

Sleepy Watermark Tracing: An Active Network-
Based Intrusion Response Framework*

Xinyuan Wang†, Douglas S. Reeves†‡, S. Felix Wu††, Jim Yuill†
†Department of Computer Science
‡
Department of Electrical and Computer Engineering

North Carolina State University
USA

††

Department of Computer Science
University of California at Davis
USA

Key words: Intrusion Response, Intrusion Tracing, Active Security, and Network Security

Abstract: Network-based intrusion has become a serious threat to today’s highly
networked information systems, yet the overwhelming majority of current
network security mechanisms are “passive” in response to network-based
attacks. In particular, tracing and detection of the source of network-based
intrusion has been left largely untouched in existing intrusion detection
mechanisms. The fact that intruders can log in through a series of hosts before
attacking the final target makes it extremely difficult to trace back the real
source of network-based intrusions.

 In this paper, we apply active networking principles to address the problem of
tracing network-based intrusion with such chained connections, and propose a
novel intrusion response framework: Sleepy Watermark Tracing (SWT). SWT
is "sleepy" in that it does not introduce overhead when no intrusion is detected.
Yet it is "active" in that when an intrusion is detected, the target will inject a
watermark into the backward connection of the intrusion, and wake up and
collaborate with intermediate routers along the intrusion path. By integrating a
sleepy intrusion response scheme, a watermark correlation technique and an
active tracing protocol, SWT provides a highly efficient and accurate source
tracing on interactive intrusions through chained telnet or rlogin. Our

* This work has been supported by the Defense Advanced Projects Agency, administered by

AFOSR under contract F30602-99-1-0540

2 Xinyuan Wang, Douglas S. Reeves, S. Felix Wu, Jim Yuill

prototype shows that SWT can trace back to the farthest trustworthy security
gateway to the origin of intrusion, within one keystroke by the intruder. With
its unique active tracing, SWT can even trace when intrusion connections are
idle.

1. INTRODUCTION

Network-based attacks have become a major concern to today’s highly
networked mission critical information system. Existing network security
mechanisms such as IDS, Firewall and IPSEC have not completely
addressed the problem of network-based attacks. They are “passive” in front
of network-based attacks and tend to be host-based. There is no automatic
network-wide response even when attacks are detected.

One major problem in building an effective response to network-based
attacks is the lack of source identification. Without effective source tracing,
the attacked victim is blind at defending network-based attacks, and no
effective intrusion countermeasures such as blocking and containing can be
implemented. Network-based attacks can not be effectively repelled or
eliminated until its source is known.

A complete solution to the problem of tracing network-based attacks is
complicated by different anonymity gaining techniques used by different
network-based attacks. For example, distributed denial-of-service (DDoS)
attacks are usually generated from multiple previously-compromised slave
machines, under control of a remote master machine. The unidirectional
flooding traffic from slave machines usually comes with a “spoofed” source
IP address, which makes it difficult to trace even the slave machines. For bi-
directional, interactive intrusions, one of the most widely used techniques to
conceal their true origin is to connect through “stepping stones” [11]: intruders
connect through a series of intermediate hosts before attacking the final
target. All these techniques are easy to implement and use, making source
tracing of network-based attacks among the hardest network security
problems

In this paper, we focus on the real-time tracing of interactive intrusions
that utilizes connection chains to disguise their source. A real-time solution
to this problem not only enables us to stop or deter network-based intrusion
near its source, but also helps to deter DDoS by better protecting hosts from
being compromised into slave machines. While there are several approaches
have been proposed to address the tracing problem of intrusion connection
chains, they are all passive and tend to be isolated, and their lack of real-time
network-wide coordination severely limits their practical use in real-time
tracing in the current Internet.

Sleepy watermark tracing:an active network-based intrusion
response framework

3

On the other hand, active network [2, 9] is an emerging framework that

seeks to increase the programmability of computer networks and network
components. It enables user and application to dynamically control how
packets are handled. This customized packet processing opens new ways of
securing networks that was not available in traditional passive networks.

In this paper, we apply active networks principle to address the problem
of tracing network-based intrusion with chained connections, and present a
novel intrusion response framework: Sleepy Watermark Tracing (SWT).
SWT is “sleepy” in that it does not introduce any overhead when there is no
intrusion detected. Yet it is “active” in that when there is intrusion detected,
it will trigger and coordinate network-wide tracing at real-time. SWT
exploits the observations: 1) interactive intrusions with chained connections
are bi-directional and symmetric at the granularity of connections; 2)
application level contents are invariant across connection chains. By
“injecting” carefully designed watermarks into the backwards-response
traffic of the intrusion connection chain, SWT is able to trace through the
intrusion connection chains at real-time - within a single keystroke by the
intruder. Through its unique active tracing, SWT can trace through the
connection chain even when the intruder is silent. All these represent
substantial improvements over existing capabilities for tracing interactive
intrusions with a chained connection.

In the next section, we discuss the general tracing problem and give a
brief overview of existing tracing approaches. In section 3, we describe the
general Sleepy Watermark Tracing method. In section 4, we present the
SWT architecture. In section 5, we describe our prototype implementation of
SWT and experimental results. In section 6, we conclude with possible
future work.

2. TRACING PROBLEM AND APPROACHES

Given a series of computer hosts H1, H2, … Hn (n>2), when a person (or
a program) sequentially connects from Hi into Hi+1 (i=1,2,..n-1), we refer to
the sequence of connections on <H1, H2, … Hn> as a connection chain, or
chained connection. The tracing problem of a connection chain is, given Hn
of a connection chain, to identify Hn-1, … H1.

Tracing the source of intrusion through a connection chain over the
Internet is a difficult problem. It requires network-wide collaboration among
hosts in the network, and yet some of the hosts may be compromised and not
trustworthy, As a network security mechanism, intrusion source tracing
should be based on trust of appropriate network resources, and be robust

4 Xinyuan Wang, Douglas S. Reeves, S. Felix Wu, Jim Yuill

against compromised hosts in the network. To trace back the chained
connections through multiple hosts, effective correlation is needed at
intermediate nodes. Because network-based intrusion in today’s high-speed
network can be very short, correlation at intermediate nodes needs to be fast
and accurate. Additionally, to scale the tracing system to the Internet, the
tracing system should have minimum overhead while providing a fast
response to detected network-based intrusion.

In general, tracing approaches for a connection chain can be divided into
two categories: host-based and network-based, each of which can further be
classified into either active or passive. Table 1 provides a classification of
existing tracing approaches, as well as our proposed tracing mechanism.

Table 1. Classification of Existing Tracing Approaches and SWT
 Passive Active
Host-based DIDS

CIS
Caller ID

Network-based Thumbprinting
Timing-based
Deviation-based

IDIP
SWT

Distributed Intrusion Detection System (DIDS) [7] developed at UC Davis

is a host-based tracing mechanism that attempts to keep track of all the users
in the network and account for all activities to network-wide intrusion
detection systems. Each monitored host in theDIDS domain collects audit
trails and sends audit abstracts to a centralized DIDS director for analysis.
While DIDS is capable of keeping track of all users moving around the
network through normal login within the DIDS domain, it seems not feasible
in large-scale network such as the Internet, because of its centralized
monitoring of network activities.

The Caller Identification System (CIS) [5] is another host-based tracing
mechanism. It eliminates centralized control by utilizing a truly distributed
model. Each host along the login chain keeps a record about its view of the
login chain so far. When the user from the n-1th host attempts to login into
the nth host, the nth host asks the n-1th host about its view of the login chain
of that user, which should be 1,2 ... n-1 ideally. The nth host then queries
host n-1 to 1 about their views of the login chain and so on. Only when the
login chain information from all queried hosts matches, will the login be
granted at the nth host. While CIS attempts to maintain the integrity of login
chain by reviewing information from hosts along the login chain, it
introduces excessive overheard to the normal login process.

Caller ID, described by Stuart Staniford-Chen [3] , is yet another
interesting host-based approach that is said to be used by the Air Force.
Caller ID is controversial in that it actually utilizes the same break-in

Sleepy watermark tracing:an active network-based intrusion
response framework

5

technique used by intruders to break into the hosts along the connection
chain reversibly. If the intruder from H0 connects through H1, H2…Hn-1 to
the final target Hn, the network security personnel at Hn first breaks into Hn-1;

from there they can find out the intruder comes from Hn-2, then they break
into Hn-2 and so on. Eventually they can find the origin of the intruder. One
compelling advantage of Caller ID is that it is scalable to the Internet. It is
also efficient in the sense that it introduces less overhead compared to DIDS
and CIS. But its manual approach makes it difficult to trace short intrusion in
today’s high-speed network. Besides it legal complications, Caller ID also
has the drawback that one must perform manual tracing on the host where
the intruder is active, which is easily-noticed by the intruder.

The fundamental problem with the host-based tracing approach is its trust
model. Host-based tracing places its trust upon the monitored hosts
themselves. In specific, it depends on the correlation of connections at every
host in the connection chain. If one host is compromised and is providing
misleading correlation information, the whole tracing system is fooled.
Because host-based tracing requires participation and trust of every host
involved in the network-based intrusion, it is very difficult to be applied in
the context of the public Internet.

Network-based tracing is the other category of tracing approaches.
Neither does it require the participation of monitored hosts, nor does it place
its trust on the monitored hosts. It is based on the property of network
connections: the application level content of chained connections is invariant
across the connection chain. In particular, the thumbprint [3] is a pioneering
correlation technique that utilizes a small quantity of information to
summarize connections. Ideally it can uniquely distinguish a connection
from unrelated connections and correlate those related connections in the
same connection chain. While thumbprinting can be useful even when only
part of the Internet implements it, it depends on clock synchronization to
match thumbprints of corresponding intervals of connections. It also is
vulnerable to retransmission variation. This severely limits its usefulness in
real-time tracing.

The timing-based scheme [11] by Zhang and Paxson is a novel network-
based correlation scheme for detecting stepping stones across the connection
chain. The correlation is based on the distinctive timing characteristics of
interactive traffic, rather than connection contents. It pioneered new ways of
correlating encrypted connections. It requires no clock synchronization and
it is robust against retransmission variation. However, because its timing
characteristics are defined over the entire duration of each connection to be
correlated, it is difficult to be used in real-time correlation.

6 Xinyuan Wang, Douglas S. Reeves, S. Felix Wu, Jim Yuill

The deviation-based approach [10] by Yoda and Etoh is another network-
based correlation scheme. It defines the minimum average delay gap
between the packet streams of two TCP connections as deviation. The
deviation considers both timing characteristics and the TCP sequence
number, and it does not depend on the TCP payload. Similar to the timing-
based approach, the deviation-based approach does not require clock
synchronization and is robust against retransmission variations. However it
is difficult to be used in real-time correlation as the deviation is defined over
all the packets of a connection. Another drawback of deviation-based
approach is that it correlates only TCP connections.

One fundamental problem with passive network-based approaches is its
computational complexity. Because it passively monitors and compares
network traffic, it needs to record all the concurrent incoming and outgoing
connections even when there is no intrusion to trace. To correlate at any host
in the connection chain, it needs to match every concurrent incoming
connection with every concurrent outgoing connection at that host. That is,
for a host with m concurrent incoming connections and n concurrent
outgoing connections, the passive network-based correlation approach would
take O(m×n) comparisons, in addition to the O(m+n) scanning and recording
of concurrent connections.

On the other hand, the active network-based approach dynamically
controls how connections are correlated through customized packet
processing. It does not need to record all the concurrent incoming and
outgoing connections at any host in the connection chain. It does not need to
match each concurrent incoming connection with each concurrent outgoing
connection. For a host with m concurrent incoming connections and n
concurrent outgoing connections, the active network-based approach is able
to correlate within time dependent only on the number of connections being
actively traced, in addition to the O(m+n) scanning of concurrent
connections.

IDIP (Intrusion Identification and Isolation Protocol) [6] is a proposal by
Boeing’s Dynamic Cooperating Boundary Controllers Program that uses an
active approach to trace the incoming path and source of intrusion. In the
proposal, boundary controllers collaboratively locate and block the intruder
by exchanging intrusion detection information, namely, attack descriptions.
While it does not require any boundary controller to record any connections
for correlation, its intrusion tracing is closely coupled with intrusion
detection. The effectiveness of IDIP depends on the effectiveness of
intrusion identification through the attack description at each boundary
controller. Therefore IDIP requires each boundary controller to have the
same intrusion detection capability as the IDS at the intrusion target host. It

Sleepy watermark tracing:an active network-based intrusion
response framework

7

is questionable whether the intermediate boundary controller is able to
identify an intrusion based on a hard-coded attack description.

3. SLEEPY WATERMARK TRACING OVERVIEW

SWT is an active network-based tracing framework. It is "sleepy" in that
it does not introduce overhead when no intrusion is detected. Yet it is
"active" in that when an intrusion is detected, the target will inject a
watermark into the backward connection of the intrusion and “wakes up”
intermediate routers along the intrusion path.

By watermarking selected packets and processing them accordingly,
SWT provides many potential advantages over existing intrusion tracing
approaches. 1) SWT separate intrusion tracing from intrusion detection and
it does not require any node other than the intrusion target to have the
intrusion detection capability. 2) Unlike thumbprinting, timing-based and
deviation-based approaches, SWT does not need to record all the concurrent
incoming and outgoing connections at any node, and it does not require
matching each of the incoming connections with each of the outgoing
connections for correlation at any node. 3) SWT requires no clock
synchronization and is robust against retransmission variation. 4) SWT
traces only when needed. 5) So far the most compelling advantage of SWT
is its correlation accuracy and efficiency. By using watermarks, SWT can
trace the intrusion connection chain to its origin within a single keystroke of
the intruder. With its unique active tracing, SWT can trace the intrusion
connection chain back to its origin even when the intruder is is inactive. 6)
We have found that SWT can be implemented efficiently. It does not
introduce any noticeable overhead to routers, and it only requires a few
network server applications at the intrusion target host to be modified to
inject watermarks.

In the remainder of this section, we describe the SWT model concepts
and assumptions.

3.1 Basic SWT Concepts

In order to keep track of network-based intrusions to hosts, it is desirable
to monitor hosts through the nearest router or gateways. This is termed a
Guardian Gateway. We define the Incoming Guardian Gateway of host H as
the nearest router that forwards incoming traffic to H and the Outgoing
Guardian Gateway of host H as the nearest router that forwards outgoing
traffic from H. It is possible that one host has more than one incoming or

8 Xinyuan Wang, Douglas S. Reeves, S. Felix Wu, Jim Yuill

outgoing guardian gateway. We define the union of incoming and outgoing
guardian gateways of a host as its Guardian Gateway Set (e.g., {GWin1,
GWin2, GWout1, GWout2} in Figure 1). For any guardian gateway set G, we
define those hosts as Guarded Host of G whose guardian gateway set is a
subset of G. For a host H, while the traffic between H and its directly-
connected neighbour hosts does not pass through any gateways, the traffic
between H and any non-directly-connected hosts must pass through its
guardian gateway set.

We further define a leap as one connection step between hosts within a
connection chain (e.g., <Hi , Hi+1> in Figure 2). One leap may consist of
multiple hops (or links in the physical network) and the two guardian
gateways of the two end hosts. A leap can be specified by a 5-tuple
consisting of

<protocol number, source ip address, source port number, destination ip
address, destination port number>

Now the tracing problem of chained intrusion is defined as discovering
and sequencing the guardian gateways of those hosts in the intrusion path, or
(equivalently) as finding the leaps along the intrusion path.

Figure 1: Guardian Gateway Set

GWout2

GWin1

GWin2

GWout1

H0

H1

Hi: Host
GWin: Incoming Guardian Gateway
GWout: Outgoing Guardian Gateway

H1

H0

H2

H3

H4

H5

H6

GW1 GW2

GW3

GW4

Figure 2: Tracing Model

Intruder

Hi: Host
GWi: Guardian Gateway

H6

Sleepy watermark tracing:an active network-based intrusion
response framework

9

3.2 Basic SWT Assumptions

We have identified the following assumptions that motivate and constrain
our design:

Intrusions are interactive and bidirectional,
Routers are trust worthy and hosts are not trust worthy,
Each host has a single SWT guardian gateway and
There is no link-to-link encryption.
The first two assumptions represent our assessments of the nature of the

intrusions. Here we refer to intrusions as those attacks aiming to gain
unauthorized access, rather than denial of service attacks. A study of CERT
security incidents [4] indicates that almost all security incidents, especially
unauthorized access incidents, happened at computer hosts rather than
routers or gateways. Therefore we believe our assumption to trust routers
will cover most intrusion cases. In case there are indeed compromised
routers involved in intrusion, the compromised router will be effectively
indistinguishable from an attacker. The compromised router needs to be
addressed first, before the tracing of the intrusion can go any further. In this
case SWT can still trace to the farthest trustworthy guardian gateway.

The assumption of each host having a single SWT guardian gateway is
only for simplifying the presentation of the SWT architecture. In case some
host has multiple SWT guardian gateways, the guardian gateway set will be
used in SWT tracing.

The final assumption represents the inherent limitation of any tracing
based on network content. We believe that correlation of encrypted
connections in real-time is still an open problem.

4. SLEEPY WATERMARK TRACING
ARCHITECTURE

In general, the Sleepy Watermark Tracing Architecture consists of two
complementing parties, namely, the SWT guarded host and the SWT
guardian gateway. The SWT guarded host is the host that supports and thus
is protected by SWT. The SWT guardian gateway supports SWT. In our
trust model, each SWT guarded host has a unique SWT guardian gateway,
and it maintains a pointer to its SWT guardian gateway. Each SWT guardian
gateway may guard one or more SWT guarded hosts and it maintains the list
of its SWT guarded hosts.

IDS and watermark-enabled applications at a SWT guarded host are
SWT supporting components. In particular, IDS refers to an application level

10 Xinyuan Wang, Douglas S. Reeves, S. Felix Wu, Jim Yuill

interface to any Intrusion Detection System ; this is the ultimate initiator of
SWT tracing. It interacts with SWT subsystem within SWT guarded host
and triggers active watermark tracing once it detects an intrusion. Watermark
enabled applications are those network service applications (such as telnetd,
rlogind) that have been modified to inject arbitrary watermarks upon request.

The core of Sleepy Watermark Tracing consists of three interacting
components: Sleepy Intrusion Response (SIR), Watermark Correlation
(WMC) and Active Tracing (AT). In particular, Sleepy Intrusion Response
accepts tracing requests from IDS, coordinates active tracing and keeps track
of tracing information of intrusions. Watermark Correlation correlates
incoming and outgoing connections through watermarks. Active Tracing
coordinates different parties in the network to collaboratively trace the
incoming path and source of intrusions.

These three components work tightly together across SWT hosts and
SWT guarded gateways. In specific, SIR and AT form the SWT subsystem
within a SWT guarded host. Upon request from IDS, SIR coordinates a
WM- enabled application and the AT module to initiate active tracing from
the SWT guarded host to SWT guardian gateways. At the SWT gateway, the
AT module receives tracing requests and provides watermarks to the WMC
module. This module in turn provides AT module information about the
next-leap SWT guardian gateway by correlating incoming and outgoing
connections. Once the SWT guardian gateway finds next leap information
about an intrusion connection chain, AT will send trace information to the
original host that initiated the whole tracing and notify the next leap SWT
guardian gateway to start watermark tracing.

Figure 3: SWT Architecture

Host

Normal Traffic

Watermarked Traffic

Active Tracing Protocol

Watermark
Correlation

Active Tracing

SWT Guardian Gateway

IDS

Sleepy Intrusion
Response

Active Tracing

Watermark Enabled
Application

SWT Guarded Host

SWT Subsystem

Sleepy watermark tracing:an active network-based intrusion
response framework

11

4.1 Sleepy Intrusion Response

SIR controls and coordinates overall SWT intrusion tracing. It is in a
SWT guarded host and it interacts with IDS and WM-enabled applications in
the same host. To achieve high efficiency, SIR introduces “sleepiness” into
SWT. By default, the SWT system is inactive and in sleep mode. When IDS
detects an intrusion, it triggers SWT tracing by notifying SIR with
appropriate connection information. Upon request from IDS, SIR first
registers the intrusion connection as active for a configurable period of time,
if it is not active already. Then SIR triggers active tracing on its guardian
gateway by sending out trace notification; Finally SIR notifies the WM-
enabled application that terminates the intrusion connection to start injecting
the requested watermark. SIR also keeps track of tracing information of
intrusions returned by the SWT guardian gateway, and upon request from
IDS, SIR will provide tracing information on any specific active intrusion. If
within a timeout period there is no trace information returned from the SWT
guardian gateways, or further trace notification from IDS on an active
intrusion connection, that intrusion response component will become
inactive (“fall asleep”).

4.2 Watermark and Watermark-Enabled Applications

Conceptually, a watermark is a small piece of information that can be
used to uniquely identify a connection. Ideally, a watermark should be easy
to embed and retrieve and yet be invisible to normal users of network
applications. In order to be used for correlation, a watermark must be able to
traverse multiple connections and remain invariant (we assume that there is
no encryption involved in the connections). Therefore, watermark belongs to
the application layer and is application-specific.

One challenge in generating watermark is how to make watermarks
invisible to end-users. For text based network applications such as telnet and
rlogin, this is in many ways similar to hiding data in text [1], which is much
more difficult than hiding data in pictures or sounds. The open space method
is one of the major methods of data hiding in text files through manipulating
white space. In particular, inserting spaces at the end of each line of text file
will not be noticed by readers. But for network applications such as telnet
and rlogin, simply inserting spaces will change the cursor position, and it is
likely to be noticed by end users. Fortunately, the text being transferred to
network applications is not necessarily the same as that being displayed. For
example, the string

 “See meabc\b\b\b \b”

12 Xinyuan Wang, Douglas S. Reeves, S. Felix Wu, Jim Yuill

∏∏
−

=

−

=
�
�

�
�
�

� −=−=
1

1

1

1

1),(
n

i

n

i m

i

m

im
nmP

 transferred to telnet or rlogin will be displayed as the string
 “See me”
We define a virtual null string of a network application as a string that

appears null to end users of the network application. For instance,
“abc\b\b\b \b” is a virtual null string of telnet and rlogin. Therefore by
using virtual null strings, we can make watermarks invisible to such network
applications.

In order to achieve high confidence of correlation, it is desirable to have
the probability of collision of randomly generated watermarks as low as
possible. For n > 1 sites, assume each site independently generates a equi-
probable random integer number between 1 and m, where m >> n; let P(m,
n) be the probability such that those n random numbers are different from
each other. Then we have:

When m > n2, we have:

Therefore, given n = 232, having m ≥ 273 will make P(m, n) > 0.999.
That means having 73 random bits in watermarks is sufficient to cover the
whole IPv4 address space such that the probability of collision of generated
watermarks is less than 0.1%.

Because the watermark is application specific, it needs to be injected into

backward traffic through the application itself. Watermark-enabled
applications are those network server applications (such as telnetd, rlogind)
that have been modified to be able to “inject” requested watermark into their
response traffic upon request. A watermark-enabled application processes
two messages from SIR : WM-Start and WM-End, where WM-Start notifies
watermark-enabled application to start injecting the enclosed watermark for
specified times, and WM-End notifies the watermark-enabled application to
stop injecting the watermark.

4.3 Watermark Correlation

In order to trace back along the intrusion connection chain, a mechanism
is needed to find and match adjacent connections that belong to the same
connection chain. We refer to this adjacent connection matching mechanism
as correlation. According to the SWT tracing model, the hosts along the
intrusion connection chain are not trustworthy, therefore, SWT is designed

m
n

m

in

i 2
11

21

1

−>�
�

�
�
�

� −∏
−

=

Sleepy watermark tracing:an active network-based intrusion
response framework

13

to correlate at SWT guardian gateways. Because the forward and backward
traffic of intrusion connection chain is symmetric at the granularity of leaps,
watermarks along the backward traffic could be used for correlation at SWT
guardian gateways.

By referencing its SWT guarded hosts, the through traffic of a SWT
guardian gateway can be divided into two classes: guarded and bypassing
(Figure 4). We define guarded traffic of a SWT guardian gateway as the
traffic that either terminates at or originates from one of the SWT guardian
gateway’s guarded hosts, and bypassing traffic as all other traffic. It is
obvious that the SWT guardian gateway needs to scan only the guarded
traffic for possible correlation. We further define an incoming leap of a SWT
guardian gateway as the connection that terminates at one of the gateway’s
guarded hosts, and an outgoing leap of a SWT guardian gateway as the
connection that originates from one of the gateway’s guarded hosts (Figure
4). Thus correlation at SWT guardian gateway can be modeled as matching
an outgoing leap with an incoming leap.

One challenge of correlation at the SWT guardian gateway is that there
may be multiple incoming and outgoing leaps through a single SWT
guardian gateway. For a SWT guardian gateway with m incoming and n
outgoing leaps, there are m×n combinations of possible matches after those
m+n leaps have been scanned. In specific, after m incoming leaps have been
scanned, each of the n outgoing leaps scanned has m possible matches for
correlation. Therefore exhaustive matching through multiple SWT guardian
gateways would be complex and computationally expensive. To solve the
connection matching combination explosion problem and achieve real-time
response, SWT introduces the watermark as its basis for correlation.

With an identifying watermark injected to backward traffic of the
intrusion connection chain, correlation at an intermediate SWT guardian
gateways is simplified to scanning incoming and outgoing leaps and
matching those with the same watermark. Specifically, when a SWT

Figure 4: Guardian Gateway Correlation

 incoming

Guarded
Host

Guardian
Gateway

 …

 …
 outgoing

…

…

 pypassing

14 Xinyuan Wang, Douglas S. Reeves, S. Felix Wu, Jim Yuill

guardian gateway scans incoming leaps, it registers any leap that has a
registered watermark. When it scans outgoing leaps, it matches watermarked
outgoing leaps with the incoming leap with same watermark.

The following observations can be made about watermark correlation:
• The accuracy of correlation is purely based on the uniqueness of the

watermark, which is ultimately determined by SIR at the intrusion
target host. This makes it possible to get very high confidence of
correlation from tracing even a single watermarked packet.

• While the watermark is application specific, watermark correlation is

generic. It has linear computation complexity across chained
connections and requires no clock synchronization. Therefore it gives
real-time response.

5. PROTOTYPE EXPERIMENTS

As a proof of concept, we have implemented a SWT prototype on
FreeBSD 4.0. The prototype includes a SWT guarded host, SWT guardian
gateways and a watermark-enabled application all running on the FreeBSD
platforms.

We have performed two functional experiments on tracing a telnet
connection chain: A � B � C � D, where A is the source of intrusion and
D is the final intrusion target. The first is to trace the intrusion source while
the intruder is active. Our SWT prototype demonstrates the capability of
real-time tracing of a single watermarked packet: SIR at host D gets all the
trace information back to intrusion source A within one key stroke from
intruder at A. The second experiment is to trace the intrusion source while
the intruder is inactive or silent. By actively sending back a watermark from
watermark-enabled telnetd, our SWT prototype also gets all the trace
information lead to the intrusion source A. As we have expected, for each
watermarked packet, SWT triggers one GWTraceOn message travel from D
� C � B � A, and two GWTraceInfo messages from C and B respectively.

To quantify the overheads incurred due to SWT itself, we have measured
latency of SWT gateways with four different configurations:

• FreeBSD kernel IP forwarding without SWT;
• SWT configured to bypass traffic;
• divert socket IP forwarding without SWT;
• SWT configured to scan traffic.
The latency measurements were performed on a three node testbed

configured in a straight line topology. The gateway at intermediate node was

Sleepy watermark tracing:an active network-based intrusion
response framework

15

a 233Hz Pentium PC with 32 MB RAM, 512KB cache, and two Netgear
FA310TX 10/100 fast Ethernet adapters, running FreeBSD 4.0.

Figure 5 shows that the latency of FreeBSD kernel IP forwarding is about
78 µs, independent of packet sizes. It takes about 83 µs for the SWT gateway
to bypass and forward IP packets of various sizes. The 5 µs latency
difference comes from IPFW rule matching in the FreeBSD kernel. The
latency of divert socket IP forwarding ranges from 186 µs to 239 µs
depending on the size of IP packets. The 103 µs to 156 µs overhead for
divert socket forwarding over kernel forwarding includes: (1) overhead for
two context switches for data reading and writing; (2) overhead for data
copy in and out of user space; (3) overhead for dispatching system calls.
Compared with divert socket IP forwarding, SWT scanning takes about 50
µs more time to forward IP packets of various sizes. This indicates that the
SWT gateway latency overhead due to SWT itself is about 50 µs.

6. CONCLUSIONS

In this paper, we have argued that network-wide, active intrusion
response is needed in order to trace today’s increasingly sophisticated
network-based intrusions, which most likely utilize chained connections to
hide their origin. We have presented SWT as an active network-based
intrusion response framework and have shown that watermark can be used to
construct highly accurate and efficient correlation for tracing chained

Figure 5: Latency of SWT Gateway

0

20
40

60

80
100

120

140
160

180

200

220
240

260

280
300

320

0 200 400 600 800 1000 1200 1400 1600

Packet Size (bytes)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

SWT Scan

Divert So cket

SWT Bypas s

FreeBSD Kerne l

16 Xinyuan Wang, Douglas S. Reeves, S. Felix Wu, Jim Yuill

intrusion connections. Our prototype shows that SWT is able to trace back to
the trustworthy SWT guardian gateway that is closest to the source of
intrusion chain, within single keystroke of the intruder. By actively injecting
watermark back to the intrusion connection, it is able to trace even when the
intruder is silent.

By integration of Sleepy Intrusion Response, Watermark Correlation and
Active Tracing, SWT provides highly effective, real-time and network-wide
tracing of intrusions with chained connections. It is efficient, robust and
scalable and it only requires some of the edge routers to participate tracing.
Our experiment shows that SWT’s own impact on a gateway’s processing
delay is only about 50 µs.

These results lead us to conclude that active network technology can
indeed provide better and yet practical solutions to some of the most difficult
network security problems. It is our hope that SWT could be a building
block for more active network security mechanisms such as dynamic
perimeter defense, and dynamic intrusion blocking and containment.

REFERENCES

1 W. Bender, D. Gruhl, N. Morimoto and A. Lu. Technique for Data Hiding. IBM Systems
Journal, Vol. 35, Nos. 3&4, 1996.

2 K. L. Calvert, S. Bhattacharjee and E. Zegura. Directions in Active Networks. IEEE
Communication Magazine, 1998

3 S. Staniford-Chen, L. T. Heberlein. Holding Intruders Accountable on the Internet. In
Proceedings of IEEE Symposium on Security and Privacy, 1995.

4 J. D. Howard. An Analysis of Security Incidents on The Internet 1989 - 1995, PhD Thesis,
http://www.cert.org/research/JHThesis/Start.html, April 1997.

5 H. Jung, et al. Caller Identification System in the Internet Environment. In Proceedings of
4th USENIX Security Symposium, 1993.

6 D. Schnackenberg. Dynamic Cooperating Boundary Controllers.
http://www.darpa.mil/ito/Summaries97/ E295_0.html, Boeing Defense and Space Group,
March 1998.

7 S. Snapp, et all. DIDS (Distributed Intrusion Detection System) – Motivation, Architecture
and Early Prototype. In Proceedings of 14th National Computer Security Conference,
1991.

8 X. Y. Wang. Survivability through Active Intrusion Response. In Proceedings of 3rd IEEE
Information Survivability Workshop (ISW-2000), October 2000.

9 D. Wetherall, J. Guttag and D. Tennenhouse. ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols. In Proceedings of IEEE OPENARCH ’1998,
April 1998.

10 K. Yoda and H. Etoh. Finding a Connection Chain for Tracing Intruders. In F. Guppens, Y.
Deswarte, D. Gollmann and M. Waidner, editors, 6th European Symposium on Research in
Computer Security – ESORICS 2000 LNCS-1895, Toulouse, France, October 2000.

11 Y. Zhang and V. Paxson. Detecting Stepping Stones. In Proceedings of 9th USENIX
Security Symposium, 2000.

