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Abstract: Network-based intrusion has become a serious threat to today’s highly 
networked information systems, yet the overwhelming majority of current 
network security mechanisms are “passive” in response to network-based 
attacks. In particular, tracing and detection of the source of network-based 
intrusion has been left largely untouched in existing intrusion detection 
mechanisms. The fact that intruders can log in through a series of hosts before 
attacking the final target makes it extremely difficult to trace back the real 
source of network-based intrusions.  

 In this paper, we apply active networking principles to address the problem of 
tracing network-based intrusion with such chained connections, and propose a 
novel intrusion response framework: Sleepy Watermark Tracing (SWT). SWT 
is "sleepy" in that it does not introduce overhead when no intrusion is detected. 
Yet it is "active" in that when an intrusion is detected, the target will inject a 
watermark into the backward connection of the intrusion, and wake up and 
collaborate with intermediate routers along the intrusion path. By integrating a 
sleepy intrusion response scheme, a watermark correlation technique and an 
active tracing protocol, SWT provides a highly efficient and accurate source 
tracing on interactive intrusions through chained telnet or rlogin. Our 
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prototype shows that SWT can trace back to the farthest trustworthy security 
gateway to the origin of intrusion, within one keystroke by the intruder. With 
its unique active tracing, SWT can even trace when intrusion connections are 
idle. 

1. INTRODUCTION 

Network-based attacks have become a major concern to today’s highly 
networked mission critical information system. Existing network security 
mechanisms such as IDS, Firewall and IPSEC have not completely 
addressed the problem of network-based attacks. They are “passive” in front 
of network-based attacks and tend to be host-based. There is no automatic 
network-wide response even when attacks are detected. 

One major problem in building an effective response to network-based 
attacks is the lack of source identification. Without effective source tracing, 
the attacked victim is blind at defending network-based attacks, and no 
effective intrusion countermeasures such as blocking and containing can be 
implemented. Network-based attacks can not be effectively repelled or 
eliminated until its source is known. 

A complete solution to the problem of tracing network-based attacks is 
complicated by different anonymity gaining techniques used by different 
network-based attacks. For example, distributed denial-of-service (DDoS) 
attacks are usually generated from multiple previously-compromised slave 
machines, under control of a remote master machine. The unidirectional 
flooding traffic from slave machines usually comes with a “spoofed” source 
IP address, which makes it difficult to trace even the slave machines. For bi-
directional, interactive intrusions, one of the most widely used techniques to 
conceal their true origin is to connect through “stepping stones” [11]: intruders 
connect through a series of intermediate hosts before attacking the final 
target. All these techniques are easy to implement and use, making source 
tracing of network-based attacks among the hardest network security 
problems 

In this paper, we focus on the real-time tracing of interactive intrusions 
that utilizes connection chains to disguise their source. A real-time solution 
to this problem not only enables us to stop or deter network-based intrusion 
near its source, but also helps to deter DDoS by better protecting hosts from 
being compromised into slave machines. While there are several approaches 
have been proposed to address the tracing problem of intrusion connection 
chains, they are all passive and tend to be isolated, and their lack of real-time 
network-wide coordination severely limits their practical use in real-time 
tracing in the current Internet. 
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On the other hand, active network [2, 9] is an emerging framework that 

seeks to increase the programmability of computer networks and network 
components. It enables user and application to dynamically control how 
packets are handled. This customized packet processing opens new ways of 
securing networks that was not available in traditional passive networks.  

In this paper, we apply active networks principle to address the problem 
of tracing network-based intrusion with chained connections, and present a 
novel intrusion response framework: Sleepy Watermark Tracing (SWT). 
SWT is “sleepy” in that it does not introduce any overhead when there is no 
intrusion detected. Yet it is “active” in that when there is intrusion detected, 
it will trigger and coordinate network-wide tracing at real-time. SWT 
exploits the observations: 1) interactive intrusions with chained connections 
are bi-directional and symmetric at the granularity of connections; 2) 
application level contents are invariant across connection chains. By 
“injecting” carefully designed watermarks into the backwards-response 
traffic of the intrusion connection chain, SWT is able to trace through the 
intrusion connection chains at real-time - within a single keystroke by the 
intruder. Through its unique active tracing, SWT can trace through the 
connection chain even when the intruder is silent. All these represent 
substantial improvements over existing capabilities for tracing interactive 
intrusions with a chained connection. 

In the next section, we discuss the general tracing problem and give a 
brief overview of existing tracing approaches. In section 3, we describe the 
general Sleepy Watermark Tracing method. In section 4, we present the 
SWT architecture. In section 5, we describe our prototype implementation of 
SWT and experimental results. In section 6, we conclude with possible 
future work. 

2. TRACING PROBLEM AND APPROACHES 

Given a series of computer hosts H1, H2, … Hn (n>2), when a person (or 
a program) sequentially connects from Hi into Hi+1 (i=1,2,..n-1), we refer to 
the sequence of connections on <H1, H2, … Hn> as a connection chain, or 
chained connection. The tracing problem of a connection chain is, given Hn 
of a connection chain, to identify Hn-1, … H1. 

Tracing the source of intrusion through a connection chain over the 
Internet is a difficult problem. It requires network-wide collaboration among 
hosts in the network, and yet some of the hosts may be compromised and not 
trustworthy, As a network security mechanism, intrusion source tracing 
should be based on trust of appropriate network resources, and be robust 
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against compromised hosts in the network. To trace back the chained 
connections through multiple hosts, effective correlation is needed at 
intermediate nodes. Because network-based intrusion in today’s high-speed 
network can be very short, correlation at intermediate nodes needs to be fast 
and accurate. Additionally, to scale the tracing system to the Internet, the 
tracing system should have minimum overhead while providing a fast 
response to detected network-based intrusion. 

In general, tracing approaches for a connection chain can be divided into 
two categories: host-based and network-based, each of which can further be 
classified into either active or passive. Table 1 provides a classification of 
existing tracing approaches, as well as our proposed tracing mechanism. 

 
Table 1. Classification of Existing Tracing Approaches and SWT 
 Passive Active 
Host-based DIDS 

CIS 
Caller ID 

Network-based Thumbprinting 
Timing-based 
Deviation-based 

IDIP 
SWT 

 
Distributed Intrusion Detection System (DIDS) [7] developed at UC Davis 

is a host-based tracing mechanism that attempts to keep track of all the users 
in the network and account for all activities to network-wide intrusion 
detection systems. Each monitored host in theDIDS domain collects audit 
trails and sends audit abstracts to a centralized DIDS director for analysis. 
While DIDS is capable of keeping track of all users moving around the 
network through normal login within the DIDS domain, it seems not feasible 
in large-scale network such as the Internet, because of its centralized 
monitoring of network activities. 

The Caller Identification System (CIS) [5] is another host-based tracing 
mechanism. It eliminates centralized control by utilizing a truly distributed 
model. Each host along the login chain keeps a record about its view of the 
login chain so far. When the user from the n-1th host attempts to login into 
the nth host, the nth host asks the n-1th host about its view of the login chain 
of that user, which should be 1,2 ... n-1 ideally. The nth host then queries 
host n-1 to 1 about their views of the login chain and so on. Only when the 
login chain information from all queried hosts matches, will the login be 
granted at the nth host. While CIS attempts to maintain the integrity of login 
chain by reviewing information from hosts along the login chain, it 
introduces excessive overheard to the normal login process. 

Caller ID, described by Stuart Staniford-Chen [3] , is yet another 
interesting host-based approach that is said to be used by the Air Force. 
Caller ID is controversial in that it actually utilizes the same break-in 
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technique used by intruders to break into the hosts along the connection 
chain reversibly. If the intruder from H0 connects through H1, H2…Hn-1 to 
the final target Hn, the network security personnel at Hn first breaks into Hn-1; 

from there they can find out the intruder comes from Hn-2, then they break 
into Hn-2 and so on. Eventually they can find the origin of the intruder. One 
compelling advantage of Caller ID is that it is scalable to the Internet. It is 
also efficient in the sense that it introduces less overhead compared to DIDS 
and CIS. But its manual approach makes it difficult to trace short intrusion in 
today’s high-speed network. Besides it legal complications, Caller ID also 
has the drawback that one must perform manual tracing on the host where 
the intruder is active, which is easily-noticed by the intruder. 

The fundamental problem with the host-based tracing approach is its trust 
model. Host-based tracing places its trust upon the monitored hosts 
themselves. In specific, it depends on the correlation of connections at every 
host in the connection chain. If one host is compromised and is providing 
misleading correlation information, the whole tracing system is fooled. 
Because host-based tracing requires participation and trust of every host 
involved in the network-based intrusion, it is very difficult to be applied in 
the context of the public Internet. 

Network-based tracing is the other category of tracing approaches. 
Neither does it require the participation of monitored hosts, nor does it place 
its trust on the monitored hosts. It is based on the property of network 
connections: the application level content of chained connections is invariant 
across the connection chain. In particular, the thumbprint [3] is a pioneering 
correlation technique that utilizes a small quantity of information to 
summarize connections. Ideally it can uniquely distinguish a connection 
from unrelated connections and correlate those related connections in the 
same connection chain. While thumbprinting can be useful even when only 
part of the Internet implements it, it depends on clock synchronization to 
match thumbprints of corresponding intervals of connections.  It also is 
vulnerable to retransmission variation. This severely limits its usefulness in 
real-time tracing.  

The timing-based scheme [11] by Zhang and Paxson is a novel network-
based correlation scheme for detecting stepping stones across the connection 
chain. The correlation is based on the distinctive timing characteristics of 
interactive traffic, rather than connection contents. It pioneered new ways of 
correlating encrypted connections. It requires no clock synchronization and 
it is robust against retransmission variation. However, because its timing 
characteristics are defined over the entire duration of each connection to be 
correlated, it is difficult to be used in real-time correlation. 
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The deviation-based approach [10] by Yoda and Etoh is another network-
based correlation scheme. It defines the minimum average delay gap 
between the packet streams of two TCP connections as deviation. The 
deviation considers both timing characteristics and the TCP sequence 
number, and it does not depend on the TCP payload. Similar to the timing-
based approach, the deviation-based approach does not require clock 
synchronization and is robust against retransmission variations. However it 
is difficult to be used in real-time correlation as the deviation is defined over 
all the packets of a connection. Another drawback of deviation-based 
approach is that it correlates only TCP connections. 

One fundamental problem with passive network-based approaches is its 
computational complexity. Because it passively monitors and compares 
network traffic, it needs to record all the concurrent incoming and outgoing 
connections even when there is no intrusion to trace. To correlate at any host 
in the connection chain, it needs to match every concurrent incoming 
connection with every concurrent outgoing connection at that host. That is, 
for a host with m concurrent incoming connections and n concurrent 
outgoing connections, the passive network-based correlation approach would 
take O(m×n) comparisons, in addition to the O(m+n) scanning and recording 
of concurrent connections. 

On the other hand, the active network-based approach dynamically 
controls how connections are correlated through customized packet 
processing. It does not need to record all the concurrent incoming and 
outgoing connections at any host in the connection chain. It does not need to 
match each concurrent incoming connection with each concurrent outgoing 
connection. For a host with m concurrent incoming connections and n 
concurrent outgoing connections, the active network-based approach is able 
to correlate within time dependent only on the number of connections being 
actively traced, in addition to the O(m+n) scanning of concurrent 
connections. 

IDIP (Intrusion Identification and Isolation Protocol) [6] is a proposal by 
Boeing’s Dynamic Cooperating Boundary Controllers Program that uses an 
active approach to trace the incoming path and source of intrusion. In the 
proposal, boundary controllers collaboratively locate and block the intruder 
by exchanging intrusion detection information, namely, attack descriptions. 
While it does not require any boundary controller to record any connections 
for correlation, its intrusion tracing is closely coupled with intrusion 
detection. The effectiveness of IDIP depends on the effectiveness of 
intrusion identification through the attack description at each boundary 
controller. Therefore IDIP requires each boundary controller to have the 
same intrusion detection capability as the IDS at the intrusion target host. It 
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is questionable whether the intermediate boundary controller is able to 
identify an intrusion based on  a hard-coded attack description. 

3. SLEEPY WATERMARK TRACING OVERVIEW  

SWT is an active network-based tracing framework. It is "sleepy" in that 
it does not introduce overhead when no intrusion is detected. Yet it is 
"active" in that when an  intrusion is detected, the target will inject a 
watermark into the backward connection of the intrusion and “wakes up” 
intermediate routers along the intrusion path.   

By watermarking selected packets and processing them accordingly, 
SWT provides many potential advantages over existing intrusion tracing 
approaches. 1) SWT separate intrusion tracing from intrusion detection and 
it does not require any node other than the intrusion target to have the 
intrusion detection capability. 2) Unlike thumbprinting, timing-based and 
deviation-based approaches, SWT does not need to record all the concurrent 
incoming and outgoing connections at any node, and it does not require 
matching each of the incoming connections with each of the outgoing 
connections for correlation at any node. 3) SWT requires no clock 
synchronization and is robust against retransmission variation. 4) SWT 
traces only when needed. 5) So far the most compelling advantage of SWT 
is its correlation accuracy and efficiency. By using watermarks, SWT can 
trace the intrusion connection chain to its origin within a single keystroke of 
the intruder. With its unique active tracing, SWT can trace the intrusion 
connection chain back to its origin even when the intruder is is inactive. 6) 
We have found that SWT can be implemented efficiently. It does not 
introduce any noticeable overhead to routers, and it only requires a few 
network server applications at the intrusion target host to be modified to 
inject watermarks. 

In the remainder of this section, we describe the SWT model concepts 
and assumptions. 

3.1 Basic SWT Concepts 

In order to keep track of network-based intrusions to hosts, it is desirable 
to monitor hosts through the nearest router or gateways. This is termed a 
Guardian Gateway. We define the Incoming Guardian Gateway of host H as 
the nearest router that forwards incoming traffic to H and the Outgoing 
Guardian Gateway of host H as the nearest router that forwards outgoing 
traffic from H. It is possible that one host has more than one incoming or 
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outgoing guardian gateway. We define the union of incoming and outgoing 
guardian gateways of a host as its Guardian Gateway Set (e.g., {GWin1, 
GWin2, GWout1, GWout2} in Figure 1). For any guardian gateway set G, we 
define those hosts as Guarded Host of G whose guardian gateway set is a 
subset of G. For a host H, while the traffic between H and its directly-
connected neighbour hosts does not pass through any gateways, the traffic 
between H and any non-directly-connected hosts must pass through its 
guardian gateway set. 

We further define a leap as one connection step between hosts within a 
connection chain (e.g., <Hi , Hi+1> in Figure 2). One leap may consist of 
multiple hops (or links in the physical network) and the two guardian 
gateways of the two end hosts. A leap can be specified by a 5-tuple 
consisting of  

<protocol number, source ip address, source port number, destination ip 
address, destination port number> 

Now the tracing problem of chained intrusion is defined as discovering 
and sequencing the guardian gateways of those hosts in the intrusion path, or 
(equivalently) as finding the leaps along the intrusion path. 

Figure 1: Guardian Gateway Set 
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3.2 Basic SWT Assumptions 

We have identified the following assumptions that motivate and constrain 
our design: 

Intrusions are interactive and bidirectional, 
Routers are trust worthy and hosts are not trust worthy, 
Each host has a single SWT guardian gateway and 
There is no link-to-link encryption. 
The first two assumptions represent our assessments of the nature of the 

intrusions. Here we refer to intrusions as those attacks aiming to gain 
unauthorized access, rather than denial of service attacks. A study of CERT 
security incidents [4] indicates that almost all security incidents, especially 
unauthorized access incidents, happened at computer hosts rather than 
routers or gateways. Therefore we believe our assumption to trust routers 
will cover most intrusion cases. In case there are indeed compromised 
routers involved in intrusion, the compromised router will be effectively 
indistinguishable from an attacker. The compromised router needs to be 
addressed first, before the tracing of the intrusion can go any further. In this 
case SWT can still trace to the farthest trustworthy guardian gateway. 

The assumption of each host having a single SWT guardian gateway is 
only for simplifying the presentation of the SWT architecture. In case some 
host has multiple SWT guardian gateways, the guardian gateway set will be 
used in SWT tracing.  

The final assumption represents the inherent limitation of any tracing 
based on network content. We believe that correlation of encrypted 
connections in real-time is still an open problem. 

4. SLEEPY WATERMARK TRACING 
ARCHITECTURE 

In general, the Sleepy Watermark Tracing Architecture consists of two 
complementing parties, namely, the SWT guarded host and the SWT 
guardian gateway. The SWT guarded host is the host that supports and thus 
is protected by SWT.  The SWT guardian gateway supports SWT. In our 
trust model, each SWT guarded host has a unique SWT guardian gateway, 
and it maintains a pointer to its SWT guardian gateway. Each SWT guardian 
gateway may guard one or more SWT guarded hosts and it maintains the list 
of its SWT guarded hosts. 

IDS and watermark-enabled applications at a SWT guarded host are 
SWT supporting components. In particular, IDS refers to an application level 
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interface to any Intrusion Detection System ; this is the ultimate initiator of 
SWT tracing. It interacts with SWT subsystem within SWT guarded host 
and triggers active watermark tracing once it detects an intrusion. Watermark 
enabled applications are those network service applications (such as telnetd, 
rlogind) that have been modified to inject arbitrary watermarks upon request. 

The core of Sleepy Watermark Tracing consists of three interacting 
components: Sleepy Intrusion Response (SIR), Watermark Correlation 
(WMC) and Active Tracing (AT). In particular, Sleepy Intrusion Response 
accepts tracing requests from IDS, coordinates active tracing and keeps track 
of tracing information of intrusions. Watermark Correlation correlates 
incoming and outgoing connections through watermarks. Active Tracing 
coordinates different parties in the network to collaboratively trace the 
incoming path and source of intrusions. 

These three components work tightly together across SWT hosts and 
SWT guarded gateways. In specific, SIR and AT form the SWT subsystem 
within a SWT guarded host. Upon request from IDS, SIR coordinates a 
WM- enabled application and the AT module to initiate active tracing from 
the SWT guarded host to SWT guardian gateways. At the SWT gateway, the 
AT module receives tracing requests and provides watermarks to the WMC 
module.  This module in turn provides AT module information about  the 
next-leap SWT guardian gateway by correlating incoming and outgoing 
connections. Once the SWT guardian gateway finds next leap information 
about an intrusion connection chain, AT will send trace information to the 
original host that initiated the whole tracing and notify the next leap SWT 
guardian gateway to start watermark tracing. 

Figure 3: SWT Architecture 
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4.1 Sleepy Intrusion Response 

SIR controls and coordinates overall SWT intrusion tracing. It is in a 
SWT guarded host and it interacts with IDS and WM-enabled applications in 
the same host. To achieve high efficiency, SIR introduces “sleepiness” into 
SWT. By default, the SWT system is inactive and in sleep mode. When IDS 
detects an intrusion, it triggers SWT tracing by notifying SIR with 
appropriate connection information. Upon request from IDS, SIR first 
registers the intrusion connection as active for a configurable period of time, 
if it is not active already. Then SIR triggers active tracing on its guardian 
gateway by sending out trace notification; Finally SIR notifies the WM-
enabled application that terminates the intrusion connection to start injecting 
the requested watermark. SIR also keeps track of tracing information of 
intrusions returned by the SWT guardian gateway, and upon request from 
IDS, SIR will provide tracing information on any specific active intrusion. If 
within a timeout period there is no trace information returned from the SWT 
guardian gateways, or further trace notification from IDS on an active 
intrusion connection, that intrusion response component will become 
inactive (“fall asleep”). 

4.2 Watermark and Watermark-Enabled Applications 

Conceptually, a watermark is a small piece of information that can be 
used to uniquely identify a connection. Ideally, a watermark should be easy 
to embed and retrieve and yet be invisible to normal users of network 
applications. In order to be used for correlation, a watermark must be able to 
traverse multiple connections and remain invariant (we assume that there is 
no encryption involved in the connections). Therefore, watermark belongs to 
the application layer and is application-specific. 

One challenge in generating watermark is how to make watermarks 
invisible to end-users. For text based network applications such as telnet and 
rlogin, this is in many ways similar to hiding data in text [1], which is much 
more difficult than hiding data in pictures or sounds. The open space method 
is one of the major methods of data hiding in text files through manipulating 
white space. In particular, inserting spaces at the end of each line of text file 
will not be noticed by readers. But for network applications such as telnet 
and rlogin, simply inserting spaces will change the cursor position, and it is 
likely to be noticed by end users. Fortunately, the text being transferred to 
network applications is not necessarily the same as that being displayed. For 
example, the string  

 “See meabc\b\b\b \b” 
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 transferred to telnet or rlogin will be displayed as the string  
 “See me” 
We define a virtual null string of a network application as a string that 

appears null to end users of the network application. For instance, 
“abc\b\b\b \b” is a virtual null string of telnet and rlogin. Therefore by 
using virtual null strings, we can make watermarks invisible to such network 
applications. 

In order to achieve high confidence of correlation, it is desirable to have 
the probability of collision of randomly generated watermarks as low as 
possible. For n > 1 sites, assume each site independently generates a equi-
probable random integer number between 1 and m, where m >> n; let P(m, 
n) be the probability such that those n random numbers are different from 
each other. Then we have: 

When m > n2, we have: 

Therefore, given n = 232, having m ≥ 273 will make    P(m, n) > 0.999. 
That means having 73 random bits in watermarks is sufficient to cover the 
whole IPv4 address space such that the probability of collision of generated 
watermarks is less than 0.1%. 

 
Because the watermark is application specific, it needs to be injected into 

backward traffic through the application itself. Watermark-enabled 
applications are those network server applications (such as telnetd, rlogind) 
that have been modified to be able to “inject” requested watermark into their 
response traffic upon request. A watermark-enabled application processes 
two messages from SIR : WM-Start and WM-End, where WM-Start notifies 
watermark-enabled application to start injecting the enclosed watermark for 
specified times, and WM-End notifies the watermark-enabled application to 
stop injecting the watermark. 

4.3 Watermark Correlation 

In order to trace back along the intrusion connection chain, a mechanism 
is needed to find and match adjacent connections that belong to the same 
connection chain. We refer to this adjacent connection matching mechanism 
as correlation. According to the SWT tracing model, the hosts along the 
intrusion connection chain are not trustworthy, therefore, SWT is designed 
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to correlate at SWT guardian gateways. Because the forward and backward 
traffic of intrusion connection chain is symmetric at the granularity of leaps, 
watermarks along the backward traffic could be used for correlation at SWT 
guardian gateways.  

By referencing its SWT guarded hosts, the through traffic of a SWT 
guardian gateway can be divided into two classes: guarded and bypassing 
(Figure 4). We define guarded traffic of a SWT guardian gateway as the 
traffic that either terminates at or originates from one of the SWT guardian 
gateway’s guarded hosts, and bypassing traffic as all other traffic. It is 
obvious that the SWT guardian gateway needs to scan only the guarded 
traffic for possible correlation. We further define an incoming leap of a SWT 
guardian gateway as the connection that terminates at one of  the gateway’s 
guarded hosts, and an outgoing leap of a SWT guardian gateway as the 
connection that originates from one of the gateway’s guarded hosts (Figure 
4). Thus correlation at SWT guardian gateway can be modeled as matching 
an outgoing leap with an incoming leap. 

One challenge of correlation at the SWT guardian gateway is that there 
may be multiple incoming and outgoing leaps through a single SWT 
guardian gateway. For a SWT guardian gateway with m incoming and n 
outgoing leaps, there are m×n combinations of possible matches after those 
m+n leaps have been scanned. In specific, after m incoming leaps have been 
scanned, each of the n outgoing leaps scanned has m possible matches for 
correlation. Therefore exhaustive matching through multiple SWT guardian 
gateways would be complex and computationally expensive. To solve the 
connection matching combination explosion problem and achieve real-time 
response, SWT introduces the watermark as its basis for correlation.  

With an identifying watermark injected to backward traffic of the 
intrusion connection chain, correlation at an intermediate SWT guardian 
gateways is simplified to scanning incoming and outgoing leaps and 
matching those with the same watermark. Specifically, when a SWT 

Figure 4: Guardian Gateway Correlation 
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guardian gateway scans incoming leaps, it registers any leap that has a 
registered watermark. When it scans outgoing leaps, it matches watermarked 
outgoing leaps with the incoming leap with same watermark. 

The following observations can be made about watermark correlation: 
• The accuracy of correlation is purely based on the uniqueness of the 

watermark, which is ultimately determined by SIR at the intrusion 
target host. This makes it possible to get very high confidence of 
correlation from tracing even a single watermarked packet. 

 
• While the watermark is application specific, watermark correlation is 

generic. It has linear computation complexity across chained 
connections and requires no clock synchronization. Therefore it gives 
real-time response. 

5. PROTOTYPE EXPERIMENTS 

As a proof of concept, we have implemented a SWT prototype on 
FreeBSD 4.0. The prototype includes a SWT guarded host, SWT guardian 
gateways and a watermark-enabled application all running on the FreeBSD 
platforms. 

We have performed two functional experiments on tracing a telnet 
connection chain: A � B � C � D, where A is the source of intrusion and 
D is the final intrusion target. The first is to trace the intrusion source while 
the intruder is active. Our SWT prototype demonstrates the capability of 
real-time tracing of a single watermarked packet: SIR at host D gets all the 
trace information back to intrusion source A within one key stroke from 
intruder at A. The second experiment is to trace the intrusion source while 
the intruder is inactive or silent. By actively sending back a watermark from 
watermark-enabled telnetd, our SWT prototype also gets all the trace 
information lead to the intrusion source A. As we have expected, for each 
watermarked packet, SWT triggers one GWTraceOn message travel from D 
� C � B � A, and two GWTraceInfo messages from C and B respectively. 

To quantify the overheads incurred due to SWT itself, we have measured 
latency of SWT gateways with four different configurations:  

• FreeBSD kernel IP forwarding without SWT;  
• SWT configured to bypass traffic;  
• divert socket IP forwarding without SWT;  
• SWT configured to scan traffic. 
The latency measurements were performed on a three node testbed 

configured in a straight line topology. The gateway at intermediate node was 
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a 233Hz Pentium PC with 32 MB RAM, 512KB cache, and two Netgear 
FA310TX 10/100 fast Ethernet adapters, running FreeBSD 4.0. 

Figure 5 shows that the latency of FreeBSD kernel IP forwarding is about 
78 µs, independent of packet sizes. It takes about 83 µs for the SWT gateway 
to bypass and forward IP packets of various sizes. The 5 µs latency 
difference comes from IPFW rule matching in the FreeBSD kernel. The 
latency of divert socket IP forwarding ranges from 186 µs to 239 µs 
depending on the size of IP packets. The 103 µs to 156 µs overhead for 
divert socket forwarding over kernel forwarding includes: (1) overhead for 
two context switches for data reading and writing; (2) overhead for data 
copy in and out of user space; (3) overhead for dispatching system calls. 
Compared with divert socket IP forwarding, SWT scanning takes about 50 
µs more time to forward IP packets of various sizes. This indicates that the 
SWT gateway latency overhead due to SWT itself is about 50 µs. 

6. CONCLUSIONS 

In this paper, we have argued that network-wide, active intrusion 
response is needed in order to trace today’s increasingly sophisticated 
network-based intrusions, which most likely utilize chained connections to 
hide their origin. We have presented SWT as an active network-based 
intrusion response framework and have shown that watermark can be used to 
construct highly accurate and efficient correlation for tracing chained 

Figure 5: Latency of  SWT Gateway 
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intrusion connections. Our prototype shows that SWT is able to trace back to 
the trustworthy SWT guardian gateway that is closest to the source of 
intrusion chain, within single keystroke of the intruder. By actively injecting 
watermark back to the intrusion connection, it is able to trace even when the 
intruder is silent. 

By integration of Sleepy Intrusion Response, Watermark Correlation and 
Active Tracing, SWT provides highly effective, real-time and network-wide 
tracing of intrusions with chained connections. It is efficient, robust and 
scalable and it only requires some of the edge routers to participate tracing. 
Our experiment shows that SWT’s own impact on a gateway’s processing 
delay is only about 50 µs. 

These results lead us to conclude that active network technology can 
indeed provide better and yet practical solutions to some of the most difficult 
network security problems. It is our hope that SWT could be a building 
block for more active network security mechanisms such as dynamic 
perimeter defense, and dynamic intrusion blocking and containment. 
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