet
streams of two TCP connections as theviation The deviation-based approach
considers both the packet timing characteristias tagir TCP sequence numbers. It
does not require clock synchronization and is &bleorrelate connections observed
at different points of network. However, it can ywmorrelate TCP connections that
have one-to-one correspondences in their TCP sequermbers, and thus is not able
to correlate connections where padding is addetheéopayload, e.g., when certain
types of encryption are used.

Both ON/OFF-based and deviation-based approachésedéheir correlation
metrics over the entire duration of the connectitmbe correlated. This makes the
correlation applicable to post-attack traces only.

The IPD-based approach we discuss in the remaioflehe paper defines its
correlation metric over the sliding window of patkeof the connections to be
correlated. This enables it to correlate both firadfic (at real-time) and collected
traces (post-attack). It supports distributed datien of traffic measure at different
points of network and is robust against payloacipay

3  Problem Formulation

A connectiong (also called a flow) is a single connection froamputer host Hthe
source) to host & (the destination)A user may log into a sequence of hosts H,

.. Hns1 through aconnection chairey, ¢, ... G, where connection; és a remote login
from host Hto host H.;.! Thetracing problemis, given connection,cto determine
the other connections,cc, ... G in the chain, and only those connections. From
these connections the identities of all the hast¢he chain, including H may be
directly determined.

3.1 Correlation Problem Solution Model

Let C represent the set of all connections being exaind/e can define aiteal
correlation functionCF: € x ¢ - {0, 1} such that CF(cg) = 1 iff g and gare in the
same connection chain, otherwise GF¢) = 0. To solve the tracing problem we
must find such a function CF.

In practice, connection correlation is based on tiearacteristics of the
connections, which may include packet contentsdéemformation (such as packet
size) and packet arrival and/or departure timeg ddnnection characteristics can be

1 The same host may appear in a connection chaie than once, in which case the chain
contains a loop. Due to space limitations we docoasider this case here.

2 If IP spoofing is used, of course, the packets afonnection will incorrectly identify the
source of the connection. We consider this proliermme orthogonal to our problem and do
not address it here. It is, in any event, unlikiblgt IP spoofing will be used for interactive
traffic, where the response to the interactivefitraiust be correctly echoed back to the
source.
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modeled by anetric functionof the connection
M:CxP - Z (3.1)

Where C is the set of connections to be correlatédjs some domain of
parameters and is the correlation metric domain.

Based on the connection metrioz@relation value functiofCVF) can be defined
as

CVF:ZxZ - [0,1] (3.2)

Where the result of CVF is a real number betweem® 1. To approximate CF
through CVF, we introduce a threshol&c® < 1 such that cand ¢ are considered
correlated iff

CVF(M(c,, p), M(G, p))= & (3:3)

Therefore the tracing problem is now replaced keyftilowing: find or construct
M, p, CVF andd such that

Ocic; 0 €, CVF(M(G, p), M(G, p))2 &
iff c; and g are in the same connection chain (3.4)

In finding M, p, CVF andd, the key is to identify those unique charactersstf
connections that are invariant across routers gppmg-stones. If those identified
invariant characteristics of connections are ditive enough to exclude other
unrelated connections, reliable correlation of @mtions can be constructed from
these metrics.

4 |IPD Based Correlation of Encrypted Connections

In principle, correlation of connections is based mherent characteristics of
connections. To correlate potentially encryptedneations, the key is to identify a
correlation metric from the connection charactesstthat is: 1) invariant across
routers and stepping stones; 2) not affected bgyption and decryption; 3) unique to
each connection chain. Potential candidates fercthrrelation metric of a flow of
packets include header information, packet sizeripacket timing etc. In particular,
inter-packet timing should not be affected by eptiopn and decryption. We now
present an original correlation method based a@r+packet delays or IPDs.

4.1 General IPD Based Correlation Model

The overall IPD correlation of two connections isa-step process. First, the two
connections to be correlated are processed to @ene@mumber aforrelation points
between the two connections. Second, these gederateelation points are evaluated
to obtain thecorrelation valueof the two connections.
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The rationale behind this two-step process is tppert the true real-time
correlation, which is the capability to correlateé” traffic when they come and go.
This means that the approach must be able to eterebnnections before their ends
are reached. Therefore, the correlation metridrice real-time correlation cannot be
defined over the entire duration of a connectioe;clioose instead to compute it over
a window of packets in the connection. A correfatipoint generated from IPDs
within the window reflects some localized similgribetween the two flows; the
correlation value obtained from all the correlatipaints will indicate the overall
similarity of the two flows.

4.1.1  Basic IPD Correlation Concepts and Definitiog
Given a bi-directional connection, we can spliinito two unidirectional flows. We
define our correlation metric over the unidirecibflow of connections.

Given a unidirectional flow ofi > 1 packets, we usetb represent the timestamp
of thei™ packet observed at some point of the network. Wéeirae all the’s of a
flow are measured at the same observation poitiit thi2 same clock. We define the
i" inter-packet delaglPD) as

g =t—t 4.1)
Therefore, for any flow consisting of > 1 packets, we can measure the inter-
packet delay (IPD) vector <d..., d,.1>.
Ideally, the IPD vector would uniquely identify éaffow and we could construct

our correlation metric from the IPD vectors. To go real-time correlation based on
the IPD vector, we definie IPD correlation windoww; son <d, ..., d> as

W, s(<dy, ..., d>) =<d, ..., Jis1> 4.2)

where 1< j < nrepresents the starting point of the window, adsk n-j+1 is the
size of the window.

Given any two flows X and Y, whose IPD vectors €xg, ...X> and <y, ...y,>
respectively, we define &orrelation Point FunctionCPF over IPD correlation
windows of X: W (X) and of Y: Wiy (Y) as

CPHX, Y, ], k 5) = (Wi s (X), Wiwcs (Y)) (4.3)

wheregis a function of two vectors:*R R® - [0, 1], 1<j < min (m-s+1, n-k-s+1)
is the start of the IPD correlation windoyt® < k < n-j-s+1 is the offset between the
two IPD correlation windows, and € s < min (m, n) is the size of the two IPD
correlation windows. CPF(X, Yj, k, s) quantitatively expresses the correlation
between Ws (<Xq, ...Xr>) and Wi s (<1, ...¥»>) @s shown in Figure 4.1.

Because the value of CPF(X, Yk, s) changes asandk changes, we can think of
CPF(X, Y,], k, s) as a function of andk. Given any particular value ¢§f CPF(X, Y,



Inter-Packet Delay Based Correlation for Tracing Ercrypted Connections Through
Stepping Stones 7

j» k, ) may have a different value for each differentueadf k. We are interested in
the maximum value of CPF(X, Y, k, s) for any particular value gf
We define |, j+k) as acorrelation pointif
max CPF(X,Y, j,k,8) 2,
—-j+lsk<sn-j-s+1

(4.4)

where &, is the correlation point thresholdvith value between 0 and 1. Tldg,
here is for detecting correlation point and isefint fromdin inequality (3.3).

We further definek for this correlation pointj(j+k) as thecorrelation-offsetof
CPF(X, Y,j, k, s) and the correlation point.

Given flow X, Y, correlation window sizeand thresholdy,, by applying formula
(4.4), we can obtain a series of correlation poixs y1), (X2, ¥2),... (%, Yn) Wheren =
0.

Assuming one packet of flow X corresponds to oneketof flow Y, if flow X
and Y are really part of the same connection chihi|PDs of flow X should have a
one-to-one correspondence with the IPDs of flowlrthis case, all the correlation
points should have same correlation-offset. This ba formally represented with
CPF as

KOCPR(X.Y, j. k9= . o CPRX.Y. 3k 8] (45)

—-j+lsk<n-j-s+1

That is there exists an offskt such thalCPHX, Y, j, k’, ) is closest to 1 for all
possiblej. In this case, all the correlation points ¥) will be covered by a linear
functiony=x+k’.

After obtainingn>0 correlation points:j{, j1+ki), (2, jotK2), ..., (ns jntky), we
represent those correlation points with two-dimensional vector€,=<j; . j,> and
C/=< jitk:, .. jntk>. The Correlation Value Function formula (3.3) i®wn
transformed to

CVRC, C)2J (4.6)

In summary, the metric function M in formula (3i%)now mapped to CPF, the
parameter domain P in formula (3.1) is mappesdodd,, and Z in formula (3.1) is
mapped to-dimensional vector€,=<j;, _j»> andC=<]ji+ky, _jatk,>.

4.1.2  Correlation Method Assessment Criteria
A critical issue in this method is the choice o€ tfunction ¢ for computing the
correlation point function CPF. Criteria by whittte method may be judged include:

* Uniqueness of perfect correlation: for a flow X, flow Y not in the same
connection chain as X should ha®PHX, Y, j, k, s) =1.

e Correlation Point (CPjJrue positives (hits)this is the number of packets that
should be correlated, and are found to be corlateording to equation 4.4.

8 We have found this is true for most packets imadated flows
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The true positive rate is the number of hits dididey the number of packets
that should be correlated.

e Correlation Point (CPjalse positives (missesthis is the number of packets
which are not in fact correlated, but which arenfdtio be correlated according
to equation 4.4.

Ideally, we would expect a perfect correlation noethl) has unique perfect
correlation; 2) has a 100% CP true positive ratel; 3) has 0 misses or false positives.

4.2  Correlation Point Functions

We now propose four correlation point functionscheaf which enjoys certain
advantages or applicability, as discussed below.

4.2.1  Mini/Max Sum Ratio (MMS)

One simple metric to quantitatively express thenfkirity” between two vectors is
the ratio between the summation of the minimum eletiand the summation of the
maximum elements.

js+l .
T ming,, Vi)
CPF(X.Y, |, K, S) s = 2, ‘ 4.7)

> max, i)

1=]

The range of CPK( Y, |, k, Suus is [0, 1]. Only when xvy,. for i=j, ..., j+k-1,
will CPF(X, Y, |, k, ) mms have the value 1 . Therefore, CRFY, j, k, ) wvs is likely
to exhibit unique perfect correlation.

4.2.2  Statistical Correlation (STAT)
Based on the concept of the coefficient of coriehatrom statistic$!, we can define

p(X,Y,],k,s) ,p(X,Y,j,k,s)=0
0 P(XL,Y, .k, s) <0

CPF (X,Y,j,K,8)qu :{ (4.8)

U x, — E(XO)X (Y — E(Y))

i=j

X o B0 <[ (3 ~ECYV)?

i=j i=j

Wherep(xyy, j,k,S) =

The range of CPI, Y, j, K, Sstac IS also [0, 1]. Unlike CPE, Y, j, k, Swuws, for a
given W ((X), there may be more than one value gf M(Y) for which CPFK, Y, j, k,
S)swt Nas the value 1. For example, for a particular(M), any linear transform of
W, o(X): Wia(Y) =axW, (X) +b will result in CPFK, Y, j, k, S)swat being equal to 1
(a>0) or —1 (a<0). CPK(Y, j, k, 9)statis therefore less likely to exhibit unique perfect
correlation, and is more likely to result in fajsesitives.
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4.2.3  Normalized Dot Product 1 (NDP1)

In digital signal processing, linear correlatiorr (patched filtering) of two discrete
signals will reach a maximum at the point wheredigmals have the most similarity.
It is well known that linear correlation is optinmaldetecting the similarity between a
discrete signal and the corresponding signal detioby additive, white Gaussian
noise. However the range of linear correlationdsmecessarily between 0 and 1.

If the discrete signals are replaced by two vectidrs corresponding operation to
linear correlation of signals is thener-productor dot-productof two vectors im-
dimensional space. From linear algebra, the innedyxt (or dot-product) of twa-
dimensional vectors is equal to the cosine of thglea between the two vectors,
multiplied by the lengths of the two vectors. Thsat

W(X)*W(Y) =cos@)x |[W(X)[|x|W(Y)] (4.9)
or
cosp) :w) (4.10)
W) [xW(Y)]

where @ is the angle between vector W(X) and W(Y), andXyéand |W(Y)| are
the lengths of vector W(X) and W(Y) respectivély.

cos(@ in (4.10) can be used as a correlation pointtfanc The range of co§) is
[-1, 1] and it provides a measure of the similawfytwo vectors. For any vector
W, «(X), cos(@) will be 1 for any vector W Y) =axW, ((X) +b.

To make the correlation point function more likely exhibit unique perfect
correlation, we can define it as follows:

CPF(X,Y, },K,S) xom

_ min(W(X)LIW(Y) )
max(W(X ) LIW(Y))

_ min(WOOUWY)D |, 2y % * Vi
max(W(XO)LIW(Y) ) IW(X) < [W(Y)]

D YT

~ [max(W(X)LIW(Y)

TRk

B max(zi’:_l X2y D)

=]

xcosf)

(4.11)

Becausex andy; are non negative, the range of CRFY, j, k, Snpe1 is [0, 1]. It
can be shown that CPK(Y, |, k, S) nop1 Will be 1 only when Wy(X) = W «Y).
Therefore, CPBK, Y, j, k, S)npp1 is likely to exhibit unique perfect correlation.

4 We have dropped the subscripts of W(X) and W(Y)ctarity purposes in this section.
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4.2.4  Normalized Dot Product 2 (NDP2)
Another way to normalize the dot-product of twotees is

Z.j+15_l)(i x Yisk (412)
> max(x, Vi)l

Becauseq andy; are non negative, the range of CRFY, j, k, S)nppz is [0, 1]. It is
obvious that CPEX, Y, |, k, S)npp2 €qualsl only when W(X) = Wy «Y).

Among these four proposed correlation point fumgjoMini/MaxSum Ratio
(MMS) is likely to be the most sensitive to locatalls of the IPD vectors to be
correlated. This is because it does not averagealiffierences, and it accumulates all
the IPD differences. As a result, MMS may potehtibhve a lower true positive rate
due to its emphasis on local details. While the $T@PF is much more robust to
noise, we expect it to have substantially moreefglssitives. The normalized dot
product functions (NDP1 and NDP2) are likely toibbdetween MMS and STAT in
terms of sensitivity to local detail and robustnssoise.

CPF(X,Y, |,K,S)\op2 =

4.3 Correlation Value Function

Given flows X, Y, correlation window size and threshold, by applying formula
(4.4), we can potentially obtain a set of correlagpoints: i, j1+ki), (2, j2tka), ..., (s
jntky). We represent this sequence of correlation pdhmtsugh twon-dimensional
vectorsC,=<j;, . j»> andCy=<ji+k;, _jntk>.

We define the overallorrelation Value Functiol©VF of flows X and Y from this
sequence of correlation points, as follows:

0 n=0
CVF(CxCy) =4 p(C,,C,) n>1 (4.13)
1 n=1

where > (i —EC))x(j; +k —E(C)))

(c,.C
S I - e b o o]

CVHC,,C)) quantitatively expresses the overall correlatietween flows X and
Y, and its value range is [-1, 1]. When there existore than one correlation point
and all the correlation points have same correlatidfset (i.e., ki=k, =...k;),
CVHC,,Cy) = 1. When flow X and Y has only one correlatiasirp, CVHC,,C,)=1.
When flow X and Y have no correlation poi@tyHC,,C,) is defined to be 0.

4.4  Limitations and Countermeasures

The effectiveness of IPD-based correlation reliestioe uniqueness of IPDs of
connections. It may be ineffective at differentigtiuncorrelated connections that
exhibit very similar IPD patterns, such as filensgers accomplished via FTP.
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telnet (5 hops)

VPN ssh (18 hops) telnet (18 hops) ssh (18 hops)
O *O *O *O———— >
Windows 2000 Sun OS Sun OS Linux FreeBSD
nc.rr.com 64.102.x.x ncsu ucdavis ncsu
24.25.x.X 152.14.x.x 169.237.x.X 152.14.x.x
flow X flow Y

Figure 5.1 Correlation Experiment on telnet and ssh

Interactive traffic, as we show later in the expemits section, usually has IPD
patterns that are distinctive enough for our puepos

Intruders could thwart IPD-based correlation byildehtely changing the inter-
packet delays of a connection in a chain. Suchydeinay be designed to reduce the
true positive rate, or increase the number of falesitives. There are relatively
simple means of accomplishing such traffic shapialthough they may require
kernel-level manipulations. The amount of delegt ttan be added by the intruder is
limited by the maximum delay that is tolerable foteractive traffic. Another
countermeasure against IPD-based correlation isetosome connection into line
mode while keeping other connection in charactedlendhis could potentially merge
several packets into one bigger packet. Howeversérver side shell could always
dynamically turn off the line mo#&'. Other countermeasures include:

* Injecting “padding” packets that can be removedhgyapplication

» Segmenting one flow into multiple flows and reasBlmg them, again at the

application level

It is an area of future work to address such courgasures.

5 Experiments

The goal of the experiments is to answer the faligwquestions about IPD based
correlation:
1) are inter-packet delays preserved through routeilsséepping stone, and to
what extent?
2) are inter-packet delays preserved across encrygéoryption and various
network applications (such as telnet/rlogin/SSH)?
3) how effective is the IPD-based correlation metricdetecting connections
which are part of the same chain?
4) how well does the IPD-based correlation metriceddhtiate a connection
from connections that are not part of the samenéhai

5.1 Correlation Point Experiment
To answer the first two questions, we have condutte following experiment. We

first telnet'ed from a Windows 2000 PC behind aleabodem connected to an ISP in
North Carolina to a Sun workstation via VPN. Frtiva workstation, we used SSH to
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Figure 5.2 Correlation Point between Two Correldtknvs Detected bMMS

with Different Correlation Window Sizes and Threkiso

login to another workstation at N. C. State Uniitgrs We then telnet'ed to a PC
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running Linux at UC Davis, and from there we SSHeack to a PC running
FreeBSD at NC State. As shown in Figure 5.1, thenection chain has a total of 3
stepping-stones and 59 hops and covers a distanteeocorder of 10,000 km. The
connection chain consists of links of different e -including residential Internet
access, typical campus LAN and public Internet baok. We have captured the
packet traces at the Windows 2000 node and theBBieenode; both traces have a
timestamp resolution of 1 microsecond. We labeltéfiget return pathflow from the
Sun workstation to the Windows 2000 PC flow X, dimel SSH backwards flow from
the FreeBSD PC to the Linux PC flow Y. Therefotewf X consists of telnet packets
and flow Y consists of SSH packets.

We have calculated the IPD vectors after filterog the following sources of
errors:

* Duplicated packets

* Retransmitted packets

* ACK only packets
We then calculated correlation poinjsk) by applying (4.4) using each of the four
correlation point functions, with different corrétan window sizess and correlation
point thresholds,.

Figure 5.2 shows the correlation points betweew fl and Y obtained by the
MMS CPF with different correlation window sizesnd thresholdg,,. In these plots,

a point at positionj(k) indicates inequality (4.4) was true for that wabfj, k, s and
&, True positives are points located along the mdjagonal. False positives are
points located off the major diagonal.

With correlation window size of 5 and,, threshold of 0.70, there are a large
number of falsely detected correlation poirfeEdse positivesin addition to the true
correlation pointst(ue positives The overall CVF value (equation (4.13)) forsthi
case is 0.1707. With larger correlation windovesiar a higher threshold,, MMS
results in fewer false positives and has a highé&F €alue, as would be expected. At
correlation window size 15, and a thresh@lglof 0.70, MMS detects most of the true
correlation points between flow X and Y, finds st positives, and has an overall
CVF value of 0.9999. When the threshalg is increased to 0.95 with the same
correlation window size of 15, MMS detects subsédlyt fewer correlation points
between flow X and Y, with no false positives, drab an overall CVF value of 1.0.
This suggests that with correlation window size it thresholdd,, of 0.95 is
probably too high for MMS. The correlation pointsseed by correlation windows
size 15 and threshold,, of 0.95 are actually due to correlation-offsetftshiThe
correlation-offset between our sample flows X antiaé shifted 3 times between the
start and finish. This indicates that a telnet packay trigger more than one SSH
packet, or vice versa. Fortunately, such correfatifiset shifts are infrequent
between correlated flows. Generally, a larger dati@n window size is very effective
in filtering out false positives, and a higher 8ireld &, tends to filter out both true
positive and false positive correlation points. @&tessively large correlation window
size with a high thresholdy, tends to have a low true positive rate, due td bot

5 The “return path” is the echoed traffic generatedthe destination host and sent to the
origination host.
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Figure 5.3 Correlation Points Detected by MMS, S¥P1
and NDP2 with Same Window Size and Threshold

correlation-offset shifts and IPD variations intnedd by the network.

Figure 5.3 compares the detected correlation pdietsveen flow X and Y by
different CPFs: MMS, STAT, NDP1 and NDP2, with iteal correlation window
sizes of 10 and threshold, of 0.80. As expected, the statistical CPF resiults
substantially more false positives than the othezet CPFs. While NDP2 has slightly
fewer false positives than NDP1, they both haveesghat more false positives than
MMS. Generally, MMS is very sensitive to localizddtails of IPDs and is able to
accurately correlate the flows using a smalleratation window (i.e. 5). NDP1 and
NDP2 are less effective with a small correlationaaw, but they are able to correlate
effectively with a moderate window size (15 or ZMe statistical CPF appears to fail
to consider enough localized details to correlatuetely

5.2 Aggregated Flow Correlation Experiment

To evaluate more generally the performance of tifeerdnt correlation point
functions, we have used five sets of flows (TablB.5-S1 and FS2 were collected at
two ends of connection chains similar to the sdenstnown in Figure 5.1. FS1 and
FS2 contain 16 SSH flows and 15 Telnet flows, respely; for each flow in FS2,
there is one flow in FS1 which was in the same eotian chain. FS3 and FS4 are
derived from 5 million packet headers and 12 millgacket headers of the Auckland-
IV traces of NLANR®!. FS5 is derived from over 49 million packet headef the
Bell Lab-I traces of NLANR®,
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Table 5.1: Traces of Flows Used in Correlation Ekpents

Flow Set Date Flow Type Flow 4 Packet 4
FS1 03/02/02 SSH 16 12372
FS2 03/02/02 Telnet 15 5111
FS3 02/20/01 Telnet/SSH 144 34344
FS4 02/26/01 Telnet/SSH 135 38196
FS5 05/xx/02 SSH 400 364158

We have conducted four sets of aggregated cowalakperiments. For all of
these experiments, two flows were regarded as badnglated if the CVF of their
correlation points (equation (4.13)) was greatani0.6.The first set tests how well
different correlation metrics (CPF) detects cotiefa between sets FS1 and FS2.
Figure 5.4 shows both the number of true positijeg of a total of 15) and the
number of false positives (out of 15*15=225) ofwlaorrelation detection with
different correlation window sizes and correlatpmint thresholds),.

With a &, threshold of 0.70, MMS reaches its TP peak of 38% correlation
window size of 20, and NDP2 reaches its TP pea#0&b with a correlation window
size of 20 or 25. However NDP2 has a significahitygher number of false positives
at the window size corresponding to its peak trogitjye rate than does than MMS.
Both STAT and NDP1 have very low (<7%) TP rateshvatl correlation window
size. This indicates that STAT and NDP1 are in¢ifeavith a lowd,, threshold.

For all &, threshold values, MMS attains its peak TP raté Witfalse positives.
NDP1 and NDP2 show a similar success rate, witbnaesvhat higher failure (false
positive) rate. STAT is generally not successfut@relating the flows in the same
chain. The best results are obtained for the lsiglgthreshold setting. MMS is able
to achieve 100% TP rate with O false positives withrelation window size 15,
threshold 0.90 and window size 1€, threshold 0.95. NDP2 is also able to have
100%TP rate with O FP at correlation window size 43 threshold 0.95. NDP1's
overall TP peak is 93% with 7% FP at correlationdaw size 204, threshold 0.90

The second set of experiments shows the correlat&taction effectiveness by
different correlation metrics. We use combined flest of FS3 and FS4 (279 flows)
and flow set FS5 (400 flows) to correlate themskaspectively. Figure 5.5 shows
the true positive rate of different correlation netvith different correlation window
size and g, threshold. Again the STAT correlation point fulcti consistently
performs poorly. MMS and NDP1 almost have identicadrelation detection rates
across all the correlation window size afgd threshold combinations in both data
sets, where NDP1 has little lower detection rate.ffow set FS5, the detection rates
of both MMS and NDP2 reach 92% and higher with elatron window size 25 or
bigger. At correlation window size 35, MMS’s and RPJs detection rate achieve
over 97%. For the combined flow set FS3 and FS4, atrrelation window size of
15, for &, threshold 0.95, MMS, NDPland NDP2 all have thehég correlation
detection rate of 76.7%. This lower detection ratdue to the nature of the flows in
FS3 and FS4. We have found a number of SSH flowsS8 and FS4 show very
similar periodicity, with constant very short IPD&le suspect they are bulk data
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Figure 5.4 True Positive and False Positive of €ation
between 16 and 15 Correlated Flows

transfers within the SSH connections. This showstential limitation of the use of
IPD-based tracing.

The third experiment is intended to evaluate thbtylof the different correlation
point functions to successfully discriminate flomst part of the same chain. Figure
5.6 shows the number of false positives (out of2F§=4464) when correlating FS1
and the combined flow set of FS3 and FS4. Becaodw from FS1 correlates with
any flow from FS3 and FS4, any detected correlaliprthe correlation metric is a
false positive. MMS consistently has 0 false pesgj and NDP1 and NDP2 false
positives decrease as the correlation window sizeeases. The STAT correlation
point function reports an increasing number of WRis larger correlation sizes.
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Figure 5.6 False Positive of Correlation between
16 and 279 Uncorrelated Flows

The fourth experiment similarly investigated thdséapositive rate, this time
between sets FS3 and FS4. Figure 5.7 shows thiésteBue number of false positives
(out of 144*133 = 19152) for MMS, NDP1 and NDP2 @eses dramatically when
the correlation window size increases; that of MMSreases faster than NDP1 and
NDP2. Again, the statistical correlation metris leaconsistently higher FP rate with
increasing correlation window size. For the MMS Inoet, a window size of 20 Or 25
packets is sufficient to reduce the false positate to a fraction of a percent.

In summary, we have found that MMS is very effegtiin both detecting
interactive, correlated flows and differentiatingicorrelated flows with even
relatively small correlation window sizes (10, 15DP1 and NDP2 are not as
sensitive as MMS with small correlation windowswewer, they both perform well
with larger correlation windows. We have confirmibat the statistical correlation
metric is not effective in detecting correlatiordaifferentiating uncorrelated flows.
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Figure 5.7 False Positive of Correlation between
144 and 135 Uncorrelated Flows

5.3 Correlation Performance

Table 5.2: Throughput (Millions Per Second) of @tation Point Calculation
with Correlation Window Size 15

40k 379k 037k | 2309k] 5704f 5421Qk
MMS | 2.00 1.65 1.74 1.75 1.43 1.35
STAT | 0.90 0.76 0.69 1.14 1.22 1.83
NDP1| 3.99 3.16 2.23 3.25 2.29 3.24
NDP2 | 1.33 1.31 1.16 1.37 1.17 1.13

We have measured the number of calculations ofelation points per second
achieved by our unoptimized code. Table 5.2 shtwsaverage number of millions
of correlation point calculation per second of gas correlation point functions under
different load. Despite dynamic overheads of dipkration, the overall throughput
remains largely constant at various loads.

Conclusions

Tracing intrusion connections through stepping-ssoat real-time is a challenging
problem, and encryption of some of the connectiaitiin the connection chain

makes tracing even harder. We have addressed dabmgdrproblem of encrypted

connections based on the inter-packet delays otén@ections. We proposed and
investigated four correlation point functions. @uarrelation metric does not require
clock synchronization, and allows correlation of aserements taken at widely
scattered points. Our method also requires onlyllgraaket sequences (on the order
of a few dozen packets) for correlation. We hawenébthat after some filtering, IPDs

(Inter-Packet Delay) of both encrypted and unerteyjpinteractive connections are
largely preserved across many hops stepping-stiviesiave demonstrated that both
encrypted and unencrypted, interactive connectiamsbe effectively correlated and
differentiated based on IPD characteristics.
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Our experiments also indicate that correlation c&ie is significantly dependent
on the uniqueness of flows. We have found that abinteractive connections such
as telnet, SSH and rlogin are almost always unenaigh to be differentiated from
connections not in the same chain. While bulk dedgasfer with SSH connection
introduces an additional challenge in correlatietedtion, its impact on correlation
differentiation may simply be offset by larger @ation windows and higher
correlation point thresholds.

A natural area of future work is to extend the elfation to non-interactive traffic.
How to address countermeasures with “bogus packatsl’ packet splitting and
merging remains an open problem.
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